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Abstract: Sufficient dimension reduction methods are flexible tools for data visual-

ization and exploratory analysis, typically in a regression of a univariate response on

a multivariate predictor. Recently, there has been growing interest in the analysis

of matrix-variate and tensor-variate data. For regressions with tensor predictors,

a general framework of dimension folding and several moment-based estimation

procedures have been proposed in the literature. In this article, we propose two

likelihood-based dimension folding methods motivated by quadratic discriminant

analysis for tensor data: the maximum likelihood estimators are derived under a

general covariance setting and a structured envelope covariance setting. We study

the asymptotic properties of both estimators and show using simulation studies

and a real-data analysis that they are more accurate than existing moment-based

estimators.

Key words and phrases: Dimension folding, quadratic discriminant analysis, suffi-

cient dimension reduction, tensor.

1. Introduction

Tensors, also known as multidimensional arrays, are a direct generalization

of vectors and matrices (Hitchcock (1927); Kolda and Bader (2009)). Tensor

data are observed in various applied fields. For example, in a study using gene

expression time course data (Baranzini et al. (2005)), gene expressions for 53

multiple sclerosis patients were measured over multiple time points. After being

given recombinant human interferon beta (rIFNβ), which is often used to control

the symptoms of multiple sclerosis, patients were classified as good (Y = 1) or

poor (Y = 0) responders to rIFNβ based on their clinical characteristics. For

each of the 53 subjects, the matrix-variate predictor can be organized as genes×
times = 76 × 7 and is used to predict the binary response Y . Another example

is from neuroimaging studies, where we are interested in predicting whether a

subject has a neurological disorder based on image scans in the form of three-

way or four-way tensors. For such data sets, we may lose important structural

Corresponding author: Xin Zhang, Department of Statistics, Florida State University, Tallahassee, FL,
32306, USA. E-mail: henry@stat.fsu.edu.

https://doi.org/10.5705/ss.202020.0040
mailto:henry@stat.fsu.edu


2406 WANG, ZHANG AND LI

information if we simply unfold the data from a tensor into a vector. Moreover,

the dimension of the predictor is often much larger than the sample size, for

example, p = p1 × p2 = 76 × 7 = 532 � n = 53. Therefore, it is important

to develop efficient dimension reduction methods for such data, especially for

problems such as classification and discriminant analysis.

In many previous studies of tensor classification and discriminant analysis,

linear classifiers have been shown to be effective in separating classes. Classi-

cal linear and margin-based classifiers have been extended to high-dimensional

tensor data, including logistic regression (Zhou, Li and Zhu (2013)), linear dis-

criminant analysis (Pan, Mai and Zhang (2019)), and distance-weighted discrim-

ination (Lyu, Lock and Eberly (2017)), among others. However, such linear

methods often ignore the potential covariance structural changes of the tensor

predictor over different classes. Therefore, it is not surprising that more flexible

classifiers, such as a quadratic discriminant analysis, can outperform linear clas-

sifiers in high dimensions when appropriate regularizations are imposed (Li and

Shao (2015); Jiang, Wang and Leng (2018)). Motivated by these considerations,

we propose flexible multi-linear sufficient dimension reduction (SDR) methods

for tensor data, with emphasis on discriminant analysis and classification.

For a univariate response Y , continuous or discrete, and a multivariate pre-

dictor X ∈ Rp, SDR methods aim to find a low-dimensional subspace S ⊆ Rp,

such that

Y ⊥⊥ X | PSX, (1.1)

where PS is the projection onto the subspace S. Let Γ ∈ Rp×d for d ≤ p,

be a basis matrix for the subspace S. Then, (1.1) amounts to saying that the

conditional distribution of Y | X is the same as that of Y | ΓTX. Thus, the

linear reduction ΓTX is sufficient in the sense that there is no loss of information

about Y by reducing X to ΓTX. The central subspace (Cook (1998)), denoted

by SY |X, is the intersection of all S that satisfy (1.1). By definition, the central

subspace is the smallest dimension reduction subspace and is the target of most

SDR methods. See Li (2018) for additional information on SDR.

When X is tensor-variate, Li, Kim and Altman (2010) proposed a gen-

eral dimension folding framework to achieve SDR while preserving the tensor

structure of the predictor. For a positive integer M , a multidimensional array

X ∈ Rp1×···×pM is called an M -way or M -th order tensor. The “vec” operator

turns a tensor X into a column vector, denoted by vec(X), where Xi1···iM is the

{1 +
∑M

m=1(im − 1)
∏m−1

l=1 pl}-th element in vec(X). Analogous to the notion of

a central subspace, the (central) dimension folding subspace is defined as follows



LIKELIHOOD-BASED DIMENSION FOLDING 2407

(Li, Kim and Altman (2010, Definitions 1, 2, and 5)). The subspace Sm ⊆ Rpm

is called a mode-m dimension folding subspace, for m = 1, . . .M , if

Y ⊥⊥ X | (PSM ⊗ · · · ⊗PS1)vec(X). (1.2)

Unless otherwise specified, we let Tm denote the smallest such mode-m dimen-

sion folding subspace. Then, TY |X = TM
⊗
· · ·
⊗
T1 =

⊗1
m=M Tm is the central

dimension folding subspace. We denote the projection onto TY |X by PTY |X . The

subspace TY |X is also a dimension reduction subspace of Y on vec(X): it con-

tains the central subspace SY |vec(X), but preserves the tensor structure in X. We

assume the existence and uniqueness of the central dimension folding subspace

proven in Li, Kim and Altman (2010) under mild conditions. Under this frame-

work of dimension folding, Li, Kim and Altman (2010) developed moment-based

estimation procedures by extending classical SDR methods, such as the sliced

inverse regression (Li (1991, SIR)), sliced average variance estimation (Cook and

Weisberg (1991, SAVE)), and directional regression (Li and Wang (2007, DR)),

to tensor data.

As alternatives to the moment-based dimension folding methods, we propose

two likelihood-based dimension folding methods that are easy to interpret and

flexible. First, we propose a general method called FLAD (folded-LAD), which

extends the likelihood acquired directions Cook and Forzani (LAD, 2009) from

vector to tensor data. The FLAD estimator is asymptotically efficient for esti-

mating the dimension folding subspace TY |X under the normal assumption, and

remains
√
n-consistent for the central subspace TY |X under the weaker linearity

and constant covariance conditions required by the SAVE and DR. To model the

unequal covariance structures across classes, we further incorporate the envelope

covariance (Cook, Li and Chiaromonte (2010)) into the FLAD, resulting in a

new method called the FELAD (folded envelope LAD). The envelope covariance

used in the FELAD is a direct generalization of the envelope structure used in

quadratic discriminant analysis (Zhang and Mai (2019)) and in brain network

analysis (Wang, Zhang and Li (2019)). Our new covariance modeling for tensor

data is also related to the recent tensor latent factor model (Lock and Li (2018)),

and includes the covariance structure therein as a special case. Comparing with

that of the FLAD, the covariance structure of the FELAD is parsimonious and

further reduces the total number of free parameters. Because of the additional

covariance assumption, the FELAD can be more efficient than the FLAD when

the model assumptions hold. In addition, because the FLAD and FELAD objec-

tive functions differ from the general dimension folding objective function used in
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the literature (Li, Kim and Altman (2010); Xue and Yin (2014); Sheng and Yuan

(2020); Xue and Yin (2015); Xue, Yin and Jiang (2016)), the computational tech-

niques presented here are also new to the dimension folding literature. In fact,

the proposed methods are computationally much faster and more scalable than

all other second-order dimension folding methods. Furthermore, whereas exist-

ing dimension folding methods such as the Folded-SIR, Folded-DR proposed by

Li, Kim and Altman (2010), Folded-MAVE (Xue and Yin (2014)), Folded-PFC

(Ding and Cook (2014)), and DCOV (Sheng and Yuan (2020)), focus only on

matrix data, our methods also work for tensor data.

1.1. Notation and organization

For a subspace S ⊆ Rp, let PS be the projection matrix onto S, and let

QS = Ip − PS be the projection onto S⊥, the orthogonal complement of S .

For a matrix A ∈ Rp×d, let span(A) denote the subspace of Rp spanned by the

columns of A. If A is a matrix of full column rank such that span(A) = S, then

A is called a basis matrix of S, and PS = A(ATA)−1AT = PA.

We next introduce some basic tensor notation and operations from Kolda

and Bader (2009). For a tensor A ∈ Rp1×···×pM , the mode-m matricization,

A(m), is a (pm ×
∏

m′ 6=m pm′) matrix, with Ai1···iM being its (im, j)-th element,

where j = 1 +
∑

m′=m(im′ − 1)
∏

l<m′,l 6=m pl. If we fix every index of the tensor

except the mth index, then we have a mode-m fiber. The mode-m product of a

tensor A and a matrix B ∈ Rd×pm , denoted by A ×m B, is an M -way tensor of

dimension p1 × · · · × pm−1 × d × pm+1 × · · · × pM , with each element being the

product of a mode-m fiber of A and a row vector of B. The Tucker decomposition

of a tensor is defined as A = C×1 G1×2 · · ·×M GM , where C ∈ Rd1×···×dM is the

core tensor, and Gm ∈ Rpm×dm , for m = 1, . . . ,M , are the factor matrices. We

write the Tucker decomposition as JC; G1, . . . ,GM K in short. In particular, we

frequently use the fact that vec(JC; G1, . . . ,GM K) = (GM ⊗ · · · ⊗G1)vec(C) ≡
(
⊗1

m=M Gm)vec(C).

The rest of the article is organized as follows. Section 2 introduces the FLAD

and FELAD models. Section 3 develops the estimation procedures for the FLAD

and FELAD, including the selection of subspace dimensions. Section 4 studies

the asymptotic properties. Section 5 contains simulation studies and a real-data

example. Section 6 contains a short discussion. The proofs of the propositions,

some implementation details, and an additional real-data analysis are provided

in the Supplementary Material.
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2. Likelihood-based Dimension Folding Methods

2.1. FLAD model

Using the Tucker decomposition, the definition of the dimension folding re-

lation in (1.2) is equivalent to Y | X ∼ Y | JX; PS1 , . . . ,PSM K. It means that,

after projecting the predictor onto the subspace Sm for each mode, the projected

predictor JX; PS1 , . . . ,PSM K still contains all the information about the response.

Equivalently, Y | X ∼ Y | JX; Γ1, . . . ,ΓM K, where Γm is a basis matrix for Sm,

for m = 1, . . . ,M . The reduced predictor, JX; Γ1, . . . ,ΓM K ∈ Rd1×···×dM , then

has the dimension d =
∏M

m=1 dm, which is smaller than the sample size n.

One advantage of the dimension folding method is that it uses the tensor

structure of the data and projects the data onto smaller subspaces. Instead of

estimating a large basis matrix Γ ∈ Rp×d (p =
∏M

m=1 pm, d =
∏M

m=1 dm), we only

need to estimate M smaller basis matrices Γm ∈ Rpm×dm , for m = 1, . . . ,M . The

number of free parameters in the basis matrices of the dimension folding method

is
∑n

m=1 dm(pm−dm), which is much smaller than the dimension d(p−d) for the

conventional SDR methods.

Here, we assume that Y is discrete, because we focus on discriminant analysis.

We further assume that

vec(X) | (Y = k) ∼ N(µk,Σk), k = 1, . . . ,K, (2.1)

where µk ∈ Rp and Σk ∈ Rp×p. This assumption is the same as that imposed

on the LAD (Cook and Forzani (2009)). If (X, Y ) satisfies both (1.2) and (2.1),

then we say that (X, Y ) satisfies the FLAD model.

Similarly to the LAD, our method is also applicable to continuous Y . For a

continuous Y , we modify the assumption to vec(X) | (Y = y) ∼ N(vec(µy),Σy).

In practice, we partition the support of Y into several slices, thus turning the

problem into a discrete one.

Let πk = Pr(Y = k), µ =
∑K

k=1 πkµk, Σ =
∑K

k=1 πkΣk, and M =

span{vec(µ1 − µ), . . . , vec(µK − µ)}. We have the following results.

Proposition 1. Under model (2.1), Sm is a mode-m dimension folding subspace,

for m = 1, . . . ,M , if and only if Σ−1M ⊆
⊗1

m=M Sm and Q⊗1
m=M SmΣ−1k does

not change with k.

Proposition 1 builds the connection between the dimension folding method

in (1.2) and model assumption (2.1), which leads to parameterization and estima-

tion. By Proposition 1, we have the following result, which shows the existence

and uniqueness of the dimension folding subspace.
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Proposition 2. Under model assumption (2.1), if Sm and S̃m, for m = 1, . . . ,M ,

are mode-m dimension folding subspaces, then Sm ∩ S̃m is a mode-m dimension

folding subspace.

As a consequence of Proposition 2, the smallest mode-m dimension folding

subspace Tm and the dimension folding subspace TY |X =
⊗1

m=M Tm exist and

are uniquely defined. Propositions 1 and 2 are based on the normal assumption

(2.1). In Section 4, we show the robustness of the FLAD against non-normality.

2.2. Envelope covariance structure

Proposition 1 shows that the requirement for the covariance matrices to guar-

antee that Sm is a mode-m dimension folding subspace. In this section, we intro-

duce a more explicit parametric covariance structure from the envelope models

Cook, Li and Chiaromonte (2010). First, we consider tensor quadratic discrim-

inant analysis and its Bayes rule as the motivation for our envelope covariance

structure.

The Bayes rule is the classification rule with the lowest possible classification

error; that is,

Ŷ = argmax
k=1,...,K

Pr(Y = k | X = x) = argmax
k=1,...,K

πkfk(x),

where fk is the probability density function of X.

Under model (2.1), which can be viewed as the tensor quadratic discriminant

analysis model, the Bayes rule can be written as

φBayes(X) = argmax
k=1,...,K

[Ck − vecT (X){Σ−1k vec(µk)−Σ−11 vec(µ1)}

+
1

2
vecT (X)(Σ−1k −Σ−11 )vec(X)],

(2.2)

where Ck = log πk + (1/2) log |Σk| + (1/2)vecT (µk)Σ−1k vec(µk) is the constant

term that does not depend on X. The Bayes rule (2.2) involves a large number

of parameters and contains both linear and quadratic terms of X. Moreover, the

inversion of matrix Σk is challenging to estimate. It is thus desirable to reduce

the dimension of X and the number of free parameters in both the linear and the

quadratic terms.

Zhang and Mai (2019) proposed the envelope QDA model, assuming that

Σk = PSΣkPS + QSΣQS , for some subspace S. Their model is designed for a

vector predictor X. Suppose that Γ ∈ Rp×dim(S) is a basis matrix for S, and Γ0

is the orthogonal complement of Γ. Then, we can write Σk = ΓΩkΓ + Γ0Ω0Γ0,
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and Σ−1k = ΓΩ−1k Γ + Γ0Ω
−1
0 Γ0. As a result, the Bayes rule simplifies to

φBayes(ΓTX) = argmax
k=1,...,K

[Ck − vecT (ΓTX){Ω−1k vec(ΓTµk)−Ω−11 vec(ΓTµ1)}

+
1

2
vecT (ΓTX)(Ω−1k −Ω−11 )vec(ΓTX)]. (2.3)

Compared with the Bayes rule in (2.2) for the full data X, instead of estimating

Σ−1k , we need only estimate Ω−1k , which is of low dimensionality and is much

easier to estimate. However, the dimension of Γ is still large for tensor data.

To solve this problem, we apply the dimension folding method to X, while

assuming a special structure for its covariance matrix. For the subspaces Sm, for

m = 1, . . . ,M , we consider the following more explicit parametric form of Σk,;

Σk =

(
1⊗

m=M

PSm

)
Σk

(
1⊗

m=M

PSm

)
+ Q⊗1

m=M SmΣQ⊗1
m=M Sm . (2.4)

Let S =
⊗1

m=M Sm, and S0 be the complement of S. Then equation (2.4) can

be written as

Σk = PSΣkPS + QSΣQS . (2.5)

We assume the separability of S through the structure
⊗1

m=M Sm, but do not

require S⊥ to be separable. This covariance structure satisfies the condition in

Proposition 1 because QSΣ
−1
k = QSΣ

−1QS is invariant with respect to k.

In (2.5), the term QSΣQS represents the part of the covariance that does not

change across class k, and PSΣkPS is the part that carries the covariance char-

acteristics of class k, which is useful for classification. Because d is small relative

to p, we have removed the large matrix QSΣQS , which is useless in classification.

By introducing the envelope covariance structure, we gain great efficiency in es-

timation. Although we still call (2.4) the “envelope covariance,” it is new and

different to existing envelope models, because it focuses on discriminant analysis

for tensor data.

2.3. FELAD model

In this section, we combine the FLAD with the envelope covariance assump-

tion to construct the FELAD model. We first formally define a dimension folding

envelope subspace.

Definition 1. If the subspaces Sm ⊆ Rpm , for m = 1, . . . ,M , satisfy assumption

(1.2) and (2.4), then Sm is called a mode-m dimension folding envelope subspace.

Let Em be the smallest mode-m dimension folding envelope subspace. The sub-



2412 WANG, ZHANG AND LI

space EY |X =
⊗1

m=M Em is called the dimension folding envelope subspace.

By definition, we know that EY |X is unique and that the dimension folding

subspace TY |X ⊆ EY |X. As a consequence of Proposition 2 and TY |X ⊆ EY |X, EY |X
always exists under model (2.1). Let Γm be a basis matrix for Em, Γ =

⊗1
m=M Γm

be a basis matrix for EY |X, and Γ0 be a basis matrix of the orthogonal complement

of EY |X. Then, the envelope covariance structure (2.4) is equivalent to

Σk =

(
1⊗

m=M

Γm

)
Ωk

(
1⊗

m=M

ΓT
m

)
+ Γ0Ω0Γ

T
0 ,

for some symmetric and positive definite matrices Ωk ∈ Rd×d, and Ω0 ∈ R(p−d)×

(p−d). The following proposition builds the connection between model (2.1) and

the dimension folding envelope subspace. Recall thatM = span{vec(µ1−µ), . . . ,

vec(µM − µ)}.

Proposition 3. Under model (2.1), Sm is a mode-m dimension folding envelope

subspace if Σ−1M⊆
⊗1

m=M Sm and Σk = (
⊗1

m=M PSm)Σk(
⊗1

m=M PSm)

+ Q⊗1
m=M SmΣQ⊗1

m=M Sm.

In the following proposition, we show the existence and uniqueness of the

smallest mode-m dimension folding envelope subspace.

Proposition 4. The intersection of two mode-m dimension folding envelope sub-

spaces is a mode-m dimension folding envelope subspace.

Proposition 4 guarantees the existence and uniqueness of EY |X, because

EY |X =
⊗1

m=M Em.

2.4. A toy example and a comparison with other covariance structures

We now use a toy example to illustrate how the envelope covariance structure

(2.4) works. Consider a matrix random variable

(X | Y = k) =

(
X11k X12

X21 X22

)
,

where only X11k changes with class k. We assume that k = 2, X11k ∼ N(0, σ2k)

with σ21 = 1 and σ22 = σ2, (X12, X21, X22) ∼ N(0, I3), and X11k is independent

with (X12, X21, X22). Then, we have cov(X | Y = k) = (Γ2 ⊗ Γ1)σ
2
k(ΓT

2 ⊗
ΓT
1 ) + Γ0I3Γ

T
0 , where Γ2 ⊗ Γ1 = e1 and Γ0 = (e2, e3, e4). The basis ei is a four-

dimensional vector with the ith element equal to one, and the other elements
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equal to 0. In the covariance cov(X | Y = k), cov(X11k) = σ2k carries the

characteristic of the class k, whereas cov{(X12, X21, X22)} = I3 is class invariant.

Assumption (2.4) divides the covariance into two parts, one varying with class

k, and the other invariant with k. Only the information of the first part is

useful for subspace estimation and discriminant analysis. Figure 1 shows the

accuracy of the subspace estimation for different methods including the SIR,

SAVE, and LAD for vec(X), and our two methods, with the LAD serving as a

baseline for the comparison between these methods. As indicated by Figure 1, the

LAD, as a likelihood-based method, performs better than SIR and SAVE. The

FLAD and FELAD further improve the performance of the LAD because they

take advantage of the dimension folding structure and the envelope covariance

structure. The SIR, which uses only the information of the class mean differences,

fails to capture the difference in the covariance matrix due to σ2. The SAVE,

which is based on the covariance difference, fails to capture the mean difference.

When σ2 is close to one, the SAVE performs poorly because it is based on the

covariance difference between two classes. The FLAD performs slightly better

than the LAD using the dimension folding subspace. However, the improvement

is not significant because the dimension of this example is small. The FELAD

gives the best subspace estimation, especially when σ2 is large. The results show

the substantial advantages offered by the envelope covariance structure, even

when the predictor’s dimension is small. In this example, only the first element

of X is useful for discriminant analysis. The envelope covariance structure helps

us to identify the useful information in the predictor. Therefore, the FELAD

gains in efficiency by modeling the conditional covariance and using the tensor

structure.

Next, we show the connection between the covariance structure (2.4) and

another covariance structure in the recent literature. Lock and Li (2018) proposed

a latent variable model that assumes Xi = JUi; Γ1, . . . ,ΓmK + Ei and Ui =

YiB+Fi, where Ui ∈ Rd1×···×dM is a latent score matrix, Xi ∈ Rp1×···×pM , Yi ∈ Rq,

Γm ∈ Rpm×dm , for m = 1, . . . ,M , are semi-orthogonal matrices, Ei is an error

matrix with independent normal entries N(0, σ2), and Ei are independent of each

other. The random variables Fi are assumed to follow N(0,Ω) independently.

Then, the covariance matrix ΣX = (
⊗1

m=M Γm)Ω(
⊗1

m=M ΓT
m) + σ2Ip, which is

similar to our covariance assumption in that it introduces a low-rank structure

(
⊗1

m=M Γm)Ω(
⊗1

m=M ΓT
m). However, in their assumption, Ω is a constant with

respect to class k. Thus for classification, their covariance structure will fail to

capture the covariance difference for different classes. In addition, our assumption

is more general for Ω0, which can be chosen as an arbitrary symmetric and
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Figure 1. Subspace estimation accuracy of different methods. The x-axis is cov(X11 |
Y = 2) = σ2, and the y-axis is ‖PΓ̂ − PΓ‖F , which is the Frobenius norm between the
true projection matrix and the estimated projection matrix of the dimension reduction
subspace. The sample size for each class k, for k = 1, 2, is 30.

positive-definite matrix.

3. Estimation

3.1. Estimation and algorithm for the FLAD

In this section, we derive the estimation procedure for the basis matrix of

the FLAD. For i = 1, . . . , n, suppose that we have independent and identically

distributed (i.i.d.) data of class label Yi ∈ {1, . . . ,K}, K ≥ 2, and tensor predictor

Xi ∈ Rp1×···×pM , M ≥ 2. Recall that TY |X is the dimension folding subspace with

basis matrix Γ =
⊗1

m=M Γm, and Γ0 is the orthogonal complement of Γ. We

have the following properties:

Proposition 5. Under the FLAD model assumption (2.1), we have

1. ΓTvec(X) | (Y = k) ∼ N(ΓTvec(µ)+ΓTΣΓνk,Γ
TΣkΓ), for some νk ∈ Rd.

2. Γ0vec(X) | (ΓTvec(X), Y = k) ∼ N(HΓTvec(X) + (ΓT
0 −HΓT )vec(µ),D),

where D = (ΓT
0 Σ−1Γ0)

−1, and H = (ΓT
0 Σ−1Γ)(ΓTΣΓ)−1.

Let Xki be the ith sample of class k, Xk be the sample mean of class k, and

X be the overall sample mean. By Proposition 5, we can obtain the log-likelihood
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function for Γ as follows.

Proposition 6. Under the FLAD model assumption (2.1), the MLE for Γ is the

maximizer of the following function:

F(Γ) =
1

2
log |ΓT Σ̃XΓ| − 1

2

K∑
k=1

nk
n

log |ΓT Σ̃kΓ|, (3.1)

where Σ̃k = (1/nk)
∑nk

i=1 vecT (Xki−Xk)vec(Xki−Xk), Σ̃X = (1/n)
∑n

i=1 vecT (Xi

−X)vec(Xi−X) are the sample counterparts of Σk and ΣX = cov{vec(X)}, re-

spectively.

The objective function (3.1) is maximized over the set of Kronecker prod-

ucts of semi-orthogonal matrices, {Γ =
⊗1

m=M Γm : Γm ∈ Rpm×dm , ΓT
mΓm =

Idm
, m = 1, . . . ,M}. Let Ĝm = {Γ̂j , j 6= m}, for m = 1, . . . ,M . With Ĝm fixed,

we partially maximize F(Γ) over Γm; that is, we maximize the following objective

function:

Fm(Γm | Ĝm)

= log |(IdM
⊗ · · · ⊗ ΓT

m ⊗ · · · ⊗ Id1
)Σ̃X,Ĝm

(IdM
⊗ · · · ⊗ Γm ⊗ · · · ⊗ Id1

)|

−
∑
y

ny
n

log |(IdM
⊗ · · · ⊗ ΓT

m ⊗ · · · ⊗ Id1
)Σ̃k,Ĝm

(IdM
⊗ · · · ⊗ Γm ⊗ · · · ⊗ Id1

)|,

(3.2)

where Σ̃X,Ĝm
= (Γ̂T

M ⊗ · · · ⊗ Ipm
⊗ · · · ⊗ Γ̂T

1 )Σ̃X(Γ̂M ⊗ · · · ⊗ Ipm
⊗ · · · ⊗ Γ̂1), and

Σ̃k,Ĝm
= (Γ̂T

M⊗· · ·⊗Ipm
⊗· · ·⊗Γ̂T

1 )Σ̃k(Γ̂M⊗· · ·⊗Ipm
⊗· · ·⊗Γ̂1) are the marginal

and conditional covariances of the reduced predictor vec(JX; Γ̂1, . . . , Γ̂m−1, Ipm
,

Γ̂m+1, . . . , Γ̂M K) ∈ Rpm×
∏

m′ 6=m dm′ .

The optimization of (3.2) is over a Grassmann manifold, because Fm(Γm |
Ĝm) = Fm(ΓmO | Ĝm) for any orthogonal matrix O ∈ Rdm×dm . It can be solved

using standard Stiefel or Grassmann manifold optimization packages, such as R

package “ManifoldOptim” (Martin et al. (2016)) and R packages “TRES” (Zeng,

Wang and Zhang (2021)). We can plug in the closed-form derivatives to speed up

the computation. See the Supplementary Material for the closed-form derivatives.

We now give an outline of the algorithm. In each alternating update step,

for m = 1, . . . ,M , we fix Γ̂1, . . . , Γ̂m−1, Γ̂m+1, . . . , Γ̂M . The projected data are

obtained as JX; Γ̂1, ·, Γ̂m−1, Ipm
, Γ̂m+1, . . . , Γ̂M K, the dimension of which is much

smaller than that of X. Then, we estimate the mode-m dimension folding sub-

space by maximizing the objective function (3.2). We update iteratively until

convergence.



2416 WANG, ZHANG AND LI

3.2. Estimation and algorithm for FELAD

Under the FELAD model assumption, we re-used Γ =
⊗1

m=M Γ as the basis

matrix for EY |X. The MLE for Γ is derived in the following proposition.

Proposition 7. Under the FELAD model assumption (2.1) and (2.4), the MLE

is the maximizer of the following objective function:

F(Γ) = −1

2
log |ΓT Σ̃−1X Γ| − 1

2

K∑
k=1

nk
n

log |ΓT Σ̃kΓ|. (3.3)

The difference between this objective function and that of the FLAD is the

second term (1/2) log |ΓT Σ̃−1X Γ|. For the FLAD, it is −(1/2) log |ΓT Σ̃XΓ|.
Similarly to the FLAD algorithm, given Ĝm = {Γ̂j , j 6= m}, for m =

1, . . . ,M , we estimate Γm by maximizing the following objective function over

the Grassmann manifold:

Fm(Γm | Ĝm)

= − log |(Γ̂T
M ⊗ · · · ⊗ ΓT

m ⊗ · · · ⊗ Γ̂T
1 )Σ̃−1X (Γ̂M ⊗ · · · ⊗ Γm ⊗ · · · ⊗ Γ̂1)|

−
∑
y

ny
n

log |(Γ̂T
M ⊗ · · · ⊗ ΓT

m ⊗ · · · ⊗ Γ̂T
1 )Σ̃k,Ĝm

(Γ̂M ⊗ · · · ⊗ Γm ⊗ · · · ⊗ Γ̂1)|.

(3.4)

The FELAD algorithm then iterates until convergence.

3.3. A general initialization approach for dimension folding

Both the FLAD and the FELAD require solving nonconvex optimization

problems. For matrix data, when the dimension p1 × p2 is not large, we can

choose the result of the Folded-SIR or Folded-DR (Li, Kim and Altman (2010))

as the initial value. However, owing to the large
∏M

m=1 pm, the Folded-SIR and

Folded-DR may not perform well, we propose the following initialization method

based on a repeated application of the traditional SIR or SAVE to individual

mode-m fibers of X.

This initialization method includes three steps. We first illustrate it with a

matrix-valued X.

1. Select the sth column of Xi, for s = 1, . . . , p2, and i = 1, . . . , n, resulting

in a vector data set with dimension p1 and sample size n, together with

class label Y . We apply the classical SDR method to this vector data to

get an estimation η̂s ∈ Rp1×d1 . Similarly, we select the tth row of Xi, for
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t = 1, . . . , p1, to form a vector data set with dimension p2 and sample size

n, together with class label Y . By applying the classical SDR method to

this data set, we obtain an estimator ξ̂t ∈ Rp2×d2 . The pair (η̂s, ξ̂t) is a

candidate for the initial value for (Γ1,Γ2). We have p1 × p2 candidates for

the initial value.

2. Plug candidate (η̂s, ξ̂t) into the objective function (3.1) or (3.3), for s =

1, . . . , p2, and t = 1, . . . , p1. We then choose the top10 pairs that give the

largest objective function values.

3. Run the FLAD or FELAD algorithm using these 10 initial values, and choose

the one that gives the largest objective function value after the algorithm

converges.

For tensor-valued data, similarly to matrix-valued data, we select each mode-m

fiber of the data to form a vector-valued sample and use SAVE to get pm initial

values for Γm, for m = 1, . . . ,M . This leads to
∏M

m=1 pm combinations of initial

values for (Γ1, . . . ,ΓM ). We pick the 10 combinations that give the largest 10

objective function values. Then, we run the FLAD algorithm using these 10

combinations as the initial values, and choose the combination that gives the

largest objective function value after the algorithm converges.

3.4. Dimension selection

In this section, we develop ways to choose the dimensions d1, . . . , dM . One

possible way is to apply QDA to the projected data, and to use cross-validation

to choose the dimension which gives the smallest misclassification error rate. We

focus on the second approach, which is based on the Bayesian information crite-

rion (BIC). For dm ∈ {0, . . . , pm}, m = 1, . . . ,M , the dimension that minimizes

the information criterion BIC(d1, . . . , dM ) = −2L̂d1,...,dM
+ log(n)g(d1, . . . , dM ) is

selected, where g(d1, . . . , dM ) is the number of free parameters in the model, as

computed below.

For the FLAD, we have vec(µk) = vec(µ) + Σ
⊗1

m=M Γmνk, where νk ∈ Rd,∑K
k=1 nkαk/n = 0, and Σk = Σ + Σ(

⊗1
m=M Γm)Mk(

⊗1
m=M ΓT

m)Σ, with Mk

being a symmetric d × d matrix satisfying
∑K

k=1 nkMk/n = 0. The number of

free parameters in {µ1, . . . ,µK} is p+ (K− 1)d, in {Σ1, . . . ,ΣK} is p(p+ 1)/2 +

(K − 1)d(d+ 1)/2, and in {Γ1, . . . ,ΓM} is
∑M

m=1 dm(pm − dm). Thus, the total

number of parameters is g(d1, . . . , dM ) = p + (K − 1)d + p(p + 1)/2 + (K −
1)d(d+ 1)/2 +

∑M
m=1 dm(pm− dm). The function L̂d1,...,dM

= F(Γ̂) is (3.1), where

Γ̂ =
⊗1

m=M Γ̂m is the estimator of the FLAD algorithm for fixed d1, . . . , dM .
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The procedure for the FELAD is the same, except that Γ̂ is now estimated

using the FELAD algorithm.

4. Asymptotic Efficiency

In this section, we establish the asymptotic distributions and asymptotic effi-

ciencies of the FLAD and FELAD models using the results from Shapiro (1986).

Under the FLAD model, we have vec(µk) = vec(µ)+Σ(
⊗1

m=M Γm)νk, where

νk ∈ Rd, and
∑K

k=1 nkνk/n = 0. We also have Σk = Σ + Σ(
⊗1

m=M Γm)Mk

(
⊗1

m=M ΓT
m)Σ, where Mk is a symmetric d× d matrix with

∑K
k=1 nkMk/n = 0.

Thus, all the parameters of the FLAD model can be combined into the vector

φT = (vecT (µ), vecT (ν1), . . . , vecT (νK−1), vecT (Γ1), . . . , vecT (ΓM ), vechT (Σ),

vechT (M1), . . . , vechT (MK−1))
T = (φT

1 , . . . ,φ
T
2K+M )T , where vech is the vector

half operator of a symmetric matrix.

For the FELAD, we have vec(µk) = vec(µ) + Σ
⊗1

m=M Γmνk = vec(µ) +

Γ(
∑K

k=1 πkΩk)νk. Let αk = (
∑K

k=1 πkΩk)νk. Then, we have vec(µk) = vec(µ)+⊗1
m=M Γmαk. Thus, all the parameters can be combined into the vector ψT =

(vecT (µ), vecT (α1), . . . , vecT (αK−1), vecT (Γ1), . . . , vecT (ΓM ), vechT (Ω0)

, vechT (Ω1), . . . , vechT (ΩK))T = (ψT
1 , . . . ,ψ

T
2K+M+1)

T .

We focus on the asymptotic properties of the estimations of µ1, . . . ,µK ,Σ1,

. . . ,ΣK based on the FLAD and FELAD. Let h = (vec(µ1)
T , . . . , vec(µK)T ,

vech(Σ1)
T , . . . , vech(ΣK)T )T be the vector of parameters, and let

H =


∂h1

∂φ1
· · · ∂h1

∂φ2K+M

...
∂h2K

∂φ1
· · · ∂h2K

∂φ2K+M

 , and H1 =


∂h1

∂ψ1
· · · ∂h1

∂ψ2K+M+1

...
∂h2K

∂ψ1
· · · ∂h2K

∂ψ2K+M+1


be the gradient matrices, where hi is the ith component of h.

Let J be the Fisher information matrix for h in the full model, without any

low-rank assumption imposed on them. Then,

J = diag

{
π1Σ

−1
1 , . . . , πKΣ−1K ,

π1
2

Ep(Σ
−1
1 ⊗Σ−11 )ET

p , . . . ,
πK
2

Ep(Σ
−1
K ⊗Σ−1K )ET

p

}
,

where Ep is the linear transformation such that Epvech(Σk) = vec(Σk). Let

V0 = J−1 be the asymptotic covariance matrix of the MLE under the full model.

By the results of (Shapiro (1986)) for over-parameterized models, we have the

following proposition.
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Proposition 8. Under the FLAD model, we have

√
n(ĥFLAD − h)

D−→ N(0,V), (4.1)

where V = H(HTJH)†HT .

Under the FELAD model, we have

√
n(ĥFELAD − h)

D−→ N(0,V1), (4.2)

where V1 = H1(H
T
1 JH1)

†HT
1 . Moreover,

V
−1/2
0 (V0 −V)V

−1/2
0 = QJ1/2H ≥ 0 and V

−1/2
0 (V0 −V1)V

−1/2
0 = QJ1/2H1

≥ 0.

In the last proposition, we use the Moore-Penrose inverse in V = H(HTJH)†

HT , because H is not a full rank matrix for the over-parameterization in Γ1, . . . ,ΓM .

By equation (5.1) of Shapiro (1986), under the FLAD model assumption, the

FLAD gives the most efficient estimation, and under the FELAD model assump-

tion, the FELAD gives the most efficient estimation.

Actually, if the envelope covariance assumption (2.4) holds, using the chain

rule, we have ∂h/∂ψ = (∂h/∂φ)(∂φ/∂ψ), which can be rewritten as H1 = HG1,

where G1 = ∂φ/∂ψ. We show that V
−1/2
0 (V −V1)V

−1/2
0 = PJ1/2HQJ1/2HG1

=

QJ1/2HG1
PJ1/2H ≥ 0 in the Supplementary Material. This means that, under

model assumption (2.1) and the envelope covariance assumption (2.4), the FE-

LAD estimator has higher asymptotic efficiency than that of the FLAD.

In the following proposition, we show the robustness of the FLAD against

non-normality. Let SFLAD and SFELAD be the subspaces estimated by the FLAD

and FELAD, respectively, in the population.

Proposition 9. Suppose that the fourth moment of X exists, and that SFLAD

and SFELAD are equal to TY |X and EY |X, respectively. Then, ĥFLAD and ĥFELAD

are
√
n-consistent estimators of h.

The assumption of Proposition 9 is relatively strong by requiring that the

subspaces estimated by the FLAD and FELAD in the population are equal to

TY |X and EY |X, respectively. The following proposition states that, even without

this assumption, the FLAD still gives a
√
n-consistent estimation of at least a

portion of the dimension folding subspace TY |X.

Proposition 10. Let β be the basis matrix of SY |vec(X). If E(vec(X) | βTvec(X))

is linear in βTvec(X) and var(vec(X) | βTvec(X)) is nonrandom, then the

subspace estimated by maximizing the FLAD objective function (3.1) is a
√
n-

consistent estimator for at least a portion of the dimension folding subspace TY |X.
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5. Numerical Results

In our simulation studies, we use various SDR methods as competitors, in-

cluding the Folded-SIR, Folded-DR (Li, Kim and Altman (2010)), and (vector)

LAD (Cook and Forzani (2009)), and a very recently proposed method called

the Folded-DCOV (Sheng and Yuan (2020)), which is a moment-based dimen-

sion folding method using distance covariance. Sheng and Yuan (2020)) showed

that the DCOV outperformed two other dimension folding methods, the Folded-

MAVE (Xue and Yin (2014)) and Folded-PFC (Ding and Cook (2014)). There-

fore, in our simulations, we compare our results with those of the Folded-DCOV

only. We use the acronyms FSIR, FDR, LAD, and DCOV, respectively, for these

methods.

We compare the distance ‖PΓ̂−PΓ‖F , where the matrix norm is the Frobe-

nius norm, and the misclassification error rates for several methods. The misclas-

sification error rate is obtained by classifying a testing data set with sample size

1,000 per class using the QDA. More specifically, after obtaining the dimension

folding subspace, we train the QDA classifier using the projected training data,

and then classify the projected testing data. For the FLAD, we use the proposed

initialization method, and for the FELAD, we use the result of the FLAD as

initial value. We report the average of subspace difference and misclassification

error rates based on 100 replicates. Because the DCOV algorithm runs slowly

unless p is small, we report the results for the DCOV based on 20 replicates.

Tables 1 and 2 report the means of the distances and the misclassification error

rates for all the replicates, as well as the corresponding standard deviations (in

parentheses).

5.1. Simulation studies under FLAD and FELAD model assumptions

In this section, we consider four examples that satisfy the model assumptions

(2.1) and (2.4) for the FLAD and FELAD. In our simulation studies, n represents

the sample size per class and AR(d, ρ) represents a d× d symmetric matrix, with

the (i, j)-th entry equal to ρ|(i−j)|.

Example 1. This example is also used in Li, Kim and Altman (2010). Let

d1 = d2 = 2, and p1 = p2 = 10. The response Y is a Bernoulli random variable.

The conditional distribution of X given Y is multivariate normal with conditional

mean

E(X|Y = 1) = 0p1×p2
, E(X|Y = 2) =

(
I2 02×(p2−2)

0(p1−2×2) 0(p1−2)×(p2−2)

)
,
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and conditional variances given by

var(Xij |Y = 1) =

{
σ2, (i, j) ∈ A
1, (i, j) /∈ A,

var(Xij |Y = 2) =

{
τ2, (i, j) ∈ A
1, (i, j) /∈ A,

where σ2 = 0.1, τ2 = 1.5, and A is the index set {(1, 2), (2, 1)}. We assume that

cov(Xij ,Xi′j′) = 0 whenever (i, j) 6= (i′, j′). The dimension folding subspace is

spanned by {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}.

Example 2. In this example, the data X is correlated. Assume that p1 = p2 = 15

and d1 = d2 = 3. The number of classes is two. Let the index set A be the top

left 3× 3 block. Let E(X̃ | Y = 1) = 0, E(X̃A | Y = 2) = 1, E(X̃Ac | Y = 2) = 0,

cov(X̃A | Y = 1) = 1.5 × AR(9, 0.3), cov(X̃A | Y = 2) = 0.5 × AR(9, 0.5),

and cov(X̃Ac | Y = k) = Ip1p2−d1d2
, for k = 1, 2. Furthermore, we assume that

X̃A ⊥⊥ X̃Ac . We randomly generate two orthogonal matrices O1 ∈ Rp1×p1 and

O2 ∈ Rp2×p2 . Let X = O1X̃O2 and Γ1 = Γ2 = (e1, e2, e3). The dimension

folding subspace is spanned by O2Γ2
⊗

O1Γ1.

Example 3. In this example, the covariance matrix after the projection is sep-

arable. The model is the same as that in Example 2, except that here, the

conditional covariance matrix of XA is 0.8× AR(3, 0.2)⊗ AR(3, 0.8) for class 1,

and 1.2×AR(3, 0.7)⊗AR(3, 0.3) for class 2.

Example 4. In this example, we consider a three-way tensor data. Assume

p1 = 15, p2 = p3 = 5, d1 = 3, and d2 = d3 = 2. Let the index set A be the

first 3 × 2 × 2 block tensor. We generate data in the same way as Example 2,

except that we change the conditional covariance matrix of XA to AR(2, 0.2) ⊗
AR(2, 0.8) ⊗ AR(3, 0.5) for class 1, and to AR(2, 0.7) ⊗ AR(2, 0.3) ⊗ AR(3, 0.3)

for class 2.

The results are shown in Tables 1 and 2. For Example 1, the elements of

Xi are independent, and the covariance matrix is diagonal. The FLAD performs

best among all the methods, with the performance of the FELAD very close to

that of the FLAD. For Examples 2 and 3, the elements of Xi are correlated, and

the covariance matrix satisfies the envelope covariance structure. When n = 300,

the FELAD gives the best subspace estimation and the lowest classification error

rate. When we increase the sample size to 600, the results of all five methods

improve, but the FLAD and FELAD remain superior to the other four methods.

In Example 4, we handle a three-way tensor data. Because Li, Kim and Altman

(2010) and Sheng and Yuan (2020) did not give the explicit algorithm for a

three-way tensor case, we use the mode-1 matricization of X for the FSIR, FDR,
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Table 1. The entries are the average subspace distances ‖PΓ̂−PΓ‖F over 100 replicates,
and their standard deviations (in parentheses).

Models FSIR FDR LAD DCOV FLAD FELAD

E1
n=100 2.11 (0.27) 0.75 (0.23) 1.75 (0.20) 0.85 (0.23) 0.36 (0.05) 0.43 (0.07)

n=200 1.21 (0.21) 0.39 (0.06) 1.59 (0.04) 0.54 (0.09) 0.24 (0.03) 0.26 (0.04)

E2
n=300 3.83 (0.12) 1.08 (0.32) 3.70 (0.13) 0.72 (0.13) 0.70 (0.32) 0.67 (0.33)

n=600 3.76 (0.16) 0.60 (0.07) 2.88 (0.06) 0.58 (0.05) 0.44 (0.04) 0.37 (0.03)

E3
n=300 3.91 (0.09) 1.79 (0.47) 3.73 (0.07) 0.85 (0.11) 0.76 (0.20) 0.43 (0.21)

n=600 3.82 (0.13) 0.82 (0.08) 3.21 (0.06) 0.62 (0.11) 0.53 (0.03) 0.30 (0.03)

E4
n=300 4.59 (0.09) 4.30 (0.39) 2.84 (0.29) 1.97 (0.81) 0.61 (0.08) 0.40 (0.05)

n=600 4.36 (0.07) 2.32 (0.43) 4.32 (0.05) 1.69 (0.53) 0.41 (0.05) 0.22 (0.03)

Table 2. The entries are the average misclassification error rates over 100 replicates, and
their standard deviations (in parentheses).

Models FSIR FDR LAD DCOV FLAD FELAD

E1
n=100 25.1 (4.2) 9.5 (1.7) 46.9 (2.0) 9.0 (3.4) 6.5 (0.9) 6.7 (1.0)

n=200 12.0 (2.4) 5.7 (0.6) 25.2 (4.9) 6.4 (0.7) 5.2 (0.5) 5.2 (0.5)

E2
n=300 15.6 (0.7) 15.8 (0.7) 49.8 (0.9) 5.2 (0.8) 5.2 (0.8) 5.0 (0.7)

n=600 14.9 (0.9) 13.7 (0.8) 32.2 (1.3) 4.5 (0.5) 4.5 (0.5) 4.4 (0.5)

E3
n=300 22.3 (1.2) 10.5 (1.3) 44.2 (1.4) 9.8 (0.8) 8.3 (0.7) 7.6 (0.6)

n=600 21.3 (1.3) 7.8 (0.6) 28.4 (1.6) 8.1 (0.7) 7.3 (0.6) 7.1 (0.6)

E4
n=300 21.3 (3.3) 21.8 (1.1) 48.2 (2.0) 10.1 (6.0) 7.3 (0.6) 7.0 (0.6)

n=600 19.6 (1.0) 8.6 (0.7) 39.9 (1.6) 8.8 (0.9) 6.7 (0.6) 6.5 (0.6)

Table 3. The number of correct BIC dimension selections out of 100 replicates.

FLAD FELAD FLAD FELAD

E1
n=100 100 100

E2
n=300 100 100

n=200 100 100 n=600 100 100

E3
n=300 19 8

E4
n=300 53 66

n=600 100 100 n=600 100 100

and DCOV. Our methods, especially the FELAD, perform much better than the

FSIR, FDR and DCOV, because they are likelihood-based, which means they

have high asymptotic efficiency, and because FELAD takes advantage of the

envelope structure, which further improves the efficiency. Table 3 shows that the

BIC works well for sufficiently large sample sizes.
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Figure 2. Box plots for the subspace distances of Example 5 based on 100 replicates.

5.2. Simulation studies under violation of model assumption

In this subsection, we aim to show the performance of the proposed methods

when the model assumptions are violated. In Example 5, the envelope covariance

assumption (2.4) is violated; in Example 6, we consider a more general case when

the normal assumption (2.1) is violated. We continue to use the subspace distance

‖PΓ̂ −PΓ‖F as the measure of performance.

Example 5. This example shows the performance of FELAD when the envelope

covariance structure is violated. We set p1 = p2 = 15 and d1 = d2 = 3. The

data are generated from a normal distribution. We set E(X | Y = 1) = 0,

E(XA | Y = 2) = 1, and E(X̃Ac | Y = 2) = 0. The conditional covariance matrix

of X is set to AR(p − d, 0.3), except the first 3 × 3 block, which is chosen as

1.5×AR(9, 0.3) for class 1, and as 0.5×AR(9, 0.5) for class 2.

Example 6. This example intends to show the robustness of the FLAD and

FELAD when the normal assumption is violated. We consider a forward re-

gression model, where we first generate n i.i.d. samples Xi ∈ R10×10, then

generate Yi from a Bernoulli distribution with probability p(Xi). The vector-

ization of the first 2 × 2 block of X follows a multivariate t-distribution with

mean zero and scale parameter AR(4, 0.5). The other elements of X are gen-

erated from a χ2-distribution with four degrees of freedom. The link func-

tion is chosen as p(X) = logit{2 sin(X11π/4) + 2X2
21 + 2X3

12 + 2X4
22}, where

logit(x) = 1/{1 + exp(−x)}.

Figure 2 shows the results of Example 5. Though the envelope covariance

assumption is violated, the FELAD still performs as well as the FLAD, which
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Figure 3. Box plots for the subspace distances of Example 6 based on 100 replicates.

demonstrates its robustness against the violation of the envelope covariance as-

sumption. Example 6, where the normal assumption (2.1) is violated, is the most

challenging one among all the examples. Figure 3 shows the results for Example

6. Owing to the heavy tail of the data and the violation of the model assumption,

the FLAD and FELAD give some bad estimates, but are still much better than

the other methods, especially when n = 600.

5.3. Gene time course data

This data set concerns clinical responses to treatment for multiple sclero-

sis (MS) patients based on gene expression time course data. The data were

originally described in Baranzini et al. (2005). Fifty-three patients were given

recombinant human interferon beta (rIFNβ), which is often used to control the

symptoms of MS. Gene expressions were measured for 76 genes of interest be-

fore treatment (baseline) and at six follow-up time points over the subsequent

two years (3 months, 6 months, 9 months, 12 months, 18 months, 24 months),

yielding matrix data genes× times. Afterward, patients were classified as good

responders or poor responders to rIFNβ based on their clinical characteristics.

There were 20 good responders and 33 poor responders in the 53 patients. The

dimension for this data set is 76×7. Using the BIC, we select d1 = 1 and d2 = 1.

We first use different dimension reduction methods, including the FSIR,

FDR, FLAD, and FELAD to estimate the dimension folding subspace. Then,

we apply the LDA and QDA separately to the projected data. For the QDA, the

variance of the projected data of one class is very small, so we add the constant

0.1 to the variances of both classes to make the QDA more stable. This process
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Table 4. Top15 selected genes based on the FLAD and FELAD for gene time course
data, ordered from top-left to bottom-right.

Selected Genes

FLAD

p53 RIP STAT4 CD28 Caspase4

STAT6 FLIP CD44 IL-10 IFNaR1

NFATC2(b) cMAF ITGA RANTES CD86

FELAD

p53 RIP STAT4 STAT6 CD44

FOS CD28 ITGA FLIP STAT1

Caspase4 CD44 CD86 IL-4Ra IFN-gRa

Table 5. Misclassification error rates for the gene time course data.

F-SIR F-DR FLAD FELAD DWD

LDA 0.371 (0.077) 0.351 (0.074) 0.131 (0.041) 0.139 (0.043)
0.174 (0.037)

QDA 0.406 (0.079) 0.355 (0.075) 0.111 (0.034) 0.127 (0.035)

can be seen as a regularized discriminant analysis (Friedman (1989)). We use

five-fold cross-validation to get the misclassification error rate. The results are

shown in Table 5. We also report the cross-validation misclassification error rate

of the DWD proposed by Lyu, Lock and Eberly (2017), which is itself a discrim-

inant method. The FLAD and FELAD perform better than the other methods

in terms of the misclassification error rate for this data set.

In Figure 4, we show the coefficients of the basis matrices estimated by the

FLAD and FELAD. The top15 genes with the largest absolute values of the

coefficients are shown in Table 4. The coefficients across time for the FLAD and

FELAD have little variability and no noticeable patterns. This suggests that the

distinction between good and poor responders is not driven by changes to the

gene expressions in response to IFNβ, but by the baseline differences in the gene

expressions. This agrees with the results in Baranzini et al. (2005) and Lyu, Lock

and Eberly (2017).

To see how the envelope covariance structure works for this data set, we

calculate the correlations between the data projected onto the FLAD directions

and the data projected onto the orthogonal directions. If the envelope covariance

structure (2.4) is true, then these two parts are uncorrelated. Figure 5 shows

the histogram of the correlations. We find that most of the correlations are

smaller than 0.2, the peak of the histogram is smaller than 0.2, and the largest

correlation is smaller than 0.5, all of which show weak dependence between the

parts. Therefore the envelope covariance assumption is approximately true for

this data, and we can expect the FELAD to perform well.



2426 WANG, ZHANG AND LI

−

− 0.0

0.1

0.2

0.3

0.4

0.5

2 4 6
Times

C
oe

ff
ic

ie
nt

s

FLAD coefficients (Times)

−

− 0.0

0.1

0.2

0.3

0.4

0.5

2 4 6
Times

C
oe

ff
ic

ie
nt

s

FELAD coefficients (Times)

Figure 4. Coefficients of basis matrices for gene time course data. The top row is based
on the FLAD, and the bottom row is based on the FELAD.
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Figure 5. Gene time course data: Histogram for the absolute value of the correlations
between data projected onto the FLAD directions and onto the orthogonal directions.

6. Discussion

We have developed two likelihood-based dimension folding methods for tensor

analysis: the FLAD and the FELAD. The FLAD extends the general dimension

folding method to a likelihood-based method. The FELAD assumes a more ex-

plicit form of covariance that is commonly used in the envelope models. As a

result, the FELAD is able to further reduce the number of free parameters in the

dimension folding model. The encouraging performance of these two methods is
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demonstrated using both theoretical and numerical studies. The large covariance

matrix Σk in the objective function is a computational bottleneck in our meth-

ods for high-dimensional data. As a future research direction, simpler and more

restrictive structures for these covariance matrices, such as a spiked covariance,

can be used for high-dimensional data. We have shown in our theoretical studies

that the normality assumption in the FLAD and FELAD models is not crucial

for consistent estimation of the dimension folding subspace. This illustrates the

robustness of our proposed methods. Future research could further relax the

normality assumption to elliptical contoured, but potentially heavy-tailed distri-

butions. Whereas the LAD was developed in the regression context, our FLAD

and FELAD methods focus more on discriminant analysis. Nonetheless, the

methods are equally applicable to regression problems. In the Supplementary

Material, we included data on primary biliary cirrhosis to illustrate our methods

for a continuous response Y .

Supplementary Material

The online Supplementary Material contains proofs of all theoretical results,

technical details of the algorithm, and additional real data analysis.
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