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S.1 Primary biliary cirrhosis data analysis

In this section, we analyze the data from a Mayo Clinical trial on primary biliary cirrhosis (PBC). This data

set is also used in Xue & Yin (2014) and Sheng & Yuan (2019). The data set contains laboratory results for

312 patients. Several biomarkers such as bilirubin, albumin and prothrombin time are adopted to diagnose

PBC. We study this data set in the same way as Xue & Yin (2014) did. We treat the time baseline as one

fold of the covariates and the multivariate predictors repeatedly measured over time as another fold of the

covariates and thus we have predictors in a matrix form. We focus our attention on the measurements of

bilirubin, albumin level, and prothrombin time at time points 6 months, 1 year, 2 years, and 3 years and

thus the predictors are in the form of 3 × 4 matrix. The response is the survival time of a patient which is

continuous. We partition the response variable into 8 slices, and treat each slice as one class, then apply

FLAD and FELAD to get the estimation of the dimension folding subspace. To make a comparison with

Xue & Yin (2014) and Sheng & Yuan (2019), we use d1 = d2 = 1.

The estimated basis matrices Γ1 and Γ2 are (0.151,−0.989, 0.007)T and (0.274, 0.240,−0.009, 0.931)T

by FLAD, and (0.025,−0.999, 0.023)T and (0.094, 0.469,−0.761, 0.438)T by FELAD. To test the sig-
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Γ1,11 Γ1,21 Γ1,31 Γ2,11 Γ2,21 Γ2,31 Γ2,41

FLAD
Est. 0.151 -0.989 0.007 0.274 0.240 -0.009 0.931

pvalue 0.002 0.006 0.904 0.484 0.216 0.736 0

FELAD
Est. 0.025 -0.999 0.023 0.094 0.469 -0.761 0.438

pvalue 0.712 0.020 0.964 0.906 0.232 0.064 0.420

FSIR
Est. 0.018 -0.227 -0.974 0.623 0.204 0.727 0.208

pvalue 0.002 0 0 0.606 0.596 0.598 0.616

FDR
Est. 0.057 -0.152 -0.987 -0.086 -0.241 -0.153 0.955

pvalue 0.490 0 0.594 0.980 0.052 0.896 0.266

DCOV
Est. 0.989 -0.144 0.036 0.390 0.401 0.495 0.665

pvalue 0 0 0.056 0 0 0 0

FMAVE
Est. 0.119 -0.989 -0.087 0.491 0.1811 0.159 0.837

pvalue 0 0 0.366 0.170 0.200 0.586 0.146

Table S1: Bootstrapped p-values of coefficients estimated by different methods

with bootstrap sample size 1000.

nificance of the coefficients, we compute the bootstrapped p-value for each element of Γ1 and Γ2. Table

S1 indicates that, for FLAD, the bilirubin and albumin levels at year 3 significantly affects the length of the

survival time at level 0.05, and for FELAD, the albumin level significantly affects the length of the survival

time at level 0.05. By Table S1, all the methods indicate that albumin significantly affects the length of

survival time at level 0.05, and the results of FLAD, FSIR, DCOV and FMAVE show that bilirubin signifi-

cantly affects the survival time. DCOV is the most stable method: the subspace estimation does not change

so much with respect to different bootstrapped samples.

In Figure S1, we show the smoothing spline plots for the logarithm of the response versus the pro-

jected predictor, and scatter plots for the fitted value versus residuals. The results of FLAD and FELAD are
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Figure S1: Left panels: Smoothing splines for the logarithm of response ver-

sus the projected predictor. Right panels: plots for the fitted values versus the

residuals. The smoothing parameter is 0.076 for FLAD, and 0.033 for FELAD.

clear. It shows that the survival time has a negative relation with the projected predictor. Also, our analysis

indicates that the survival time has a negative relationship with bilirubin level and a positive relationship

with the albumin level, which is consistent with the medical outcome. The results are similar to those given

in Xue & Yin (2014).
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S.2 Proofs

S.2.1 Some Technical Lemmas

We first provide some lemmas that will be used in the proofs. The first three lemmas can be found in

Appendix of Cook & Forzani (2009). Let B be a symmetric positive definite matrix, and at (α,α0) ∈

Rp×p be a full rank matrix with αTα0 = 0.

Lemma 1.

α(αTBα)−1αT + B−1α0(αT
0 B−1α0)−1αT

0 B−1 = B−1. (1)

As a consequence of Lemma 1, Ip −PT
α(B) = Pα0(B−1). Additionally, if (α,α0) is an orthogonal

matrix, then we have the following two lemmas.

Lemma 2.

|αT
0 Bα0| = |B||αTB−1α|. (2)

Lemma 3.

(αT
0 B−1α0)−1 = αT

0 Bα0 −αT
0 Bα(αTBα)−1αTBα0,

−(αT
0 B−1α0)−1(αT

0 B−1α) = (αT
0 Bα)(αTBα)−1.

(3)

We will also use the following two lemmas about matrix derivatives.

Lemma 4. Suppose A,B,C, X are full rank matrix,D is full rank symmetric matrix. Then we have:

d(tr((AXB + C)D−1(AXB + C)T ))

dX
= 2AT (AXB + C)DBT . (4)

Lemma 5. Suppose A,B are full rank matrices, and X is symmetric matrix. Then we have:

d(tr(AX−1B))

dX
= −(X−1BAX−1)T . (5)
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S.2.2 Proof of Proposition 1

Proof. Let Γm be the basis matrix for Sm, Γ =
⊗1

m=M Γm, (Γ,Γ0) be a full rank matrix with ΓTΓ0 =

0, and PΓ(Σk) = Γ(ΓTΣkΓ)−1ΓTΣk. It is easy to show that Y | X ∼ Y | (
⊗1

m=M PSm)vec(X) is

equivalent to X | (ΓTX, Y ) ∼ X | ΓTX. By definition, cov(vec(X) | ΓTX, Y = k) = (I∏M
m=1 pm

−

PT
Γ(Σk)

)Σk and E(vec(X) | ΓT vec(X), Y = k) = vec(µ)+ηωk +PT
Γ(Σk)

(vec(X)−vec(µ)−ηωk),

where ωk is the vector in Rdim(M), and η is a basis matrix forM. It is easy to show that var(vec(X) |

ΓTX, Y = k) and E(vecX | ΓT vec(X), Y = k) are constant if and only if (I∏M
m=1 pm

− PT
Γ(Σk)

)Σk

and PT
Γ(Σk)

are constant and PT
Γ(Σk)

η = η.

By Lemma 1, (I∏M
m=1 pm

− PT
Γ(Σk)

)Σk = Γ0(ΓT
0 Σ−1

k Γ0)−1ΓT
0 = C1 for some constant C1.

Because PT
Γ(Σk)

, k = 1, · · · ,K, are constant, we know that I−PT
Γ(Σk)

= Γ0(ΓT
0 Σ−1

k Γ0)−1ΓT
0 Σ−1

k =

C2 for some constant C2. So Γ0Σ
−1
k is a constant, which implies that Q⊗1

m=M
SmΣ−1

k does not change

with k. Because PT
Γ(Σk)

is a constant, PT
Γ(Σk)

η = PT
Γ(Σ)η = η for any k. And PT

Γ(Σ)η = η if and

only if PΓ(Σ)(Σ
−1η) = Σ−1η. So we have Σ−1η ⊆

⊗1
m=M Sm, which is equivalent to Σ−1M ⊆⊗1

m=M Sm.

S.2.3 Proof of Proposition 2

Proof. From the proof of Proposition 1, condition “Q⊗1
m=M

SmΣ−1
k is a constant” of Proposition 1 is

equivalent to PΓ(Σk) = PΓ(Σ) and Σk(I∏M
m=1 pm

− PΓ(Σk)) = Σ(I∏M
m=1 pm

− PΓ(Σ)), which is

equivalent to Σk −Σ = PT
Γ(Σ)(Σk −Σ)PΓ(Σ). Also Σk −Σ = PT

Γ(Σ)(Σk −Σ)PΓ(Σ) is equivalent

to Σ−1(Σ−Σk) ⊆
⊗1

m=M Sm. See Cook & Forzani (2009) for the proof of the equivalences.

By Proposition 1, we have Σ−1M ⊆
⊗1

m=M Sm and Σ−1M ⊆
⊗1

m=M S̃m, so Σ−1M ⊆⊗1
m=M Sm ∩

⊗1
m=M S̃m. Also, from Proposition 1 and the previous equivalences, we have Σ−1(Σk −

Σ) ⊆
⊗1

m=M Sm and Σ−1(Σk − Σ) ⊆
⊗1

m=M S̃m, and hence Σ−1(Σk − Σ) ⊆
⊗1

m=M Sm ∩⊗1
m=M S̃m. If we can show

⊗1
m=M Sm ∩

⊗1
m=M S̃m =

⊗1
m=M (Sm ∩ S̃m), then Proposition 2 is
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proved.

We first show
⊗1

m=M (Sm ∩ S̃m) ⊆
⊗1

m=M Sm ∩
⊗1

m=M S̃m. For m = 1, · · · ,M , and any

δm ∈ Sm ∩ S̃m, we have
⊗1

m=M δm ∈
⊗1

m=M Sm and
⊗1

m=M δm ∈
⊗1

m=M S̃m. So
⊗1

m=M δm ∈⊗1
m=M S ∩

⊗1
m=M S̃m. Then we know that

⊗1
m=M (Sm ∩ S̃m) ⊆

⊗1
m=M Sm ∩

⊗1
m=M S̃m.

Next, we show
⊗1

m=M Sm∩
⊗1

m=M S̃m ⊆
⊗1

m=M (Sm∩S̃m). For any vector ν ∈
⊗1

m=M Sm∩⊗1
m=M S̃m, there exist αm ∈ Sm and βm ∈ S̃m, m = 1, · · · ,M , such that ν =

⊗1
m=M αm =⊗1

m=M βm. It can be shown that
⊗1

m=M αm =
⊗1

m=M βm if and only if αm = cmβm for some

constants cm. This implies that αm ∈ S̃m and hence αm ∈ Sm ∩ S̃m. Therefore, ν =
⊗1

m=M αm ∈⊗1
m=M (Sm ∩ S̃m) and

⊗1
m=M Sm ∩

⊗1
m=M S̃m ⊆

⊗1
m=M (Sm ∩ S̃m).

S.2.4 Proof of Proposition 3

Proof. Let
⊗1

m=M Γm be the basis matrix for
⊗1

m=M Sm. If Sm is a mode-m dimension folding en-

velope subspace, it must be a dimension folding subspace. From Proposition 1, Sm is a mode-m di-

mension folding subspace if (a) Σ−1M ⊆
⊗1

m=M Sm and (b) Q⊗1
m=M

SmΣ−1
k is a constant with

respect to k. The envelope covariance structure naturally satisfies (b). So Σ−1M ⊆
⊗1

m=M Sm and

Σk = (
⊗1

m=M PSm)Σk(
⊗1

m=M PSm) + Q⊗1
m=M

SmΣQ⊗1
m=M

Sm make Sm to be a mode-m di-

mension folding envelope subspace.

S.2.5 Proof of Proposition 4

Proof. From the proof of Proposition 2 in Wang et al. (2019), we have
⊗1

m=M Sm∩
⊗1

m=M S̃m satisfies

the two conditions in our Proposition 3. We also proved that
⊗1

m=M Sm ∩
⊗1

m=M S̃m =
⊗1

m=M (Sm ∩

S̃m) in our Proposition 2. So the intersection of two mode-m dimension folding envelope subspace is a

mode-m dimension folding envelope subspace.
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S.2.6 Proof of Proposition 5

Proof. Let Γ =
⊗1

m=M Γm be the basis matrix for TY |X, and (Γ,Γ0) be a full rank matrix with

ΓTΓ0 = 0. By Proposition 1, vec(µ − µk)⊆ ΣTY |X. So we have vec(µ − µk) = ΣΓνk for some

νk ∈ R
∏M

m=1 dm . By definition, we have Γ0vec(X) | (ΓT vec(X), Y = k) ∼ N(ρk,Θk), with

ρk = ΓT
0 vec(µ) + ΓT

0 ΣΓνk + (ΓT
0 ΣkΓ)(ΓTΣkΓ)−1ΓT (vec(X) − vec(µ) − ΣΓνk), and Θk =

ΓT
0 ΣkΓ0 − ΓT

0 ΣkΓ(ΓTΣkΓ)−1ΓTΣkΓ0. By Lemma 3, we have Θk = (ΓT
0 Σ−1

k Γ0)−1. Since,

by Proposition 1, ΓT
0 Σ−1

k is a constant, we have Θk = (ΓT
0 Σ−1Γ0)−1 = D. Again by Lemma

3 and Proposition 1, we have (ΓT
0 Σ−1

k Γ)(ΓTΣkΓ)−1 = (ΓT
0 Σ−1Γ)(ΓTΣΓ) = H. Hence ρk =

HΓT vec(X) + (ΓT
0 −HΓT )vec(µ).

S.2.7 Proof of Proposition 6

Proof. By the equality f(ΓT vec(X),ΓT
0 vec(X) | Y = k) = f(ΓT vec(X) | Y = k)f(ΓT

0 vec(X) |

ΓT vec(X), Y = k) and Proposition 2, the log-likelihood function is

L(Γ) =

n∑
i=1

logf(ΓT vec(Xi),Γ
T
0 vec(Xi) | Yi = k)

=

n∑
i=1

logf(ΓT vec(Xi) | Yi = k) +

n∑
i=1

logf(ΓT
0 vec(Xi) | ΓT vec(Xi), Yi = k)

= −npq
2

log(2π)− n

2
log|D| − 1

2

∑
k

nklog|ΓTΣkΓ|

− 1

2

∑
k

nk(vec(Xk)− vec(µ)−ΣΓνk)TΓT (ΓTΣkΓ)−1Γ(vec(Xk)− vec(µ)−ΣΓνk))

− 1

2

∑
k

nk(vec(Xk)− vec(µ))TKD−1KT (vec(Xk)− vec(µ))

− 1

2

∑
k

nktr{ΓT Σ̃kΓ(ΓTΣkΓ)−1} − 1

2

∑
k

nktr(KD−1KT Σ̃k),
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where Σ̃k is the sample covariance matrix of Xk, and K = (Γ0 −ΓHT ). Let fk = nk/n. The only term

in L(Γ) that involves νk is

T =
∑
k

nk(vec(Xk)− vec(µ)−ΣΓνk)TΓT (ΓTΣkΓ)−1Γ(vec(Xy)− vec(µ)−ΣΓνk)).

We need to minimize it subject to
∑

k fkνk = 0. Let Bk = ΓTΣkΓ, and Zk = ΓT (vec(Xk)− vec(µ)).

For any quantity ak, let a =
∑

k fkak. We use the Lagrange multiplier method to minimize T/n =∑
k fk(Zk −Bνk)TB−1

k (Zk −Bνk) + λν. Differentiating it with respect to νk, we get

− 2fkZk + 2fkBνk + fkBkB
−1
λ = 0. (6)

By summation over the classes k of the above equation, we get −2Z + λ = 0. Finally, substituting it back

into (6), we have νk = B
−1

(Zk −BkB
−1

Z). Therefore

T = n(ΓT vec(X)− ΓT vec(µ))TB
−1

(ΓT vec(X)− ΓT vec(µ))

= n(vec(X)− vec(µ))TΓB
−1

ΓT (vec(X)− vec(µ)).

Notice that, in L(Γ), the term

1

2

∑
k

nk(vec(Xk)− vec(µ))TKD−1KT (vec(Xk)− vec(µ))

=
1

2

∑
k

nk(vec(X)− vec(µ))TKD−1KT (vec(X)− vec(µ))

+
1

2

∑
k

nktr(KD−1KT ((vec(Xk)− vec(X))(vec(Xk)− vec(X))T )).

The only two terms in L(Γ) that involve vec(µ) are one from 1
2
T and the other one from above

equation. Hence we can solve the equation ∂L
∂vec(µ)

= 0, and obtain ΓB
−1

ΓT (vec(X) − vec(µ)) +

KD−1KT (vec(X)−vec(µ)) = 0, where B = ΓTΣΓ. By Lemma 1, KT = ΓT
0 (I−ΣΓ(ΓTΣΓ)−1ΓT ) =

(ΓT
0 Σ−1Γ0)−1ΓT

0 Σ−1, and KD−1KT = Σ−1Γ0(ΓT
0 Σ−1Γ0)−1ΓT

0 Σ−1. Again, using Lemma 1,

Σ−1Γ0(ΓT
0 Σ−1Γ0)−1ΓT

0 Σ−1 +Γ(ΓTΣΓ)−1ΓT = Σ−1. Hence we have nΣ−1(vec(X)−vec(µ)) =

0.
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Then L(Γ) is maximized with respect to vec(µ) when vec(µ) = X. Substituting X for vec(µ), the

likelihood function becomes

L(Γ) = −npq
2

log2(π)− n

2
log|D| − 1

2

∑
k

nklog|ΓTΣkΓ|

− 1

2

∑
k

nktr{ΓT Σ̃kΓ(ΓTΣkΓ)−1} − 1

2

∑
y

nytr(KD−1KT ∆̃k),

where ∆̃k = Σ̃k + (Xk −X)(Xk −X)T . Recall that K = (Γ0 −ΓHT ). So the only term that involves

H is 1
2

∑
k nktr((Γ0 − ΓHT )D−1(Γ0 − ΓHT )T ∆̃y).

By solving the equality ∂L
∂H

= 0 and applying Lemma 4, we get
∑

k nkD−1ΓT
0 ∆̃kΓ+

∑
k nkD−1HΓT ∆̃kΓ =

0. So Ĥ = (
∑

k nkΓT
0 ∆̃kΓ)(

∑
k nkΓT ∆̃kΓ)−1 = (ΓT

0 Σ̃XΓ)(ΓT Σ̃XΓ)−1 is the minimizer of L(Γ).

Next we solve the equation ∂L
∂D

= 0. By Lemma 5, the solution is

D̂ = K̂T Σ̃XK̂

= (Γ0 − ĤΓT )Σ̃X(Γ0 − ĤΓT )T

= ((ΓT
0 Σ̃−1

X Γ0)−1ΓT
0 Σ̃−1

X )Σ̃X((ΓT
0 Σ̃−1

X Γ0)−1ΓT
0 Σ̃−1

X )T

= (ΓT
0 Σ̃−1

X Γ)−1.

Finally by solving ∂L
∂ΓT ΣkΓ

= 0, we get ΓTΣkΓ = ΓT Σ̂kΓ. After plugging back ΓTΣkΓ = ΓT Σ̂kΓ

into L(Γ), we prove the asserted result.

S.2.8 Proof of Proposition 7

Proof. Let Γ =
⊗1

m=M Γm be the basis matrix of EY |X , and (Γ,Γ0) be orthonormal matrix, ΓTΓ0 =

0. Under FELAD model assumption, we have Σk = (
⊗1

m=M Γm)Ωk(
⊗1

m=M ΓT
m) + Γ0Ω0Γ

T
0 , by

which we can show that |Σk| = |Ωk||Ω0| and Σ−1
k = (

⊗1
m=M Γm)Ω−1

k (
⊗1

m=M ΓT
m) + Γ0Ω

−1
0 ΓT

0 .

By Proposition 1, vec(µk − µ) = ΓΣνk for some vector νk. For the FELAD model, ΣΓνk =

9



Γ(
∑K

k=1 πkΩk)νk. Let αk = (
∑K

k=1 πkΩk)νk. Then

L(Γ) = −np
2

log(2π)− 1

2

K∑
k=1

nklog|Ωk| −
n

2
log|Ω0|

− 1

2

K∑
k=1

nk∑
i=1

(ΓT vec(Xki − µ)−αk)TΩ−1
k (ΓT vec(Xki − µ)−αk)

− n

2

n∑
i=1

(ΓT
0 vec(Xi − µ))TΩ−1

0 (ΓT
0 vec(Xi − µ)).

By solving the equation ∂L
∂αk

= 0, we have

Ω−1
k (ΓT vec(Xki − µ)−αk) = 0,

αk = ΓT vec(Xk − µ).

Hence

L(Γ) = −np
2

log(2π)− 1

2

K∑
k=1

nklog|Ωk| −
n

2
log|Ω0| −

1

2

K∑
k=1

nktr(ΓT Σ̃kΓTΩ−1
k )− n

2
tr{ΓT

0 Σ̃XΓ0Ω
−1
0 }.

By solving the equation ∂L
∂Ω0

= 0 and applying Lemma 4, we have

Ω0 = ΓT
0 Σ̃XΓ0.

By solving ∂L
∂Ωk

= 0 and using Lemma 4 again, we get

Ωk = ΓT Σ̃kΓ.

Plugging the above relation into L(Γ), we have

L(Γ) = −np
2

log(2π)− np

2
− n

2
log |ΓT

0 Σ̃XΓ0| −
1

2

K∑
k=1

nk log |ΓT Σ̃kΓ|.

By Lemma 2, we have log|ΓT
0 Σ̃XΓ0| = log|ΓT Σ̃−1

X Γ|+ log|Σ̃X|. Finally, we have

L(Γ) = −np
2

log(2π + 1)− n

2
log|Σ̃X| −

n

2
log |ΓT Σ̃−1

X Γ| − 1

2

K∑
k=1

nk log |ΓT Σ̃kΓ|.

.
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S.2.9 Proof of Proposition 8

Proof. For the FLAD model, the free parameterφT can be written as (vecT (µ), vecT (α1), · · · , vecT (αK−1)

,vecT (Γ1), · · · , vecT (ΓM ), vechT (Σ), vechT (M1), · · · , vechT (MK))T = (φT
1 , · · · ,φT

2K+M )T with

parameter space Θ being the Cartesian product of the parameter space for the individual components. Be-

cause the elements of h are analytic, they are twice continuously differentiable over Θ and every point in

Θ is regular (Shapiro 1986, Definition 2.1), except on a set of Lebesgue measure 0.

Let x̂T = (vecT (µ̂1), · · · , vecT (µ̂K), vechT (Σ̃1), · · · , vechT (Σ̃K))T be the MLE under the full

model. The FLAD discrepancy function is defined as FFLAD(x̂,h) = Lp(x̂ | x̂)− Ld(h | x̂), where

Ld(h | x̂) = −
K∑

k=1

nk

2
{log|Σk|+ tr(Σ̃kΣ−1

k ) + (Xk − µk)TΣ−1
k (Xk − µk)}.

FFLAD is an analytic function of x̂ and h. Also note that FFLAD ≥ 0 for all x̂ and h, and FFLAD = 0 if

and only if x̂ = h. So FFLAD satisfies the necessary condition for a discrepancy function (Shapiro 1986).

Let W = 1
2

∂2FFLAD

∂h∂hT evaluated at (h0,h0), where h0 is the true value of h. It is easy to check

W = J, which is also a sufficient condition for FLAD to give asymptotic efficient estimators (Shapiro

1986)(eqn.5.1). Then, using Proposition 4.1 in (Shapiro 1986), we have
√
n(ĥ − h)

D−→ N(0,V),

where V = H(HTJH)†HTJJ−1JH(HTJH)†HT = H(HTJH)†HT . By calculation, we have

V
−1/2
0 (V0 −V)V

−1/2
0 = I− J1/2H(HTJH)†HTJ1/2 = QJ1/2H ≥ 0.

The proof of the situation of FELAD is similar to that of FLAD, so we omit the details here.

Let P0 = V
−1/2
0 VV

−1/2
0 , and P1 = V

−1/2
0 V1V

−1/2
0 . We have P0 = J1/2H(HTJH)†HTJ1/2,

P1 = J1/2HG1(GT
1 HTJHG1)†GT

1 HTJ1/2, and P0P1 = J1/2{H(HTJH)†HTJH}G1(GT
1 HTJHG1)†GT

1 HTJ1/2.

Using matrix identity (Rao & Mitra 1971)(Theo 2.4(c))

H(HTJH)†HTJH = H,

and

(HTJH)(HTJH)†HT = HT ,

11



we get P0P1 = P1. Similarly, we also have P1P0 = P1. Then P0−P1 = P0−P0P1 = P0(I−P1) =

PJ1/2HQJ1/2HG1
. Also P0 −P1 = P0 −P1P0 = (I−P1)P0 = QJ1/2HG1

PJ1/2H.

S.2.10 Proof of Proposition 9

The proof of this proposition is parallel to the proof of Proposition 8. However, the Fisher information J is

changed and may not equal to W = 1
2

∂2FFLAD

∂h∂hT at (h0,h0). In this case, by Proposition 4.1 in Shapiro

(1986), the estimator ĥ is still
√
n-consistent, but may not be the most efficient one.

S.2.11 Proof of Proposition 10

Proof. The population objective function of FLAD is

L(S) =
1

2
log|ΓT

0 Σ−1
X Γ0| −

1

2

K∑
k=1

πklog|ΓT
0 Σ−1

k Γ0| −
1

2
log|ΣX|+

1

2

K∑
k=1

πklog|Σk|

≤ 1

2
log|ΓT

0 (

K∑
k=1

πkΣk)−1Γ0| −
1

2

K∑
k=1

πklog|ΓT
0 Σ−1

k Γ0| −
1

2
log|ΣX|+

1

2

K∑
k=1

πklog|Σk|

≤ −1

2
log|ΣX|+

1

2

K∑
k=1

πklog|Σk|.

where Γm ∈ Rpm×dm , Γ0 is the orthogonal complement of Γ =
⊗1

m=M Γm, and S = span(Γ).

The first inequality follows since Σ−1
X ≤ (

∑K
k=1 πkΣk)−1 and the second inequality follows since the

function log|ΓT
0 ∆−1Γ0| is convex in ∆ on the space formed by symmetric and positive definite ma-

trices (See Section A.6 of Cook & Forzani (2009)). Define SFLAD = argmax L(S). If we find an

orthogonal matrix (η,η0), where ηm ∈ Rpm×dm and η =
⊗1

m=M ηm, such that 1
2
log|ηT

0 Σ−1
X η0| =

1
2

∑K
k=1 πklog|ηT

0 Σ−1
k η0|, then SFLAD = span(η). Next, we show how to get the desired (η,η0) such

that span(η) ⊆ TY |X and 1
2
log|ηT

0 Σ−1
X η0| = 1

2

∑K
k=1 πklog|ηT

0 Σ−1
k η0|.

We first introduce the definition of “Kronecker envelope” proposed by Li et al. (2010).
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Definition 1. Let U ∈ R
∏M

m=1 pM×l be a random matrix. There are subspaces S1 ⊆ Ppm , m =

1, · · · ,M such that (i) span(U) ⊆
⊗1

m=M Sm almost surely; and (ii) If there exists other subspaces

S
′
1 ⊆ Ppm , m = 1, · · · ,M , that satisfies Condition (i), then

⊗
m=M Sm ⊆

⊗
m=M S

′
m. Then the

subspace
⊗

m=M Sm is called the Kronecker envelope of U, denoted as E⊗(U).

We choose the random matrix U to be Σ−1
X (ΣX−cov(X | Y )), where Y take values in {1, · · · ,K}.

Under the condition that E(vec(X) | βT vec(X)) is linear in βT vec(X), and var(vec(X) | βT vec(X)) is

nonrandom, Cook & Weisberg (1991) showed that the subspace spanned by U = Σ−1
X (ΣX−cov(X | Y ))

is subspace of SY |vec(X). By Theorem 5 of Li et al. (2010), we have E⊗(U) ⊆ TY |X. Let η =
⊗

m=M ηm

be a basis matrix for E⊗(U). Then Σ−1
X (ΣX − Σk) = ηwk for some matrix wk, k = 1, · · · ,K.

Consequently, Σ−1
X (ΣX − Σk) = Pη(ΣX)Σ

−1
X (ΣX − Σk). Thus, ΣX = Σk + PT

η(ΣX)(ΣX −

Σk) = Σk + PT
η(ΣX)(ΣX − Σk)Pη(ΣX). Then, by direct multiplication, we have Σ−1

k = Σ−1
X +

η{(ηTΣkη)−1 − (ηTΣXη)−1}ηT , which implies 1
2
log|ηT

0 Σ−1
X η0| = 1

2

∑K
k=1 πklog|ηT

0 Σ−1
k η0|. As

such, SFLAD = span(η) ⊆ TY |X. The
√
n-consistent property of SFLAD can be obtained from Proposi-

tion 4.1 of Shapiro (1986), the proof is similar to that of Proposition 8 and 9, we omit the details here.

S.3 Closed-Form derivatives of Algorithm 1

The objective functions (3.8) in the paper can be solved by standard Stiefel or Grassmann manifold opti-

mization packages, where we can plug in the closed-form derivatives to speed up the computation. Here
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we give the closed-form derivatives when M = 2.

∂(log |(Id2 ⊗ ΓT
1 )M(Id2 ⊗ Γ1)|)

∂vec(Γ1)

= 2vec
{

M(Id2 ⊗ Γ1){(Id2 ⊗ ΓT
1 )M(Id2 ⊗ Γ1)}−1

}
(Id2 ⊗Td1d2 ⊗ Ip1){vec(Id2)⊗ Ip1d1},

∂(log |(ΓT
2 ⊗ Id1)M(ΓT

2 ⊗ Id1)|)
∂vec(Γ2)

= 2vec
{

M(Γ2 ⊗ Id1){(ΓT
2 ⊗ Id1)M(Γ2 ⊗ Id1)}−1

}
(Id2 ⊗Td1p2 ⊗ Id1){Ip2d2 ⊗ vec(Id1)},

where Tmn ismn×mn permutation matrix whose ij-th element is 1 if j = 1+m(i−1)−(mn−1)b i−1
n
c

or 0 otherwise.
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