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S.1 Primary biliary cirrhosis data analysis

In this section, we analyze the data from a Mayo Clinical trial on primary biliary cirrhosis (PBC). This data
set is also used in|Xue & Yin|(2014) and Sheng & Yuan|(2019). The data set contains laboratory results for
312 patients. Several biomarkers such as bilirubin, albumin and prothrombin time are adopted to diagnose
PBC. We study this data set in the same way as |Xue & Yin|(2014) did. We treat the time baseline as one
fold of the covariates and the multivariate predictors repeatedly measured over time as another fold of the
covariates and thus we have predictors in a matrix form. We focus our attention on the measurements of
bilirubin, albumin level, and prothrombin time at time points 6 months, 1 year, 2 years, and 3 years and
thus the predictors are in the form of 3 X 4 matrix. The response is the survival time of a patient which is
continuous. We partition the response variable into 8 slices, and treat each slice as one class, then apply
FLAD and FELAD to get the estimation of the dimension folding subspace. To make a comparison with
Xue & Yin|(2014) and|Sheng & Yuan|(2019), we use d1 = d2 = 1.
The estimated basis matrices T'; and T'z are (0.151, —0.989, 0.007)” and (0.274, 0.240, —0.009, 0.931)”

by FLAD, and (0.025, —0.999, 0.023)” and (0.094, 0.469, —0.761,0.438)” by FELAD. To test the sig-



i Tz Thgr | Tonn Teor Tosi Iow
Est. | 0.151 -0.989 0.007 | 0.274 0.240 -0.009 0.931
FLAD
pvalue | 0.002 0.006 0904 | 0484 0.216 0.736 0
Est. | 0.025 -0.999 0.023 | 0.094 0.469 -0.761 0.438
FELAD
pvalue | 0.712 0.020 0.964 | 0.906 0.232 0.064 0.420
Est. | 0.018 -0.227 -0.974 | 0.623 0.204 0.727 0.208
FSIR
pvalue | 0.002 0 0 0.606 0.596 0.598 0.616
Est. | 0.057 -0.152 -0.987 | -0.086 -0.241 -0.153 0.955
FDR
pvalue | 0.490 0 0.594 | 0.980 0.052 0.896 0.266
Est. | 0989 -0.144 0.036 | 0.390 0.401 0.495 0.665
DCOV
pvalue 0 0 0.056 0 0 0 0
Est. | 0.119 -0.989 -0.087 | 0.491 0.1811 0.159 0.837
FMAVE
pvalue 0 0 0.366 | 0.170 0.200 0.586 0.146

Table S1: Bootstrapped p-values of coefficients estimated by different methods

with bootstrap sample size 1000.

nificance of the coefficients, we compute the bootstrapped p-value for each element of I'y and I's. Table
[ST]indicates that, for FLAD, the bilirubin and albumin levels at year 3 significantly affects the length of the
survival time at level 0.05, and for FELAD, the albumin level significantly affects the length of the survival
time at level 0.05. By Table[S1] all the methods indicate that albumin significantly affects the length of
survival time at level 0.05, and the results of FLAD, FSIR, DCOV and FMAVE show that bilirubin signifi-
cantly affects the survival time. DCOV is the most stable method: the subspace estimation does not change
so much with respect to different bootstrapped samples.

In Figure [ST} we show the smoothing spline plots for the logarithm of the response versus the pro-

jected predictor, and scatter plots for the fitted value versus residuals. The results of FLAD and FELAD are
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Figure S1: Left panels: Smoothing splines for the logarithm of response ver-
sus the projected predictor. Right panels: plots for the fitted values versus the

residuals. The smoothing parameter is 0.076 for FLAD, and 0.033 for FELAD.

clear. It shows that the survival time has a negative relation with the projected predictor. Also, our analysis
indicates that the survival time has a negative relationship with bilirubin level and a positive relationship

with the albumin level, which is consistent with the medical outcome. The results are similar to those given
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in Xue & Yin|(2014).
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S.2 Proofs

S.2.1 Some Technical Lemmas

We first provide some lemmas that will be used in the proofs. The first three lemmas can be found in
Appendix of |Cook & Forzani| (2009). Let B be a symmetric positive definite matrix, and at (o, ag) €

RP*P be a full rank matrix with T g = 0.

Lemma 1.

a(a™Ba)'a’ + B 'ag(ag B ) tag BT =B (1)

As a consequence of Lemma 1, I, — Pg(B) =P, (s-1)- Additionally, if (¢, ao) is an orthogonal

matrix, then we have the following two lemmas.

Lemma 2.

lag Bao| = |B|la" B a. (2)

Lemma 3.

(ad B ray) ! = af Bay — ag Ba(a”Ba) 'a’ Bay,

—(og B rawy) HalB'a) = (ag Ba)(a"Ba) . "
We will also use the following two lemmas about matrix derivatives.
Lemma 4. Suppose A,B,C, X are full rank matrix,D is full rank symmetric matrix. Then we have:
d(tr((AXB + C)zl);(AXB +0O)Ty) — 9AT(AXB 1 C)DB. @
Lemma 5. Suppose A,B are full rank matrices, and X is symmetric matrix. Then we have:
d(tr(AX"'B)) _ —(XﬁlBAXfl)T. 5)

dX



S.2.2 Proof of Proposition 1

Proof. Let Ty, be the basis matrix for S, T' = @ _,; T, (T, o) be a full rank matrix with T7 T =
0, and Pr(s,) = T(T'E,T) 'T7E,. Itiseasy to show that Y | X ~ Y | (Q) _,, Ps,.)vec(X) is
equivalent to X | (I X,Y) ~ X | I X. By definition, cov(vec(X) | T"X,Y = k) = (Igm_ ,, —
Pg(zk))Ek and E(vec(X) | TTvec(X),Y = k) = vec(u) +nws +P1?(Ek> (vec(X) —vec(p) — nwi),

where wy, is the vector in R4 (M)

, and 7 is a basis matrix for M. It is easy to show that var(vec(X) |
T T . . T
I'"X,Y = k) and E(vecX | I'" vec(X),Y = k) are constant if and only if (Il—[%:1 om — Pr(s,)) Sk

and Plf():k) are constant and Pg(zk)n =n.

By Lemma 1, (I

1 Pm

— PIT(EH)Z;C = Io(T{X; 'To)'T§ = C) for some constant C.
Because P%ﬂ(zk), k=1,---, K, are constant, we know that I — Pg(zk) =To(T{=,'To) ' TS, =
C> for some constant C'>. So I‘OEEI is a constant, which implies that Q®$n . SmE,:l does not change
with k. Because Pg(zk) is a constant, Pg(zk)n = Pg(z)n = m for any k. And Pg(z)n = n if and
only if Pr(s)(27'n) = 7'n. So we have =7 ' C @] _,,; Sm. which is equivalent to ="' M C

® s S 0

S.2.3 Proof of Proposition 2

Proof. From the proof of Proposition 1, condition “Q®$n . SME,:l is a constant” of Proposition 1 is
equivalent to Pr(s,) = Pr(s) and Ek(IHﬁ{:lpm - Pr,) = EJ(IH%:IPm — Pr(x)), which is
equivalent to 3, — 3 = P?(E)(Ek — X)Pr(s). Also 3 — X = PIT(E)(Ek — X)Pr(x) is equivalent
to X H(Z-3%) C ®in: u Sm. See|Cook & Forzani| (2009) for the proof of the equivalences.

By Proposition 1, we have M C @' _, Spand T M C @ _,, Sm, 50 M C
®71n:M Sm N ®in:M Sm. Also, from Proposition 1 and the previous equivalences, we have (2, —

) C Q. _ySmad BHZ, — ) € @ _,, Sm, and hence TS, — %) € @ _,, Sm N

. s Sm. If we can show @, S N Q. _,, Sm = R _ i (Smn Sm), then Proposition 2 is



proved.

We first show @ _,/(Sm N Sm) C R _ S N Sm. Form = 1,---, M, and any
8m € S NSm, wehave @' _ 1, 0m € R _ 1, Smand @ _,, 6m € @ 1, Sm. S0 L _,, 0m €
RL_uSNRL Sum. Then we know that R (Smn Sm) C R _ SN _ S

Next, we show @’/ S N®L _1, Sm € @ _,,(SmNSm). Forany vectorv € @ _,, SN
Rk Sy, there exist ot € Sy and By € Spn, m = 1,---, M, such that v = R _yam =
®1n:M Bm. It can be shown that ®1n:M ay = ®71ﬂ:M Bm if and only if o, = ¢ Bm, for some

constants c¢,,. This implies that o, € Sm and hence a,, € Sy N Spn. Therefore, v = ®71n: M Qm €

®rln:M(Sm n gm) and ®71n:M Sm N ®»1n:M Sm C ®11n:M(Sm N gm) O

S.2.4 Proof of Proposition 3

Proof. Let @ _,, T be the basis matrix for @) _,, Sm. If Sin is a mode-m dimension folding en-
velope subspace, it must be a dimension folding subspace. From Proposition 1, Sy, is a mode-m di-

mension folding subspace if (a) 7'M C ®3n:M Sy, and (b) Q® 2,;1 is a constant with

’}YL:A{ Sm
respect to k. The envelope covariance structure naturally satisfies (b). So X 7'M C ®71n= v Sm and
3k = (®3n:M P-Sm)zk(®71n:M Ps,) + Qgt sm2Q1 s,, make S, to be a mode-m di-

m=M <™ m=M

mension folding envelope subspace. O

S.2.5 Proof of Proposition 4

Proof. From the proof of Proposition 2 in|Wang et al.|(2019), we have ®in: puSmN ®3n: M Sy satisfies
the two conditions in our Proposition 3. We also proved that ®:n: v SmN ®in: M S = ®in: w(SmN
gm) in our Proposition 2. So the intersection of two mode-m dimension folding envelope subspace is a

mode-m dimension folding envelope subspace. O



S.2.6 Proof of Proposition 5

Proof. LetT' = ®:n: ar I'm be the basis matrix for 7y x, and (I',To) be a full rank matrix with

I'"Ty = 0. By Proposition 1, vec(pt — px)C ETyx. So we have vec(p — pi) = ETw; for some
vp € Rllm=1dm, By definition, we have Tovec(X) | (T7vec(X),Y = k) ~ N(px, ©y), with
pr = Dlvec(pn) + TFETyy, + (TTSD)(TT2,D) 77 (vec(X) — vec(p) — XTwy), and ©), =
IisiTo — T, D(ITE,0) 'I72,Ty. By Lemma 3, we have ®, = (T{'X=,'To)""'. Since,
by Proposition 1, I‘gZ;l is a constant, we have ®; = (I'{¥7'I'\)™' = D. Again by Lemma
3 and Proposition 1, we have (T{ = 'T)(I'"2, )™ = (T{=~'T)(I"ST) = H. Hence p;, =

HI T vec(X) 4+ (TF — HT T )vec(u). O

S.2.7 Proof of Proposition 6

Proof. By the equality f(T'7vec(X), T vec(X) | Y = k) = f(TTvec(X) | Y = k) f(T vec(X) |

I'"vec(X),Y = k) and Proposition 2, the log-likelihood function is

L) = ilogf(l"Tvec(Xi),I‘gvec(Xi) |Y: = k)

=1

=1

= logf(TTvec(X,) | Vi = k) + Y _ logf (TG vee(X,) | T vee(X,), Vi = k)
i=1
_ npq n 1 T
= leog(Qw) — 510g|D| -3 gnkl()gﬂ" 3T
1 _ B _
-3 an(vec(Xk) —vec(p) — ZTw) ' TH(DT 2, T) 7' (vee(Xy) — vec(u) — ETwy))
k

— % Z nk(vee(Xy) — vee(p)) " KD K7 (vee(Xy) — vee(p))
K

_ % > nate{TT S D(07 2, 0) 1} - % > mptr(KD K5y,
k k



where f)k is the sample covariance matrix of Xy, and K = (T'o — FHT). Let fr = nk/n. The only term
in L(T") that involves vy is
T= an(vec(fk) —vec(p) — BTw) 'TH (DT, T) T (vee(X,) — vec(p) — BTwy)).
k
We need to minimize it subject to Y, frve = 0. Let By, = T3, T, and Zy, = T (vec(Xy) — vec(p)).
For any quantity ay, let @ = >, frax. We use the Lagrange multiplier method to minimize T'/n =

>k fu(Zi — Bvi) "By ' (Zy — Buy) + A. Differentiating it with respect to v, we get
— 2kak + kaEVk + kakﬁ_l)\ =0. 6)

By summation over the classes k of the above equation, we get —2Z + A = 0. Finally, substituting it back

into (6)), we have vy, = B’ (Zy, — B,@E”Z). Therefore

T = n(T vec(X) — T vec(p)) "B~ (T vee(X) — T vec(p))

= n(vec(X) — vec()) ' ITB T (vee(X) — vec(p)).

Notice that, in L(T"), the term
% zk: e (veo(X ) — vee(u)) KD KT (vee(Xy) — veo(s))
:% S i (vee(X) — vee(u)) "KD K (vee(X) — vec(y))
+ % Z nktr(KDflKT((vec(ik) — vec(X))(vec(Xy) — vec(i))T)).
k

The only two terms in L(T) that involve vec(p) are one from 37" and the other one from above

equation. Hence we can solve the equation = 0, and obtain I‘E_lI‘T(vec(f) — vec(p)) +

_oL__
dvec(m)
KD KT (vec(X)—vec(u)) = 0, where B = TTET. By Lemma 1, KT = T (I-2T(I'7=1)~'17) =
(TTZ"'T)7'TEE ™!, and KDT'K? = S7IT0(T{E7!'Ty)"'Tg ="', Again, using Lemma 1,
SIS ' =T (T2 ' T = 271, Hence we have n3 ™! (vec(X) — vec(p)) =

0.



Then L(T") is maximized with respect to vec(gt) when vec(u) = X. Substituting X for vec(u), the

likelihood function becomes
1
L(T) = _%bgz(w) - glog|D| -5 zk:nklog\l"TEkl"\

_ % > nitr{TT S D(07 2, 0) 1} - % > nytr(KD KT Ay),
k Yy

where Ay, = 3 + (X — X)(Xi — X)7. Recall that K = (T'y — TH”). So the only term that involves
His 1 3, nitr((To — THT)D /(T — THT)TA,).

By solving the equality g—%{‘ = O and applying Lemma 4, we get >, nkD’ll"oT&kI‘—i—Zk neD'HTTA,T =
0.SoH = (¥, m T AT) (X, mi DT ALT) ! = (T ExT)(PTExT) " is the minimizer of L(T').

Next we solve the equation g—]g = 0. By Lemma 5, the solution is
D = K"SxK
= (T — HI'")Sx (T — HI' )T
= (T7=x'To) 'TT ) Ex (T £x'To) ' T7Ex")”
= (r¥sx'n)~
Finally by solving arﬁigkr =0,weget "X, T = 7S, T. After plugging back T7 X, T = r’s,r

into L(T"), we prove the asserted result. O

S.2.8 Proof of Proposition 7

Proof. LetT = @ _,, T'n be the basis matrix of Ey|x, and (', T'g) be orthonormal matrix, 17Ty =

0. Under FELAD model assumption, we have ), = (®" )R L) + Lo, by

m=M m=M

which we can show that |Zx| = |Q||Q0| and ;' = (Q. _ 1, Tm)Q (R, TE) + ToQ 'TT.

By Proposition 1, vec(pur — p) = I'Swy for some vector v,. For the FELAD model, ¥Tv, =



I‘(Zle TI'ka)Vk. Let o, = (Zle Wkﬂk)ljk. Then

K
" 1 "
L(D) = " log(2m) — 5 3~ nlogl] — G log|8o|

k=1

3

k

K
1
-5 Z (T vec(Xpi — @) — ax) " QN (T vee(Xpi — 1) — k)
k=1 i=1
n n
— 23 (T vee(X; — )95 (T vee (X, — ).
i=1
By solving the equation % = 0, we have
Q; (T vec(Xk; — ) — ay) =0,
T 5  —
ay =TI vec(Xy — ).
Hence
K K

1 1 S _ S _
L(T) = —%log(%r) ~3 anlog|ﬂk| - glog|ﬂo| ~3 antr(I‘TEkI‘TQk Y- gtr{FOTExI‘OQO 1
k=1 k=1

By solving the equation ;TLO = 0 and applying Lemma 4, we have

Qo =TT ExTo.
By solving aaTLk = 0 and using Lemma 4 again, we get
Q. =T'%, T

Plugging the above relation into L(I"), we have

K
n n n =~ 1 =
L(T) = —Tplog@ﬂ') L 5 10g [TEBxTo| — 5 > i log [P S,T.

2
k=1

By Lemma 2, we have log|T £xT'o| = log\I‘Tiilﬂ + log|Ex|. Finally, we have

K
np n = n = 1 =
L(T) = =~ log(2m + 1) — Slog|Zx| — 5 log r’zx'r - 3 k§71nk log [T"Z,T).

10



S.2.9 Proof of Proposition 8

Proof. For the FLAD model, the free parameter ¢p” can be written as (vec” (u), vec” (eu1), -+ -, vee” (aux—1)
wvec! (T1), -+, vec” (Tar), vech” (£), vech” (M), - - - ,vech” (Mg))" = (¢71,- - , paxin)” with
parameter space ® being the Cartesian product of the parameter space for the individual components. Be-
cause the elements of h are analytic, they are twice continuously differentiable over ® and every point in

©® is regular (Shapiro|1986| Definition 2.1), except on a set of Lebesgue measure 0.

T(fi1),- - ,vecT (fix ), vech” (£1),-- - , vech” (£x))T be the MLE under the full

Let X7 = (vec

model. The FLAD discrepancy function is defined as Frrap (X, h) = Ly(X | X) — La(h | X), where

K
~ n S - g
La(h [R) =) f{log\zﬂ + (SRt + (Xe — ) "2 (X — ) }-
k=1
Frrap is an analytic function of X and h. Also note that Frrap > 0forall Z and h, and Fprap = 0 if
and only if X = h. So Frpap satisfies the necessary condition for a discrepancy function (Shapiro|1986).
Let W = 1ZFrian evajuated at (ho, ho), where hy is the true value of h. It is easy to check

2 9honT
W = J, which is also a sufficient condition for FLAD to give asymptotic efficient estimators (Shapiro
1986)(eqn.5.1). Then, using Proposition 4.1 in (Shapiro||1986), we have \/ﬁ(ﬂ — h) N N(0,V),
where V. = HHTIJH) H'JI"'JHMHTIH)'HT = HMHTIH)'H”. By calculation, we have
Vo2 (Vo = VIV Y2 =1 - JV2PHMHETIH) HTIY? = Q /2y > 0.
The proof of the situation of FELAD is similar to that of FLAD, so we omit the details here.
LetPo =V, '°VV; 2 and Py = Vi 2V, V2 We have Py = JY/?H(HTJH)THT J'/2,

P, = JY2HG,(GTHTIHG,)'GTHTJY?, and PoP, = JY?{HHTIJH)'H'JH)G,(GTHTIHG,)GTHTJ'/2,

Using matrix identity (Rao & Mitra|1971)(Theo 2.4(c))
HH"JH)'H"JH = H,

and

H"IH)H"IH)'H" =H,

11



we get PoP1 = P;. Similarly, we also have P1Po = P1. Then Pg—P1 = Po—PoP1 = Po(I-P1) =

PJI/QHQJI/QHGI‘ Also Pgp — P1 =Py — P1Pg = (I - Pl)PO = QJ1/2HG1PJ1/2H'

S.2.10 Proof of Proposition 9

The proof of this proposition is parallel to the proof of Proposition 8. However, the Fisher information J is

changed and may not equal to W = %% at (ho, ho). In this case, by Proposition 4.1 in |Shapiro

(1986), the estimator h s still \/n-consistent, but may not be the most efficient one.

S.2.11 Proof of Proposition 10

Proof. The population objective function of FLAD is

K K
1 _ 1 _ 1 1
L(S) = §1og|r§ler0\ -5 > milog|Tg Xy, 'To| — SlogBx| + 5 > milog| T
k=1 k=1
1 X 1< 1 1
< 51og|1‘§(z m3r) o] — 3 > milogT§ By 'To| — SlogEx| + 5 > milog| k]
k=1 k=1 k=1
1 1
< —510g|2x| —+ > Zﬂklog|2k\.

k=1

where T',, € RP™*%m T is the orthogonal complement of I' = ®. _, T'm, and S = span(T).
The first inequality follows since 2,}1 < (Zszl 7, 35) " and the second inequality follows since the
function log|T'§ A™'T| is convex in A on the space formed by symmetric and positive definite ma-
trices (See Section A.6 of |Cook & Forzani| (2009)). Define Sprap = argmaxL(S). If we find an
orthogonal matrix (1, 7), where 77,, € RP™*%m and n = ®71n:M Tm. such that Llog|ng £x'no| =
1 Zle melog|nd =5 'nol, then Sprap = span(n). Next, we show how to get the desired (1, 10) such
that span(n) C Ty |x and 3log|nd Tx'no| = 2 S, milogng =5 'nol.

We first introduce the definition of “Kronecker envelope” proposed by Li et al.|(2010).

12



Definition 1. Ler U € RIm=12M%0 pe g random matrix. There are subspaces S C PP, m =
1,--+, M such that (i) span(U) C ®in:M S almost surely; and (ii) If there exists other subspaces
Si C PP, m = 1,---, M, that satisfies Condition (i), then @,,_1;Sm € Q,.—1s S;n. Then the

subspace @, _\; Sm is called the Kronecker envelope of U, denoted as € ®(U).

We choose the random matrix U to be B3' (Ex —cov(X | Y)), where Y take valuesin {1,--- , K'}.
Under the condition that E(vec(X) | B vec(X)) is linear in 87 vec(X), and var(vec(X) | B vec(X)) is
nonrandom, [Cook & Weisberg|(1991) showed that the subspace spanned by U = 23! (Ex —cov(X | Y))
is subspace of Sy |vec(x)- By Theorem 5 of|Li et al.[(2010), we have E® (U)CTyix-Letn =Q,,,_ 1 Tm
be a basis matrix for £%(U). Then 3'(Zx — Xi) = nwy, for some matrix wi, k = 1,--- , K.
Consequently, £3'(Ex — k) = PyzBx (Ex — Zi). Thus, Bx = i + Pls (Bx —
k) = Bk + Pls, ) (Zx — Zk)Py(my)- Then, by direct multiplication, we have X, = B3 +
n{(n"Zkn)~" — (n"Sxn) "' In", which implies Jlog|ns Bx'mo| = 3 34, meloglng Ty 'nol. As
such, Srrap = span(n) C Ty |x. The y/n-consistent property of Srzap can be obtained from Proposi-

tion 4.1 of |Shapiro| (1986)), the proof is similar to that of Proposition 8 and 9, we omit the details here. [

S.3 Closed-Form derivatives of Algorithm 1

The objective functions (3.8) in the paper can be solved by standard Stiefel or Grassmann manifold opti-

mization packages, where we can plug in the closed-form derivatives to speed up the computation. Here

13



we give the closed-form derivatives when M = 2.

d(log |(La, ® TT)M(Ls, @ T1)|)
Ovec(T'1)

2vec {M(Idz ® Fl){(ldz ® I‘{)M(Idz ® I‘l)}il} (Idz ® Taydy ®Ip, ){Vec(ldz) ®1Ipia }7

d(log |(T3 ® 14, )M(T3 @ 1a,)|)
Ovec(T'2)

= 2vec {M(FQ ® Id1){(rg ® 14, )M(F2 ® Idl)}_l} (Idz ® Tayp, ®1g, ){Ipzdz ® VeC(Id1)}>

where Ty, is mn X mn permutation matrix whose ij-th elementis 1if j = 1+m(i—1)— (mn—1)[ =2 |

or 0 otherwise.
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