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S1 Additional Lemmas and Propositions

In order to prove the main theoretical results in the paper, we need ad-

ditional technical definitions and auxillary results. First, we say that the

sample covariance matrix of predictors Σ̂ satisfies the restricted eigenvalue

condition over a set T with parameter (q, r) if and only if

∥∥∥L̂>v∥∥∥2
2

= v>Σ̂v ≥ r ‖v‖22 , for all v ∈ C(T, q) = {v ∈ Rp | ‖vT c‖1 ≤ q ‖vT‖1}.

This condition is essential in obtaining the consistency of the Lasso esti-

mator in the linear model (Wainwright, 2019). It is also essential for the

consistency of the Cholesky matrix penalization (CHOMP) estimator as

shown below.

We begin by obtaining the following bound of the difference between

the CHOMP estimator and the pseudo-true parameter as defined in Section
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4 of the main paper.

Lemma 1. Assume the sample covariance matrix Σ̂ satisfies the restricted

eigenvalue condition with parameter q = 3 and some positive constant r.

Then, any solution of the equation (3.8) of the main paper with tuning

parameter bounded below as µj ≥ 2
∥∥∥η̂j − Σ̂β̃j

∥∥∥
∞

satisfies
∥∥∥β̂j − β̃j∥∥∥

2
≤

3r−1µjs
1/2
j , for j = 1, . . . , d.

This result parallels the basic consistency result for the Lasso estimator

in the linear model (Wainwright (2019)). The bound on the right hand

side of (1) is inversely proportional to the restricted eigenvalue constant θ,

which is expected because a higher θ implies a higher curvature around the

optimal β̂j. Also, the bound scales with s
1/2
j ; this is also natural because

we are trying to estimate an unknown vector with sj non-zero entries. We

first prove Lemma 1.

S1.1 Proof of Lemma 1

As Lemma 1 holds for each dimension j = 1, . . . , d, we remove the subscript

j in the development below. First, we prove that δ ∈ C(S, 3) defined in the

paper. By definition of β̂, we have

1

2

∥∥∥L̂>β̂ − κ̂∥∥∥2
2

+ µ
∥∥∥β̂∥∥∥

1
≤ 1

2

∥∥∥L̂>β̃ − κ̂∥∥∥2
2

+ µ
∥∥∥β̃∥∥∥

1
.
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Writing β̂ = β̃ + δ we obtain

1

2

∥∥∥L̂>δ − (κ̂− L̂>β̃)∥∥∥2
2

+ µ
∥∥∥β̂∥∥∥

1
≤ 1

2

∥∥∥L̂>β̃ − κ̂∥∥∥2
2

+ µ
∥∥∥β̃∥∥∥

1
. (S1.1)

Expanding the first term on the left hand side of (S1.1), we have

1

2

∥∥∥L̂>δ − (κ̂− L̂>β̃)∥∥∥2
2

=
1

2

∥∥∥L̂>β̃ − κ̂∥∥∥2
2
− δ>L̂(κ̂− L̂>β̃) +

1

2

∥∥∥L̂>δ∥∥∥2
2
,

Hence,

0 ≤ 1

2

∥∥L>δ∥∥2
2
≤ δ>L̂(κ̂− L̂>β̃) + µ

(∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1

)
(i)

≤ ‖δ‖1
∥∥∥L̂κ̂− L̂L̂>β̃∥∥∥

∞
+ µ

(∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1

)
(ii)
= ‖δ‖1

∥∥∥η̂ − Σ̂β̃
∥∥∥
∞

+ µ
(∥∥∥β̃∥∥∥

1
−
∥∥∥β̂∥∥∥

1

)
(iii)

≤ 1

2
µ ‖δ‖1 + µ

(∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1

)
,

(S1.2)

where step (i) follows from Holder’s inequality, step (ii) follows from the

definitions κ̂ = L̂−1η̂ and Σ̂ = L̂L̂>, and step (iii) follows from the condi-

tion µ ≥ 2
∥∥∥η̂ − Σ̂β̃

∥∥∥
∞
. Then, we have

1

2
‖δ‖1 +

∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1
≥ 0. (S1.3)

Because β̂ = β̃ + δ and β̃T c = 0, applying the (reverse) triangle inequality

gives

∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1
=
∥∥∥β̃S∥∥∥

1
−
∥∥∥β̃S + δS

∥∥∥
1
− ‖δSc‖1 ≤ ‖δS‖1 − ‖δSc‖1 ,
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Furthermore, we have ‖δ‖1 = ‖δS‖1 + ‖δSc‖1. Therefore, equation (S1.3)

gives

0 ≤ 1

2
‖δ‖1 +

∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1

(iv)

≤ 1

2
‖δS‖1 +

1

2
‖δSc‖1 + ‖δS‖1 − ‖δSc‖1 =

3

2
‖δS‖1 −

1

2
‖δSc‖1

(v)

≤ 3

2
‖δS‖1 .

It follows from step (iv) that ‖δSc‖1 ≤ 3 ‖δS‖1, or δ ∈ C(S, 3). Finally,

applying the restricted eigenvalue condition of the sample covariance matrix

(defined in Section 4 of the main paper), we obtain

1

2
θ ‖δ‖22≤

1

2

∥∥∥L̂>δ∥∥∥2
2

(vi)

≤ 1

2
µ ‖δ‖1 + µ(

∥∥∥β̃∥∥∥
1
−
∥∥∥β̂∥∥∥

1
)

(vii)

≤ 3

2
µ ‖δS‖1

(viii)

≤ 3

2
µ
√
s ‖δS‖2 ≤

3

2
µ
√
s ‖δ‖2 ,

where step (vi) follows from (S1.2), step (vii) follows from step (v), and

step (viii) follows from the Cauchy-Schwartz inequality. Finally, we obtain

∥∥∥β̂ − β̃∥∥∥
2

= ‖δ‖2 ≤
3

θ
µ
√
s

as required.

S1.2 Additional Propositions

Next, we state the following results from Lin et al. (2019) which essentially

imply that the conditions for Lemma 1 in the main paper hold with proba-

bility tending to one. We begin with the restricted eigenvalue condition for
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the sample covariance matrix Σ̂.

Proposition 1. Assume Condition (C1) in the paper holds. For some uni-

versal constants a1, a2 and a3, if the sample size n satisfies n > a1s log(p),

then the sample covariance matrix Σ̂ satisfies the restricted eigenvalue con-

dition with parameter (q, r) = (3,
√
Cmin/8) over any set T of cardinality s

with probability at least 1− a2 exp(−a3n).

Next, one key condition in Lemma 1 is that the tuning parameter has

to satisfy the lower bound µ ≥ 2
∥∥∥η̂ − Σ̂β̃

∥∥∥
∞
. Proposition 2 implies that

this lower bound is well-controlled.

Proposition 2. Assume conditions (C1)-(C3) in the main paper hold.

Then ∥∥∥η̂j − Σ̂β̃j

∥∥∥
∞

= Op

{
log(p)1/2

(nλ̂j)1/2

}
, j = 1, . . . , d.

Proposition 2 implies that if we set µj = M
{

log(p)/(nλ̂j)
}1/2

for a

sufficiently large constant M , then we have µj ≥ 2
∥∥∥η̂ − Σ̂β̃

∥∥∥
∞

with prob-

ability tending to one. When n → ∞, the ratio p/n → 0, and hence

log(p)/n → 0. As long as the eigenvalue λ̂j is bounded away from zero,∥∥∥η̂j − Σ̂β̃j

∥∥∥
∞
→ 0, then any positive tuning parameter µj will asymptoti-

cally satisfy the bound.

Proposition 3. If nλ = pν for ν > 1/2, then ‖β̃j‖2 ≥ C
(
λj/λ̂j

)1/2
and
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λj/λ̂j

)1/2
≤ C

∥∥P(Λ)η̂j
∥∥
2

for j = 1, . . . , d with probability tending to one.

Proposition 3 implies that the norm of the pseudo-true parameter
∥∥∥β̃j∥∥∥

2

is bounded away from zero and that the ratio λj/λ̂j is bounded for each

j = 1, . . . , d

S2 Proof of Main Theorems

S2.1 Proof of Theorem 1

When the sample size n→∞, Proposition 1 in the main paper implies that

the sample covariance matrix Σ̂ satisfies the restricted eigenvalue condition

with probability tending to one. Furthermore, the condition on the tuning

parameter µ implies that we can apply Lemma 1 with θ = C
1/2
min/8 > 0.

Hence for each dimension j = 1, . . . , d, we then have

‖δj‖2 =
∥∥∥β̂j − β̃j∥∥∥

2
≤ 24C

−1/2
min s

1/2
j µj ≤ C

{
sj log(p)

nλj

}1/2

≤ C

{
s log(p)

nλd

}1/2

.

Proposition 3 and Condition (C2) in the main paper imply that the norm∥∥∥β̃j∥∥∥
2

is bounded away from zero. As a result,

∥∥∥P(β̂j)− P(βj)
∥∥∥
F

=
∥∥∥P(β̂j)− P(β̃j)

∥∥∥
F
≤ 4
‖β̂j − β̃j‖2
‖β̃‖2

= 4
‖δj‖2
‖β̃j‖2

≤ C

{
s log(p)

nλd

}1/2
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for a sufficiently large constant C. Furthermore, Lin et al. (2019) shows

that the lengths of each vector β̃j, j = 1, . . . , d are bounded below by

C(λ/λ̂j)
1/2, and the angles between any two vectors of β̃j, j = 1, . . . , d are

bounded below by a constant. The Gram-Schmidt process then implies

∥∥∥P(B̂)− P(B)
∥∥∥
F
≤ C

{
s log(p)

nλ

}1/2

as claimed.

S2.2 Proof of Theorem 2

It suffices to prove selection consistency for each dimension. In the proof

below, the notations β̃, β̄, and β∗ denote the pseudo-true parameter (de-

fined in the main paper), the initial consistent estimate, and the Adaptive

Cholesky estimate for each dimension respectively; furthermore the set S is

the true index set of non-zero components of β. The subscript used in the

proof, for example βk, denotes the kth component of β, and βS, denotes

the vector of components of β whose indices belong to S. For any matrix

A and a set T , the notation A,T and AT, denotes the submatrix of A with

column indices in T and the submatrix of A with row indices in T respec-

tively, and AT,T denotes the submatrix with both row and column indices

in T .

First, let ∆̂ = diag(β̄
γ
1 , . . . , β̄

γ
p), a diagonal matrix whose elements
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correspond to the inverse of the weight vector ω. For ease of notation,

consider the case of γ = 1. Due to consistency of the initial estimator,

the matrix ∆̂S,S is invertible with probability one. Furthermore, since the

sample covariance matrix Σ̂ satisfies the restricted eigenvalue condition

with probability tending to one (Proposition 1), the minimum eigenvalue

of the matrix Σ̂S,S is bounded away from zero with probability tending to

one as well. In that case, each component of the adaptive Cholesky matrix

penalization estimator can be computed as β̂
∗
k = β̄kûk, k = 1, . . . , p, where

the vector û = (û1, . . . , ûp)
> solves the following minimization problem

û = arg min
u

1

2
‖V u− κ̂‖22 + µ ‖u‖1

with V = L̂>∆̂. Therefore, if û recovers the exact sparsity pattern, so does

the adaptive Cholesky matrix penalization estimate. From the Karush-

Kuhn-Tucker condition, the estimate û satisfies

V >V û− V >κ̂+ µw = 0, (S2.4)

where w = (w1, . . . , wp) with wk = sign(ûk) if ûk 6= 0 and |wk| ≤ 1 other-

wise. Therefore, û recovers the exact sparsity pattern of β∗ if and only if

uS 6= 0,wS = sign(βS), uSc = 0, |wSc| ≤ 1. Furthermore, by definition of

κ, the quantity V >κ̂ = ∆̂
>
L̂κ̂ = ∆̂η̂, and V û = V,SûS. Combining these

with condition (S2.4) above, if û recovers the exact sparsity pattern of β,
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we then have

V >S, V,SûS − ∆̂S,Sη̂S + µsign(βS) = 0

V >Sc,V,SûS − ∆̂
>
Sc,Scη̂Sc + µwSc = 0.

Solving this system of equations, we then have

ûS = (V >S, V,S)−1
{

∆̂
>
S,Sη̂S − µsign(βS)

}
−µwSc = V >Sc,V,S(V >S, V,S)−1

{
∆̂
>
S,Sη̂S − µsign(βS)

}
− ∆̂Sc,Scη̂Sc .

(1) With this in mind, we will show that probability of underselection goes

to zero by showing that pr(ûS 6= 0)→ 1. In fact,

(V >S, V,S)−1∆̂
>
S,Sη̂S =

(
∆̂S,SL̂S,L̂

>
,S∆̂S,S

)−1
∆̂S,Sη̂S = ∆̂

−1
S,SΣ̂

−1
S,Sη̂S

= ∆̂
−1
S,SΣ̂

−1
S,S (η̂S − η̃S) + ∆̂

−1
S,SΣ̂

−1
S,Sη̃S

= ∆̂
−1
S,SΣ̂

−1
S,S (η̂S − η̃S)︸ ︷︷ ︸

I1

+ ∆̂
−1
S,SΣ̂

−1
S,S ΣS,S β̃S︸ ︷︷ ︸
I2

,

where the last inequality follows from the definition that η̃ = Σ β̃ and the

vector β̃ is a sparse vector. Using Proposition 2, condition (C1) and (C4),

we then have

‖I1‖∞ ≤
∥∥∆−1S,S∥∥∞ ∥∥∥Σ̂−1S,S∥∥∥∞ ‖η̂S − η̃S‖∞ ≤ s1/2

ρnC
1/2
min

O

(
log(p)1/2

(nλ)1/2

)
= Op

{
s1/2 log(p)1/2

ρn(nλ)1/2

}
→ 0,

since n−1λ−1ρ−2n s log(p)→ 0. Next,

I2 = ∆̂
−1
S,SΣ̂

−1
S,S ΣS,S β̃S = ∆̂

−1
S,SΣ̂

−1
S,SΣ̂S,Sβ̃S + ∆̂

−1
S,SΣ̂

−1
S,S

(
ΣS,S −Σ̂S,S

)
β̂S

= ∆̂
−1
S,Sβ̃S + ∆̂

−1
S,SΣ̂

−1
S,S

(
ΣS,S −Σ̂S,S

)
β̂S = I21 + I22.
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Due to the consistency of the initial estimator β̄, each element of the term

I21 converges to a non-zero constant with probability 1 at a rateOp(δn) since

δn = o(ρn). Since
∥∥∥ΣS,S −Σ̂S,S

∥∥∥
2

= O
{

(s/n)1/2
}

(Wainwright, 2019), we

have
∥∥∥ΣS,S −Σ̂S,S

∥∥∥
∞

= O(sn−1/2) and

‖I22‖∞ ≤
∥∥∥∆̂−1S,S∥∥∥∞ ∥∥∥Σ̂S,S

∥∥∥−1
∞

∥∥∥ΣS,S −Σ̂S,S

∥∥∥
∞

∥∥∥β̃S∥∥∥
∞

= Op

{
ρ−1n s3/2n−1/2

}
→ 0

since ρ−1n s3/2n−1/2 → 0. Finally, we consider µ(V >S VS)−1sign(βS) = µ
(
∆̂S,SΣ̂S,S∆̂S,S

)−1
sign(βS).

We have

∥∥∥∥µ(∆̂S,SΣ̂S,S∆̂S,S

)−1
sign(βS)

∥∥∥∥
∞
≤ µOp(s

1/2)
∥∥∥∆̂−1S,S∥∥∥2∞ = Op

(
µs1/2

ρ2n

)

so this term also goes to zero when µ = o(ρ2n/s
1/2).

(2) We will show that the probability of overselection also goes to zero.

Define the term

Q = V >Sc,V,S(V >S, V,S)−1
{

∆̂
>
S,Sη̂S − µsign(βS)

}
− ∆̂Sc,Scη̂Sc ,

so there would be no over-selection if ‖Q‖∞ ≤ µ. By the triangle inequality

and the fact that ‖η̂‖∞ = |sign(βS)| ≤ 1, we have

‖Q‖∞ ≤
∥∥∥∆̂Sc,Scη̂Sc

∥∥∥
∞

+
∥∥∥V >Sc,V,S(V >S, V,S)−1∆̂

>
S,Sη̂S

∥∥∥
∞

+ µ
∥∥V >Sc,V,S(V >S, V,S)−1sign(βS)

∥∥
∞

≤
∥∥∥∆̂Sc,Sc

∥∥∥
∞

+

∥∥∥∥∆̂Sc,ScL̂Sc,L̂
>
,S

(
L̂S,L̂

>
,S

)−1∥∥∥∥
∞

+ µ

∥∥∥∥∆̂Sc,ScL̂Sc,L̂
>
,S

(
L̂S,L̂

>
,S

)−1
∆̂
−1
S,S

∥∥∥∥
∞

= Op(δn) +Op(δn) +Op

(
µ δn
ρn

)
≤ µ
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as long as δn /µ→ 0, where the last equality follows from

∥∥∥∥L̂Sc,L̂
>
,S

(
L̂S,L̂

>
,S

)−1∥∥∥∥
∞

=∥∥∥X>ScXS
(
X>S XS

)−1∥∥∥
∞

= O(1) by condition (C5).

(3) Finally, we show the bound on the error of the projection matrix

associated with the Adaptive Cholesky Matrix B̂∗. By the same argu-

ment as in the proof of Theorem 1 (Section S2.1), it suffices to show that∥∥∥β̂∗ − β̃∥∥∥
2
≤ Cs1/2 log(p)1/2/(nλ). In fact, due to variable selection consis-

tency, it suffices to show the bound holds for
∥∥∥β̂∗S − β̃S∥∥∥

2
. The first-order

condition then implies

V >S, V,SûS − ∆̂S,Sη̂S + µsign(ûS) = 0.

By definition, we have ûS = ∆̂
−1
S,Sβ̂

∗
S and V,S = L̂>,S∆̂S,S, so substituting

them into the above equation gives

∆̂S,SL̂S,L̂
>
,Sβ̂
∗
S = ∆̂S,Sη̂S − µsign(ûS)

or ∆̂S,SΣ̂S,Sβ̂
∗
S = ∆̂S,S(η̂S − η̃S) + ∆̂S,Sη̃S − µsign(ûS).

Also, by definition η̃S = Σ−1S,S β̃S, so substituting it into the above equation

and doing one algebraic manipulation gives

∆̂S,SΣ̂S,S(β̂
∗
S − β̃S) = ∆̂S,S(η̂S − η̃S) + ∆̂S,S(ΣS,S −Σ̂S,S)β̃S − µsign(ûS)

or (β̂
∗
S − β̃S) = Σ̂

−1
S,S(η̂S − η̃S) + Σ̂

−1
S,S(ΣS,S −Σ̂S,S)β̃S − µΣ̂

−1
S,S∆̂

−1
S,Ssign(ûS).
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Therefore, the triangular inequality and the fact that sign(ûS) = ±1 gives∥∥∥β̂∗S − β̃S∥∥∥∞ ≤ ∥∥∥Σ̂−1S,S∥∥∥2 ‖η̂S − η̃S‖∞ +
∥∥∥Σ̂−1S,S∥∥∥

2

∥∥∥ΣS,S −Σ̂S,S

∥∥∥
2

∥∥∥β̃S∥∥∥
∞

+ µ
∥∥∥Σ̂−1S,S∥∥∥∞ ∥∥∥∆̂−1S,S∥∥∥∞

= Op

{
log(p)1/2

(nλ)1/2

}
+Op

(
s1/2

n1/2

)
+Op(µs

1/2ρ−1n ) = Op

{
log(p)1/2

(nλ)1/2

}
,

due to the condition of the tuning parameters as stated in the Theorem.

Finally, we have

∥∥∥β̂∗S − β̃S∥∥∥
2
≤ s1/2

∥∥∥β̂∗S − β̃S∥∥∥∞ ≤ C

{
s log(p)

(nλ)

}1/2

,

for a sufficiently large constant C, as claimed.

S2.3 Proof of Theorem 3

Recall that for each dimension j = 1, . . . , d, the set Sj = {k : βjk 6= 0} the

set of indices corresponding to non-zero components of the true dimension

βj. Any index set S ⊂ {1, . . . , p} such that S 6⊃ Sj is referred to as an

underfitted index set, while any S ) Sj other than Sj itself is referred to

as an overfitted index set. Correspondingly, we can partition the values of

the tuning parameter µj into the underfitted, true, and overfitted ranges

respectively,

Ωj− = {µj : Ŝ(µj) 6⊃ Sj}, Ω0j = {µj : Ŝ(µj) = Sj}, and Ωj+ = {µj : Ŝ(µj) ) Sj}

where Ŝ(µj) = {k : β̂
∗
jk(µj) 6= 0}, the set of indices corresponding to the

nonzero component of β̂
∗
j(µj), the adaptive Cholesky matrix penalization
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estimator at the tuning parameter µj. We will show that, for any µj that

cannot identify the true model and the value of τj stated in the Theorem 3,

the resulting PIC(µj; τj) is consistently larger than PIC(µ0; τj) with µ0 ∈

Ω0j. To simplify the notation, we use PIC(µj). We will treat two cases of

overfitting and underfitting separately.

Overfitted range

For µj ∈ Ωj+ (the overfitted range), we have,

PIC(µj)−PIC(µ0) =
∥∥∥P {β̂∗j(µj)}− P(β̄j)

∥∥∥2
F
−
∥∥∥P {β̂∗j(µ0)

}
− P(β̄j)

∥∥∥2
F

+τj∆j

(S2.5)

where ∆j =
∥∥∥β̂∗j(µj)∥∥∥

0
−
∥∥∥β̂∗j(µ0)

∥∥∥
0
> 0. By the triangle inequality, we

obtain

∥∥∥P {β̂∗j(µ0)
}
− P(β̄j)

∥∥∥
F
≤
∥∥∥P {β̂∗j(µ0)

}
− P(βj)

∥∥∥
F

+
∥∥P(βj)− P(β̄)

∥∥
F
,

(S2.6)

For the first term in the right hand side of (S2.6), the tuning param-

eter µ0 satisfies the condition for the tuning parameter in Theorem 2,

so
∥∥∥P {β̂∗j(µ0)

}
− P(βj)

∥∥∥
F

= Op

[
{s log(p)/(nλ)}1/2

]
. The second term∥∥P(βj)− P(β̄j)

∥∥
F

= Op(
√
p/n). Since s log(p) = o(p), the rate of conver-

gence of the right hand side of (S2.6) is dominated by the rate of convergence

of the unpenalized estimator; i.e
∥∥∥P {β̂∗j(µ0)

}
− P(β̄j)

∥∥∥2
F

= O(p/n).
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Finally, since ∆j > 0 and τj
>∼ p/n, the right hand side of (S2.5) is

asymptotically positive, i.e PIC(µj) > PIC(µ0) for every µj ∈ Ω+ when

n→∞.

Underfitted range

For µj ∈ Ωj− (the underfitted range), we want to show

PIC(µj)−PIC(µ0) =
∥∥∥P {β̂∗j(µj)}− P(β̄j)

∥∥∥2
F
−
∥∥∥P {β̂∗j(µ0)

}
− P(β̄j)

∥∥∥2
F

+τj

(∥∥∥β̂∗j(µj)∥∥∥
0
− sj

)
> 0

(S2.7)

occurs with probability tending to one as n → ∞. By the same argument

as in the previous section for the overfitted range, the second term in the

right hand side of (S2.7)
∥∥∥P {β̂∗j(µ0)

}
− P(β̄j)

∥∥∥2
F

= O(p/n). For the firm

term in (S2.7), applying the triangle inequality again, we have

∥∥∥P {β̂∗j(µj)}− P(β̄j)
∥∥∥
F
≥
∥∥∥P {β̂∗j(µj)}− P(βj)

∥∥∥
F
−
∥∥P(βj)− P(β̄j)

∥∥
F

(S2.8)

First, regarding the second term on the right hand side of (S2.8), we have∥∥P(βj)− P(β̄j)
∥∥
F

= O(
√
p/n). For the first term on the right hand side of

(S2.8), let Kj be the index set of underfitted components, i.e for all k ∈ Kj,

we have β̂∗jk(µj) = 0 while βjk 6= 0. Hence, all the elements whose at

least one of the column and row indices of the estimated projection matrix
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P
{
β̂∗j(µj)

}
are zero. Therefore, we obtain

∥∥∥P {β̂∗j(µj)}− P(βj)
∥∥∥2
F
≥ 2

∑
k∈Kj

β2
jk∥∥βj∥∥22 −

∑
k∈Kj

β4
jk∥∥βj∥∥42 − 2

∑
k,r∈Kj

β2
jkβ

2
jr∥∥βj∥∥42

= 2

∥∥βjKj

∥∥2
2∥∥βj∥∥22 −

∥∥βjKj

∥∥4
2∥∥βj∥∥42 .

Let ξj = mink=1,...,sj

{
β2
jk

β>j βj

}
, so we have

|Kj|ξj ≤

∥∥∥βjKj

∥∥∥2
2∥∥βj∥∥22 < 1,

where |Kj| denotes the cardinality of the set Kj. Since the function f(x) =

x(2− x) is monotonic increasing on [0, 1], we obtain

∥∥∥P {β̂∗j(µj)}− P(βj)
∥∥∥2
F
≥ 2|Kj|ξj − |Kj|2ξ2j .

Note that
∥∥∥β̂∗j(µj)∥∥∥

0
≥ sj − |Kj|, so when p/n → 0, equation (S2.7) is

satisfied if for all |Kj| = 1, . . . , sj, we have

2|Kj|ξj−|Kj|2ξ2j −τj|Kj| > 0, i.e. τj < 2ξj−|Kj|ξ2j = ξj(2−|Kj|ξj). (S2.9)

Since |Kj|ξj is smaller than 1, equation (S2.9) is satisfied if τj < ξj. In other

words, if τj = o(ξj), then PIC(µj) > PIC(µ0) as n→∞ as claimed.
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S3 More details about the Lasso sliced inverse regres-

sion estimator

In this section, we briefly review the Lasso sliced inverse regression (SIR)

estimator and establish the connection between it and the CHOMP estima-

tor. Assume that a random sample (x>i , yi), i = 1, . . . , n is generated from

the single index model yi = f(x>i β0, εi), i = 1, . . . , n, with the outcome yi,

and covariate xi follows a p-dimensional elliptical distribution with location

zero and scale matrix Σ. Let X denote the n× p design matrix. The sliced

inverse regression estimate for β0 is based on the relationship

Σβ0 ∝ η. (S3.10)

The covariance matrix Σ is estimated by the sample covariance matrix

Σ̂ = n−1X>X . Next, without loss of generality, assume the data (xi, yi)

are arranged such that y1 ≤ y2 ≤ . . . ≤ yn. Then the data are divided into

H equal-sized slices, denoted by J1, . . . , JH based on the increasing order of

y. For ease of notation and arguments, assume n = cH with c > 0. Next,

construct a H × n matrix M = IH ⊗ 1>c , where IH denotes the identity

matrix of dimension H, 1c denotes the c×1 vector with all entries being one,

and ⊗ denotes the outer product. Next, compute the averages of covariates

within each slice, x̄>h = c−1
∑n

i=1 x
>
i 1(yi ∈ Jh), and form a H × p matrix
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XH with each row being x̄>h , h = 1, . . . , H. With this formulation, XH =

MX/c, so the conditional expectation Λ = var {E(X |y)} is estimated by

Λ̂ = H−1
H∑
h=1

x̄hx̄
>
h =

1

H
X>HXH =

1

nc
X>M>MX .

Let λ̂ and η̂ be the largest eigenvalue and its corresponding eigenvector of

length one of Λ̂. Then

λ̂η̂ = Λ̂η̂ =
1

nc
X>M>MX η̂.

Let ỹ = (cλ̂)−1M>MX η̂, then we have η̂ = n−1X>ỹ. Therefore, the

estimated version of equation (S3.10) can be written as X>Xβ0 ∝ X>ỹ

and the Lasso SIR estimate is defined as

β̂
L

= arg min
β

1

2n
‖ỹ −Xβ‖22 + µ‖β‖1,

with µ being an appropriate tuning parameter. For the multiple index

model yi = f(x>i β1, . . . , x
>
i βd, εi), the Lasso SIR estimator for each di-

mension is defined as

β̂
L

j = arg min
βj

1

2n

∥∥ỹj −Xβj∥∥22 + µj‖βj‖1, j = 1, . . . , d, (S3.11)

where ỹj = (cλ̂j)
−1M>MX η̂j, with λ̂j and η̂j being the jth largest eigen-

value and its corresponding eigenvector of Λ̂, and the µj are tuning param-

eters.

Next, we show that the Lasso SIR has the same estimating equation

as the CHOMP estimator. From the definition (S3.11) and the first order
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condition, each component of the Lasso SIR β̂
L

j = (β̂
L

j1, . . . , β̂
L

jp)
> satisfies

n−1x>k (ỹ −X β̂j) + µjb
L
jk = 0,

where bLjk = sign(β̂jk) if β̂jk 6= 0 and bLjk ∈ [−1, 1] otherwise. Also,

n−1x>k ỹ = η̃jk, and n−1x>k X = Σ̂k, the kth row of the sample covariance

matrix Σ̂. Hence, for any tuning parameter µj, the estimating equation of

the Lasso SIR is

−Σ̂kβ̂j + η̂jk + µjb
L
jk = 0

exactly the same as the estimating equation of the CHOMP estimator shown

in the paper. As a result, it is not surprising that the CHOMP and the

Lasso SIR estimator require the same theoretical value of tuning parameters

to ensure estimation consistency and share the same convergence rate.

Similar to any regularization method, the performance of the Lasso SIR

depends critically on the choice of the tuning parameters µj. In their sim-

ulation study, Lin et al. (2019) implemented (S3.11) as a Lasso problem

with design matrix X and outcome ỹj and used ten-fold cross-validation to

choose the tuning parameters µj. We show via a small simulation below

that the Lasso SIR estimator with this choice of tuning parameters has

performance close to the Lasso sliced inverse regression estimator where

tuning parameters are chosen optimally. This finding justifies our compari-
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son of the Lasso SIR estimator with tuning parameter selected via ten-fold

cross-validation with other estimators in the simulation study of the main

paper.

For the simulation study, we generate independent and identically dis-

tributed data (x>i , yi) as in the single index model simulation in Section

5.1 of the main paper with s = 5 and n = 500. The number of slices is

fixed at H = 20 and the number of indices d = 1 is assumed to be known.

We compare the average estimation error across 1000 samples of the Lasso

SIR estimator under two methods for choosing the parameter. For the first

method, the tuning parameter is chosen through ten-fold cross-validation.

For the second method, the tuning parameter is chosen to minimize the

actual estimation error; this choice of tuning parameter is referred to as

the optimal tuning parameter. For any tuning parameter µ, the estimation

error is defined as Error =
∥∥∥P(β̂

L

µ)− P(β0)
∥∥∥2
F

, the squared Frobenius norm

of the difference between the estimated projection matrix and the true pro-

jection matrix. Note that the optimal tuning parameter is not available in

practice, because it requires knowledge of the true vector β0.

It can be seen that the Lasso SIR estimator with tuning parameter

selected via cross-validation gives very similar performance to the same

estimator with optimal tuning parameter, where the difference in estimation
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Table 1: Estimation error of the Lasso SIR estimator with tuning parameter selected

via ten-fold cross-validation and with optimal tuning parameter. Standard errors are in

parentheses.

p β0 Cross-validation Optimal

40 Large 0.28 (0.06) 0.27 (0.06)

Small 0.43 (0.10) 0.41 (0.09)

100 Large 0.36 (0.06) 0.34 (0.06)

Small 0.55 (0.10) 0.54 (0.10)

error is negligible. This result is surprising given the pseudo response ỹ does

not contain independent components, so investigating why cross-validation

still works for the Lasso sliced inverse regression estimation can be a topic

for future research.

S3.1 An adaptive Lasso SIR estimator

Similar to the CHOMP estimator, the Lasso SIR estimator can be made

adaptive by penalizing each component of βj in (S3.11) differently. Specif-

ically, an adaptive version of the Lasso SIR estimator is given by

β̃
L

j = arg min
βj

1

2n

∥∥ỹj −Xβj∥∥22 + µj

p∑
k=1

ωjk|βjk|, j = 1, . . . , d, , (S3.12)

where µj > 0 is a tuning parameter. Similar to the adaptive CHOMP

estimator, we set the weights ωjk to be |β̄jk|−γ, with β̄jk being the kth
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component of an initial consistent estimate β̄j and γ a positive constant.

In the setting when n > p, we choose β̄j to be the unpenalized estimate

β̄j = Σ̂
−1
η̂j.

We conduct simulation studies to compare the performance of the Lasso

SIR, adaptive Lasso SIR, CHOMP, and adaptive CHOMP estimators in sin-

gle and multiple index models. The simulation settings are given in Sections

5.1 and 5.2 of the main paper, except that we only consider the scenario

when Σ has an autoregressive structure for the single index model simula-

tion. Two choices of γ are considered for adaptive estimators, γ ∈ {1, 2}.

For the CHOMP-type estimators, we choose the tuning parameters based

on the proposed PIC, while for the Lasso SIR-type estimators, we choose

the tuning parameters based on ten-fold cross-validation. We compare esti-

mators using the same metrics as given in Sections 5.1 and 5.2 of the main

paper.
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Table 2: Performance of different estimators in the single index model simulation. Stan-

dard errors are in parentheses. The lowest estimation error in each setting is highlighted.

Model p Metric CHOMP Adaptive CHOMP Lasso SIR Adaptive Lasso SIR

γ = 1 γ = 2 γ = 1 γ = 2

(I) 100 Error 0.26 (0.12) 0.12 (0.06) 0.10 (0.05) 0.19 (0.06) 0.19 (0.08) 0.20 (0.11)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.19 (0.09) 0.12 (0.10) 0.10 (0.11)

FNR 0.00 (0.03) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

200 Error 0.29 (0.13) 0.13 (0.07) 0.12 (0.06) 0.23 (0.08) 0.25 (0.10) 0.32 (0.13)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.12 (0.09) 0.14 (0.10)

FNR 0.01 (0.04) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

(II) 100 Error 0.07 (0.04) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.03 (0.02) 0.03 (0.01)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.18 (0.09) 0.01 (0.04) 0.00 (0.00)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

200 Error 0.08 (0.04) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.04 (0.03) 0.03 (0.01)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.02 (0.05) 0.00 (0.00)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(III) 100 Error 0.11 (0.05) 0.04 (0.02) 0.04 (0.02) 0.08 (0.02) 0.06 (0.03) 0.04 (0.02)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.19 (0.09) 0.06 (0.09) 0.00 (0.00)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

200 Error 0.11 (0.06) 0.04 (0.02) 0.04 (0.02) 0.09 (0.03) 0.09 (0.05) 0.04 (0.02)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.08 (0.10) 0.00 (0.00)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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Table 3: Performance of different estimators in the multiple index model simulation.

Standard errors are in parentheses. The lowest estimation error in each setting is high-

lighted.

p Sparsity Metric CHOMP Adaptive CHOMP Lasso SIR Adaptive Lasso SIR

γ = 1 γ = 2 γ = 1 γ = 2

100 Same Error 0.31 (0.25) 0.22 (0.27) 0.21 (0.28) 0.28 (0.27) 0.23 (0.23) 0.19 (0.25)

FPR 0.00 (0.01) 0.00 (0.02) 0.01 (0.02) 0.32 (0.11) 0.13 (0.10) 0.02 (0.06)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)

Different Error 0.38 (0.13) 0.24 (0.10) 0.22 (0.09) 0.26 (0.06) 0.24 (0.09) 0.30 (0.25)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.39 (0.11) 0.20 (0.14) 0.11 (0.09)

FNR 0.00 (0.02) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.03 (0.10)

200 Same Error 0.32 (0.26) 0.21 (0.28) 0.22 (0.29) 0.29 (0.26) 0.24 (0.21) 0.19 (0.22)

FPR 0.00 (0.00) 0.00 (0.01) 0.00 (0.02) 0.21 (0.08) 0.10 (0.09) 0.03 (0.06)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01)

Different Error 0.40 (0.13) 0.24 (0.09) 0.22 (0.09) 0.30 (0.08) 0.29 (0.12) 0.33 (0.21)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.26 (0.09) 0.17 (0.12) 0.12 (0.09)

FNR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.02 (0.07)
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In the single index model simulation, Table 2 demonstrates that the

adaptive CHOMP estimators have a better performance than the adap-

tive Lasso SIR estimator for model (I), but they have similar performances

for models (II) and (III). In the multiple index model simulation, Table

3 demonstrates that the adaptive Lasso SIR estimators tend to perform

slighly better than the adaptive CHOMP estimators when the true two di-

mensions have the same sparsity pattern, while the reverse holds when the

true two dimensions have different sparsity patterns. In both simulations,

compared to the Lasso SIR, the adaptive Lasso SIR estimators have con-

siderably smaller false positive rate, thus reducing the estimation error re-

markably. However, compared to the adaptive CHOMP, the adaptive Lasso

SIR estimators still tends to overfit. We conjecture that the adaptive Lasso

SIR estimator may also have an oracle property similar to the adaptive

CHOMP estimator, which is a topic of future research. However, similar

to the Lasso SIR estimator, it is not obvious how to extend the adaptive

Lasso SIR to other inverse regression methods, while it is straightforward

to do so for the adaptive CHOMP estimator.
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S4 Matrix Lasso estimator with different choices of

tuning parameters

In this section, we demonstrate the difficulty of selecting tuning parameters

for the Matrix Lasso estimator by examining its numerical performance with

common methods of tuning parameter selection in practice. We simulate

the data from the single index and multiple index models as given in Section

5.1 and 5.2 of the main paper, except that for the single index model, we

only consider the case when the covariates have an autoregressive covariance

structure. Recall that the Matrix Lasso estimator for the jth dimension of

the central subspace is defined to be

β̂
ML

j = arg min
βj

1

2

∥∥∥η̂j − Σ̂βj

∥∥∥2
2

+ µj
∥∥βj∥∥1 , j = 1, . . . , d. (S4.13)

where µj > 0 is a tuning parameter. Computationally, equation (S4.13) is

similar to the optimization problem corresponding to the Lasso estimator

in the regular linear model with the design matrix to be Σ̂ and response

vector η̂j. In R, we can solve the problem using the glmnet package (Fried-

man et al., 2010). We consider the following methods of tuning parameter

selection:

• Cross-validation (CV): We use the cv.glmnet command with all its

default options and select the tuning parameter that either minimizes
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the cross-validation score (CV min) or is the largest value whose cross-

validation score is within one standard error of the minimum (CV 1se-

rule). Noting that this cross-validation treats Σ̂ and η̂j as if they

contained independent rows.

• PIC. We select the tuning parameter to minimize our proposed PIC

given by

PIC =

(∥∥∥P {β̂j (µj)
}
− P

{
β̄j (µj)

}∥∥∥2
F

+
log p

p

∥∥∥β̂j(µj)∥∥∥
0

)
1β̂j(µj) 6=0+∞1β̂j(µj)=0.

• Optimal selection: We select the tuning parameter that minimizes the

estimation error of the associated projection matrix, i.e for each dimen-

sion j = 1, . . . , d, we select µj that minimizes
∥∥∥P {β̂j (µj)

}
− P(β)

∥∥∥2
F

.

Note that this optimal selection cannot be done in practice, since it

depends on the true parameter β. We include this in the simulation

as a benchmark to compare the other tuning parameter methods.

Tables 4 and 5 demonstrate that with optimal tuning parameter selec-

tion, the Matrix Lasso estimator typically has a lot of false positives. Fur-

thermore, using PIC to select the tuning parameter typically leads to larger

estimation error than using cross-validation. The CV (min) rule tends to

work better than the CV (1se) rule in terms of estimation error, although

in some settings (for example single index model (II) with p = 200), both
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rules lead to similar performance. However, notably, except in single in-

dex models (II) and (III), the performance of CV methods is relatively far

from the performance under optimal tuning parameter selection, suggesting

tuning parameter selection methods that are often used in practice do not

guarantee good performance for the Matrix Lasso.
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Table 4: Performance of Matrix Lasso estimators with different choices of tuning param-

eters in the single index model simulation. Standard errors are included in parentheses.

Model p Metric CV (min) CV (1se) PIC Optimal

(I) 100 Error 0.39 (0.16) 0.60 (0.35) 0.70 (0.24) 0.26 (0.07)

FPR 0.66 (0.23) 0.22 (0.21) 0.03 (0.04) 0.44 (0.16)

FNR 0.02 (0.10) 0.18 (0.26) 0.19 (0.17) 0.00 (0.00)

200 Error 0.49 (0.09) 0.40 (0.14) 0.72 (0.22) 0.33 (0.09)

FPR 0.72 (0.16) 0.43 (0.15) 0.02 (0.03) 0.36 (0.14)

FNR 0.00 (0.01) 0.01 (0.05) 0.19 (0.17) 0.00 (0.01)

(II) 100 Error 0.10 (0.08) 0.19 (0.24) 0.37 (0.19) 0.09 (0.04)

FPR 0.40 (0.15) 0.23 (0.14) 0.03 (0.03) 0.35 (0.12)

FNR 0.00 (0.03) 0.03 (0.11) 0.04 (0.09) 0.00 (0.00)

200 Error 0.11 (0.02) 0.11 (0.05) 0.35 (0.17) 0.09 (0.03)

FPR 0.50 (0.12) 0.34 (0.10) 0.02 (0.02) 0.33 (0.12)

FNR 0.00 (0.00) 0.00 (0.01) 0.03 (0.07) 0.00 (0.00)

(III) 100 Error 0.13 (0.10) 0.25 (0.28) 0.45 (0.21) 0.11 (0.04)

FPR 0.51 (0.16) 0.27 (0.16) 0.03 (0.03) 0.40 (0.13)

FNR 0.00 (0.05) 0.04 (0.13) 0.06 (0.11) 0.00 (0.00)

200 Error 0.17 (0.03) 0.15 (0.05) 0.42 (0.19) 0.13 (0.04)

FPR 0.62 (0.13) 0.41 (0.11) 0.03 (0.03) 0.34 (0.13)

FNR 0.00 (0.00) 0.00 (0.00) 0.04 (0.09) 0.00 (0.00)
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Table 5: Performance of Matrix Lasso estimators with different choices of tuning parame-

ters in the multiple index model simulation. Standard errors are included in parentheses.

p Sparsity Metric CV (min) CV (1se-rule) PIC Optimal

100 Same Error 0.49 (0.32) 0.81 (0.41) 0.74 (0.29) 0.33 (0.26)

FPR 0.63 (0.16) 0.24 (0.17) 0.05 (0.05) 0.55 (0.19)

FNR 0.02 (0.13) 0.13 (0.28) 0.04 (0.08) 0.01 (0.08)

Different Error 0.48 (0.26) 1.01 (0.35) 0.91 (0.23) 0.33 (0.07)

FPR 0.63 (0.16) 0.19 (0.16) 0.06 (0.06) 0.69 (0.13)

FNR 0.03 (0.14) 0.21 (0.33) 0.10 (0.12) 0.00 (0.00)

200 Same Error 0.48 (0.24) 0.51 (0.28) 0.73 (0.29) 0.37 (0.26)

FPR 0.66 (0.08) 0.39 (0.10) 0.03 (0.04) 0.44 (0.18)

FNR 0.00 (0.00) 0.00 (0.03) 0.04 (0.09) 0.00 (0.05)

Different Error 0.46 (0.10) 0.60 (0.23) 0.93 (0.21) 0.41 (0.09)

FPR 0.66 (0.08) 0.39 (0.11) 0.05 (0.04) 0.59 (0.13)

FNR 0.00 (0.01) 0.02 (0.05) 0.10 (0.11) 0.00 (0.00)
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S5 CHOMP for SIR in high dimensional settings

S5.1 Method

In this section, we demonstrate how the CHOMP technique can be ex-

tended to sufficient dimension methods such as the SIR in high dimen-

sional settings. In such scenario, one particular challenge of implementing

the CHOMP and the adaptive CHOMP estimators is to find a good estima-

tor for the Cholesky factor L of the population covariance matrix Σ and its

inverse. While this is hard in general, we can estimate L efficiently when

the population covariance matrix has some special structure.

In this section, we consider a regression setting where the covariates

have a natural order (for example when they are collected over time) and

the population covariance (and correlation) matrix are banded, i.e σjk = 0

if |j−k| > K with K known. Such covariance structure has been considered

extensively in the literature of high-dimensional covariance estimation, see

for example Pourahmadi (2013) and Khare et al. (2019). In this case,

let Σ = CDC> be the modified Cholesky decompositon of Σ such that

D is a diagonal matrix and C = (cjk) is a lower triangular matrix with

cjj = 1 and cjk = 0 if |j − k| > K. As suggested by Rothman et al.

(2010), the off-diagonal elements of C and the diagonal elements of D can
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be estimated sequentially by fitting a sequence of linear regressions. Let

x(j), j = 1, . . . , p denote the jth column of the design matrix X . For the

first variable, set e1 = x(1). For j = 2, . . . , p, let c
(k)
j = (cj,j−k, . . . , cj,j−1)

>

and Z
(k)
j = (ej−k, . . . , ej−1), where the index j − k is understood to mean

max(1, j − k), then we compute sequentially

ĉ
(k)
j = arg min

c
(k)
j

∥∥∥x(j) −Z(k)
j c

(k)
j

∥∥∥2
2
, ej = x(j) −Z(k)

j ĉ
(k)
j .

Finally the diagonal elements of D are estimated as d̂jj = n−1 ‖ej‖22, and

the Cholesky factor L is estimated by L̂ = ĈD̂1/2, where D̂ = diag(d̂jj)

and Ĉ = (ĉjk), j, k = 1, . . . , p.

Let κ̂j be calculated such as L̂κ̂j = η̂j, where ηj is calculated in the

same way as outlined in Section 3.1 of the main paper. With the regression-

based estimated Cholesky factor L̂, the CHOMP and adaptive CHOMP

estimator for SIR are defined respectively as

β̂j = arg min
βj

1

2

∥∥∥L̂>βj − κ̂j∥∥∥2
2

+ µj
∥∥βj∥∥1 , j = 1, . . . , d, (S5.14)

and

β̂
∗
j = arg min

βj

1

2

∥∥∥L̂>βj − κ̂j∥∥∥2
2

+ µj

p∑
k=1

ωjk|βjk|, j = 1, . . . , d., (S5.15)

where ωjk = |β̄jk|−γ, with β̄jk being the kth component of an initial con-

sistent estimate β̄j and γ a positive constant. Inhigh dimensional settings,

the unpenalized sliced inverse regression estimator is not consistent (Lin
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et al., 2018). Hence, for each dimension, we use the Lasso SIR estimator

as the initial consistent estimator β̄j for computing the adaptive weight.

Furthermore, to adjust for the convergence rate of the Lasso SIR estimator,

we select the tuning parameters for the CHOMP and adaptive CHOMP

from minimizing the following projection information criterion

PIC(µj; τj) =


∥∥∥P {β̂(µj)

}
− P(β̄j)

∥∥∥2
F

+
2

p

∥∥∥β̂j(µj)∥∥∥
0
, if β̂(µj) 6= 0

∞, if β̂j(µj) = 0.

Estimation and selection consistency of the CHOMP-based estimators and

of the PIC in high dimensional settings where the Cholesky factors are

estimated based on regression will be topics of future research. Below, we

will present a simulation study to demonstrate the empirical performance

of this approach.

S5.2 Simulation

For the simulation, we generate data from the model (I) as in Section 5.1 of

the main paper with the correlation matrix Ω̃ having off-diagonal elements

(ω̃)jk = 1 − K−1|j − k| if |j − k| ≤ K and 0 otherwise. We consider two

values for K, namely K ∈ {3, 5}. The sample size is fixed at n = 1000 and

the number of covariates varies over p ∈ {500, 1000, 1500}. We compute

the CHOMP, adaptive CHOMP estimator with γ = 1 and γ = 2, and
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the Lasso SIR estimators; then we compare them using the same metric

as given in Section 5.1 of the main paper. Table 6 demonstrates that the

adaptive CHOMP estimator with γ = 2 has the best performance in the

considered settings. The Matrix Lasso and the CHOMP estimator tend to

have approximately the same estimation error, which is usually higher than

both the adaptive CHOMP and the Lasso SIR due to higher false negative

rates. Compared to the Lasso SIR estimator, both the adaptive CHOMP

estimators with γ = 1 and γ = 2 tend to reduce the false positive rates.

However, the adaptive CHOMP with γ = 1 tends to underfit by having

medium false negative rates (as seen in p = 1500). On the other hand, the

adaptive CHOMP estimator with γ = 2 does not increase the false negative

rate much and hence has the lowest estimation error.

S6 Additional Simulation Results
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Table 6: Performance of the estimators in the simulation of single index model in high

dimensional settings where the covariance of the covariates are banded. Standard errors

are in parentheses. The lowest estimation error is highlighted for each setting.

p K Metric CHOMP Adaptive CHOMP Lasso SIR Mlasso

γ = 1 γ = 2

500 3 Error 0.89 (0.22) 0.45 (0.23) 0.39 (0.17) 0.44 (0.15) 0.99 (0.22)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.06) 0.01 (0.02)

FNR 0.29 (0.18) 0.05 (0.12) 0.02 (0.07) 0.02 (0.05) 0.40 (0.23)

5 Error 0.99 (0.21) 0.50 (0.28) 0.43 (0.22) 0.49 (0.19) 1.06 (0.23)

FPR 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.10 (0.06) 0.01 (0.01)

FNR 0.42 (0.24) 0.12 (0.24) 0.08 (0.20) 0.03 (0.09) 0.51 (0.26)

1000 3 Error 1.06 (0.17) 0.53 (0.27) 0.43 (0.19) 0.51 (0.17) 1.01 (0.19)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.07 (0.04) 0.01 (0.01)

FNR 0.48 (0.21) 0.09 (0.17) 0.04 (0.09) 0.03 (0.08) 0.39 (0.22)

5 Error 1.07 (0.18) 0.61 (0.31) 0.52 (0.25) 0.57 (0.21) 1.06 (0.22)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.07 (0.04) 0.00 (0.01)

FNR 0.53 (0.24) 0.18 (0.27) 0.09 (0.17) 0.05 (0.11) 0.52 (0.26)

1500 3 Error 1.05 (0.18) 0.77 (0.29) 0.57 (0.25) 0.61 (0.24) 0.97 (0.25)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.03) 0.00 (0.00)

FNR 0.52 (0.24) 0.29 (0.27) 0.13 (0.18) 0.11 (0.17) 0.40 (0.24)

5 Error 1.11 (0.16) 0.84 (0.30) 0.62 (0.25) 0.64 (0.23) 1.03 (0.23)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.03) 0.00 (0.00)

FNR 0.59 (0.23) 0.36 (0.29) 0.15 (0.15) 0.13 (0.15) 0.48 (0.27)
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Table 7: Performance of the estimators in the single index model simulation in Section

5.1 of the main paper with the correlation matrix Ω̃ having homogeneous structure.

Standard errors are included in parentheses. The lowest estimation error in each setting

is highlighted.

Model p Metric CHOMP Adaptive CHOMP Lasso SIR Mlasso

γ = 1 γ = 2

(I) 100 Error 0.24 (0.14) 0.12 (0.07) 0.12 (0.07) 0.23 (0.11) 0.43 (0.12)

FPR 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.16 (0.08) 0.68 (0.30)

FNR 0.01 (0.04) 0.00 (0.00) 0.00 (0.00) 0.00 (0.02) 0.02 (0.07)

200 Error 0.25 (0.12) 0.14 (0.08) 0.14 (0.08) 0.26 (0.17) 0.57 (0.08)

FPR 0.01 (0.01) 0.00 (0.00) 0.00 (0.01) 0.09 (0.05) 0.79 (0.21)

FNR 0.01 (0.03) 0.00 (0.01) 0.00 (0.01) 0.01 (0.11) 0.00 (0.03)

(II) 100 Error 0.08 (0.06) 0.03 (0.02) 0.03 (0.01) 0.07 (0.03) 0.10 (0.09)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.16 (0.08) 0.34 (0.20)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.03)

200 Error 0.08 (0.06) 0.03 (0.02) 0.03 (0.02) 0.10 (0.13) 0.13 (0.11)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.05) 0.39 (0.24)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.07) 0.01 (0.04)

(III) 100 Error 0.10 (0.07) 0.04 (0.02) 0.04 (0.02) 0.09 (0.04) 0.14 (0.10)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.16 (0.08) 0.49 (0.22)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.04)

200 Error 0.11 (0.07) 0.04 (0.02) 0.04 (0.02) 0.11 (0.13) 0.20 (0.10)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.09 (0.05) 0.53 (0.24)

FNR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.06) 0.01 (0.04)
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