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S1 Proofs

Proof of Theorem 1: Let ϕ̂ω = 1
n

∑n
k=1 e

iωTykxk, ϕω = E(eiω
TYX),

Cω = E(eiω
TY), Ĉω = 1

n

∑n
k=1 e

iωTyk , and zk = Σ−1/2(xk − µ). We need a

lemma in Li et al. (2003), that is

Σ̂−1 − Σ−1 = −n−1Σ−1/2

n∑
k=1

(zkz
T
k − I)Σ−1/2 +Op(n

−1).

We consider

√
n(ξ̂ω − ξω) =

√
nΣ̂−1(ϕ̂ω − Ĉωx̄)−

√
nΣ−1(ϕω −Cωµ)

=
√
n(Σ̂−1 − Σ−1)(ϕω −Cωµ)

+
√
nΣ−1[(ϕ̂ω − Ĉωx̄)− (ϕω −Cωµ)] +Op(n

−1/2).

(S1.1)
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The first term can be written as:

√
n(Σ̂−1 − Σ−1)(ϕω −Cωµ) = −n−1/2Σ−1/2

∑n
k=1(zkz

T
k − I)Σ−1/2(ϕω −Cωµ) +Op(n

−1/2)

= −n−1/2Σ−1/2
∑n

k=1(zkz
T
k − I)E(eiω

TYZ) +Op(n
−1/2).

(S1.2)

Then

ϕ̂ω − Ĉωx̄ = 1
n

∑n
k=1 e

iωTykxk − 1
n

∑n
k=1 e

iωTyk x̄

= 1
n

∑n
k=1(eiω

Tyk − Eeiω
TY)(xk − µ)− 1

n
(x̄− µ)

∑n
k=1(eiω

Tyk − Eeiω
TY)

= 1
n

∑n
k=1(eiω

Tyk − Eeiω
TY)(xk − µ) +Op(n

−1).

Therefore, the second term can be simplified as

√
nΣ−1[(ϕ̂ω − Ĉωx̄)− (ϕω −Cωµ)] = n−1/2Σ−1/2

∑n
k=1[Σ−1/2(eiω

Tyk − Eeiω
TY)(xk − µ)]

−
√
nΣ−1(ϕω −Cωµ) +Op(n

−1/2)

= n−1/2Σ−1/2
∑n

k=1[zk(e
iωTyk − Eeiω

TY)− E(eiω
TYZ)]

+Op(n
−1/2).

(S1.3)

Then we put equations (S1.2) and (S1.3) into (S1.1):

√
n(ξ̂ω − ξω) = n−1/2Σ−1/2

∑n
k=1[zk(e

iωTyk − Eeiω
TY)− E(eiω

TYZ)− (zkz
T
k − I)E(eiω

TYZ)]

+Op(n
−1/2)

= n−1/2Σ−1/2
∑n

k=1{zk[eiω
Tyk − Eeiω

TY − zTkE(eiω
TYZ)]}+Op(n

−1/2)

= n−1/2Σ−1/2
∑n

k=1 zkεω,k +Op(n
−1/2),

where εω,k = eiω
Tyk−Eeiω

TY−zTkE(eiω
TYZ). Let εk = (εRω1,k

, εIω1,k
, ..., εRωm,k

, εIωm,k
)T
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with k = 1, ..., n. Then we have
√
n[vec(ξ̂)−vec(βν)] = n−1/2

∑n
k=1(Σ−1/2zkε

T
k )+

Op(n
−1/2). Thus

√
n[vec(ξ̂)− vec(βν)]

D→ N(0,Γ),

where Γ = Cov[vec(Σ−1/2ZεT )] ∈ R2pm×2pm. �

Proof of Theorem 2: Because Γ̂ converges to Γ in probability, the

asymptotic distribution of nF̂d is the same as that of nĤd using Lemma A.3

of Cook and Ni (2005), where Hd(B,C) = [vec(ξ̂)−vec(BC)]TΓ−1[vec(ξ̂)−

vec(BC)]. We use one full-rank reparameterization of (β, ν). Let β =

(βT1 , β
T
2 )T , where β1 = Id ∈ Rd×d and β2 ∈ R(p−d)×d. The new parame-

terization brings a full-rank Jacobian matrix and an open parameter space

in Rd(2m+p−d).

Let θ = (vec(B)T , vec(C)T )T ∈ Rd(p+2m) θ0 = (vec(β)T , vec(ν)T )T ,

g(θ) = vec(BC) ∈ R2pm, and g(θ0) = vec(βν). Then ∆ = ∂
∂θ
g(θ)|θ=θ0 =

(νT ⊗ Ip, I2m⊗ β). Based on Proposition 3.1 in Shapiro (1986) by checking

all the condistion for θ0 and discrepancy function Hd, nĤd
D→ χ2

k. Here

k = 2pm− rank(∆) and rank(∆) = d(2m+ p− d), so k = (2m− d)(p− d).

The conclusion 2 is then proved. Also, g(θ) is one-to-one, bicontinuous, and

twice continuously differentiable function. Based on Lemma A.4 in Cook

and Ni (2005) and Theorem 1, we can get
√
n(θ̂−θ0)

D→ N(0, (∆TΓ−1∆)−),
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and

√
n[vec(β̂ν̂)− vec(βν)]

D→ N(0,∆(∆TΓ−1∆)−∆T ).

Finally, consistency of Span(β̂) follows directly from conclusion 1. �

Proof of Theorem 3: Follow the proof in Appendix D in Cook and

Ni (2005). Let V = Γ−1
D = diag{Γ−1

l } and Vn = Γ̂−1
D = diag{Γ̂−1

l }. The

discrepancy function Fd(B,C, Γ̂
−1
D ) can be written as

Fd(B,C;Vn) = [vec(ξ̂)− vec(BC)]TVn[vec(ξ̂)− vec(BC)].

First, the consistent property can be derived as Theorem 2. Then, nF̂d

is asymptotically distributed as a linear combination of independent chi-

squared random variables each with one degree of freedom. The coefficient

of the chi-squared variables are the eigenvalues of QΦΩQΦ, where Ω =

V 1/2ΓV 1/2 and Φ = V 1/2∆. The dimension of dim(QΦΩQΦ) =dim(QΦ) =

2pm−dim(∆) = (p − d)(2m − d), which is the number of terms in linear

combination. �

Proof of Lemma 1: First, we know that Span(β̂) is a consistent

estimator of
∑m

j=1 Span{ξj} by Theorem 3 Part 1. Under coverage con-

dition,
∑m

j=1 Span{ξj} ⊆ SY |X. Second, under the linearity condition,

Span(û1, · · · , ûd) ⊆ SY |X. All the spaces: Span(β̂), Span(û1, · · · , ûd), and

SY |X have dimension d. Hence, Span(β̂) ⊆ Span(û1, · · · , ûd). �

Proof of Theorem 4: The Proof of this theorem is similar to that of
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Theorem 3, by replacing V = diag{Σ} and V̂ = diag{Σ̂}. �

S2 Additional Algorithm and Simulations

S2.1 Detailed Algorithm for FT-IRE

1. Choose an initial value for B ∈ Rp×d. One of the choices could be ei =

(0, ..0, 1, 0, ..0)T with ith place 1 and other places 0s. Alternatively, we

use the spectral decomposition result from FT (Weng and Yin, 2018).

2. Fixed B, update C by minimizing Fd(B,C;V ). We fit linear regression

V 1/2vec(ξ̂) on V 1/2(I2m ⊗ B), then vec(C) = [(I2m ⊗ BT )V (I2m ⊗

B)]−1(I2m ⊗BT )V vec(ξ̂).

3. Fixed C, minimize Fd(B,C;V ) with respect to one column of B, sub-

ject to unit norm and orthogonal to other columns (keeping them

constants). For this partial minimization problem, the quadratic dis-

crepancy function is F (b) = (αk − (cTk ⊗ Ip)QB(−k)
b)TV (αk − (cTk ⊗

Ip)QB(−k)
b), where αk = vec(ξ̂ − B(−k)C(−k)), ck is kth column of C,

C(−k) (or B(−k)) are deleting kth column from C (or B) and QB(−k)
is

orthogonal complement of Span(B(−k)). For k = 1, ..., d:

(a) DenoteB = (b1, ..., bk−1, bk, bk+1, ..., bd) and update b̂k = QB(−k)
[QB(−k)

(cTk⊗

Ip)V (cTk ⊗Ip)QB(−k)
]−QB(−k)

(cTk ⊗Ip)Vαk, then normalize b̂k using
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b̂k/||b̂k||.

(b) Update B by replace bk with b̂k and update C like step 2.

4. Return to step 3 until max{|B(t+1) −B(t)|2, |C(t+1) − C(t)|2} < 10−6..

S2.2 Other simulation results

In Model 1, we consider three other different ways to calculate the preci-

sion matrix of Γ: the QL decomposition of sample covariance Γ̂ (Figure

S2.1), the generalized inverse of sample covariance Γ̂ (Figure S2.2), and

the generalized inverse of soft-thresholding covariance Γ̃ (Figure S2.3). The

soft-thresholding covariance (Figure 1) approach produces higher accuracy

and more stable r2 values than the sample covariance Γ̂ (Figures S2.1 and

S2.2 in Section S2.2). The generalized inverse matrix results in less accu-

rate estimates, especially for sub-optimal estimators (Figure S2.3 in Section

S2.2). Thus, we use QL decomposition of soft-thresholding covariance to

present our results.

For Model 2, we also present same results when m = 6, 10, 16 in Figure

S2.4.

In addition to the results in Model 3, we add FT-DIRE and FT-DRIRE

into our analysis in Figure S2.5 and don’t recommend using the degener-

ated estimators to detect structural dimension and predictor hypothesis
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tests. Also, we compare QL decomposition of soft-thresholding covariance

with two other different methods in calculating inverse matrices of Γ, that is

generalized inverse matrix of sample covariance matrix (GI) and generalized

inverse matrix of soft-thresholding covariance (GS), while fixing the sample

size n = 500 and varying the number of Fourier transforms varies among

{2, 4, ..., 40} (Figures S2.6 and S2.7). Also, the results in Figures S2.6 and

S2.7 support our conclusion that FT-IRE and FT-RIRE with the QL de-

composition soft-thresholding covariance have the highest percentages even

when m is small.

S2.3 Real data results

For the realdata analysis, Table S2.1 shows the respective estimates from

SIR, IRE, FIRE, DIRE, FT-IRE, and FT-DIRE. To evaluate the accuracy,

we plot six scatter plots using the first six reduced predictors (βT1 X) from

these methods versus the outcome in the first and second rows of Figure

S2.8, revealing that the variables found by our proposal have a stronger

linear association with the response. We also present the second reduced

predictors (βT2 X) versus the outcome for IRE, FIRE, and DIRE in the last

row of Figure S2.8, indicating that the second reduced predictors do not

provide meaningful information.
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(c) Example 1.3
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(d) Example 1.4

Figure S2.1: Using QL decomposition of sample covariance Γ̂: Mean values of r2 over

100 simulated data vs. different sizes of ω: {2, 4, ..., 40} in Model 1.
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(d) Example 1.4

Figure S2.2: Using generalized inverse matrix of sample covariance matrix: Mean values

of r2 over 100 simulated data vs. different sizes of ω: {2, 4, ..., 40} in Model 1.
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Figure S2.3: Using generalized inverse matrix of soft-thresholding covariance Γ̃: Mean

values of r2 over 100 simulated data vs. different sizes of ω: {2, 4, ..., 40} in Model 1.
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Figure S2.4: Mean values of r2 over 100 simulated data vs. sample sizes from 100 to 800

at increments of 100 in Model 2.
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Figure S2.5: Percentages of correctly detecting dimensions (d = 2) over 100 simulated

data vs. sample sizes n: {100, ..., 1000} in Model 3.
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(b) Example 3.2
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(c) Example 3.3
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(d) Example 3.4

Figure S2.6: Percentages of correctly detecting dimensions (d = 2) over 100 simulated

data vs. m: {2, 4, ..., 40} in Model 3 using generalized inverse matrix of sample covariance

matrix.
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(b) Example 3.2

10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of ω

C
or

re
ct

 P
er

ce
nt

ag
es

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

FT
FT−IRE
FT−SIRE
FT−RIRE
FT−IRE−GS
FT−SIRE−GS
FT−RIRE−GS

(c) Example 3.3
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(d) Example 3.4

Figure S2.7: Percentages of correctly detecting dimensions (d = 2) over 100 simulated

data vs. m: {2, 4, ..., 40} in Model 3 using generalized inverse matrix of soft-thresholding

covariance.
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S2. ADDITIONAL ALGORITHM AND SIMULATIONS

We also conduct similar simulations using the SIR estimate with d = 1,

then fit a simple linear model, resulting in σ̂ and Ŷ = α1X
∗
1 . Again, we

generate 100 data sets from the model Y = Ŷ + ε with different sample

sizes 50, 100, 200, and 400, where ε ∼ N(0, σ̂). In Table S2.2, it is not

surprising that SIR is the best but Fourier transform approaches are very

close to SIR, and they all have higher accuracy compared to IRE, FIRE,

and DIRE.

Table S2.1: The estimation using IRE, FIRE and DIRE with d = 2 and SIR, FT-IRE,

and FT-DIRE with d = 1.

Var. IRE1 IRE2 FIRE1 FIRE2 DIRE1 DIRE2 SIR FT-IRE FT-DIRE

lcavol -0.8857 -0.1424 0.7929 0.1161 0.0870 0.2186 0.5726 -0.5745 -0.6007

lweight -0.2979 0.3025 0.3064 0.2752 0.1059 0.3851 0.4973 -0.4929 -0.5351

age -0.0236 -0.1188 -0.0383 0.0549 -0.0141 0.0735 -0.0183 0.0175 0.0160

lbph -0.1451 0.5337 0.1193 -0.0712 0.0884 -0.1808 0.1187 -0.0878 -0.1011

svi -0.2232 -0.4763 0.3835 -0.6643 0.9843 -0.0004 0.6157 -0.6053 -0.5309

lcp -0.0322 -0.0071 -0.2822 0.1245 0.0355 0.1280 -0.1559 0.1961 0.1730

gleason -0.1757 0.5658 -0.1854 -0.6677 0.0543 -0.8656 0.0829 -0.1183 -0.1747

pgg45 0.1535 0.2054 0.0233 0.0124 0.0081 0.0107 0.0087 -0.0077 -0.0083
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Figure S2.8: Scatter plots of βT
1 X vs. Y (the first two rows) and scatter plots of βT

2 X

vs. Y (the third row).
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Table S2.2: Comparing six methods using SIR estimation with d = 1.

n Criteria IRE FIRE DIRE SIR FT-IRE FT-DIRE

50 MSE 1.0500 1.0171 1.0027 0.6756 0.6800 0.6680

r2 0.4616 0.4314 0.4421 0.8755 0.8627 0.8701

Norm 1.1986 1.209 1.1999 0.6228 0.6235 0.6259

100 MSE 1.0109 0.944 0.8591 0.6735 0.6755 0.6720

r2 0.4671 0.4864 0.6475 0.9248 0.9097 0.9092

Norm 1.1930 1.1603 0.9952 0.4959 0.5275 0.5270

200 MSE 1.0150 0.7662 0.7646 0.6807 0.6901 0.6839

r2 0.5251 0.7106 0.7544 0.9653 0.9319 0.9508

Norm 1.1408 0.8899 0.8391 0.3447 0.4489 0.4051

400 MSE 1.0281 0.7249 0.7275 0.6831 0.6963 0.6884

r2 0.4635 0.8123 0.8522 0.9830 0.9511 0.9605

Norm 1.1962 0.7804 0.6959 0.2391 0.3663 0.3519
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