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Abstract: We propose an optimal family of estimators in sufficient dimension re-

duction using a Fourier transform based on a quadratic discrepancy function. Our

proposed approach has advantages over existing methods in that it avoids the slicing

scheme of a response variable and easily handles multivariate responses. We further

develop four sub-optimal estimators: degenerated and special estimators for com-

putational efficiency and simplicity, and robust and its degenerated estimators for

a less restrictive condition for estimation and inference. Marginal and conditional

hypothesis tests for the predictors and dimensions are also obtained. Simulation

studies and a real-data analysis illustrate the efficacy of our proposed methods.

Key words and phrases: Fourier transform, minimum discrepancy, sufficient dimen-

sion reduction.

1. Introduction

With the recent development in data collection and storage techniques, re-

searchers can now use data with huge volume and high dimension to build eco-

nomic models and create advanced visualization tools. It is easier to achieve these

goals if we can obtain a low-dimensional function of the predictor associated with

the response variable. This study focuses on sufficient dimension reduction (SDR;

Li (1991); Cook (1996)), a model-free approach. It preserves complete regression

information, making it attractive to researchers wanting to build a parsimonious

model.

SDR considers a regression of q × 1 response Y given a p × 1 predictor

X. It aims to find a dimension reduction matrix β ∈ Rp×d(d ≤ p) such that

the reduced variables βTX retain complete regression information. Matrix β

may not be identifiable, but the space spanned by the columns of β, known

as the dimension reduction subspace and denoted as Span(β), is identifiable.

To achieve the uniqueness and minimum of the subspace, we study the central
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subspace SY|X, which is the intersection of all dimension reduction subspaces if

the intersection itself is a dimension reduction subspace. Under mild conditions,

(Cook (1996); Yin, Li and Cook (2008)), the central subspace exists and is unique.

The sliced inverse regression (SIR; Li (1991)) and sliced average variance es-

timation (SAVE; Cook and Weisberg (1991)) were the first two methods proposed

for SDR. The main idea of SIR and SAVE is to identify a dimension reduction

kernel matrix, using its eigenvectors and structural dimension, say, d, to estimate

the central subspace. Motivated by these two methods, other dimension reduc-

tion kernel matrices have been proposed (Cook (1998a); Chiaromonte, Cook and

Li (2002); Ye and Weiss (2003); Li and Wang (2007); Wang and Xia (2008)).

With regard to the statistical inference, Cook (2004) studied hypothesis tests

of the effectiveness of selected predictors in regression. Along with this idea,

Cook and Ni (2005) introduced a novel optimal estimator based on the minimum

discrepancy function (IRE). Since then, numerous IR-based methods have been

applied to SDR problems (Cook and Ni (2005); Ni and Cook (2007); Cook and

Zhang (2014); Qian, Ding and Cook (2019)).

Extending SDR methods to the case of a multivariate response is challeng-

ing, because it encounters the curse of dimensionality (Cook and Setodji (2003);

Saracco (2005); Yin and Bura (2006)). Here, the merit of a Fourier transform

(FT) has gained researchers’ attention, especially for multivariate responses (Zhu

and Zeng (2006); Zhu, Zhu and Wen (2010)). Weng and Yin (2018) examined

the FT in various scenarios, along with the partial SDR (Chiaromonte, Cook and

Li (2002); Li, Zha and Chiaromonte (2005)) and sequential SDR (Yin and Hilafu

(2015)).

In this paper, we propose a novel family of optimal estimators that optimize

the quadratic function using an FT approach. Our proposal differs from past

methods in at least three aspects. First, the minimum discrepancy with an FT

has not been discussed in the literature before. Our work fills this gap. Here,

we explore an optimal estimator in SDR problems, as well as four sub-optimal

estimators: “degenerated,” “special,” “robust,” and “degenerated robust.” The

degenerated and special estimators are more computationally efficient after sim-

plifying the calculation of the precision covariance matrix. Furthermore, the

robust and its degenerated estimator only require second moments of the predic-

tor in the estimation and inference procedures. Second, we provide an overall

view of the minimum discrepancy with FT approach in SDR by investigating the

conditional and marginal hypothesis tests to identify the structural dimensions

and the significance of the predictors. Lastly, we discuss the singularity of the

limiting covariance matrix when repeated information occurs. We also compare
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two approaches to estimate the precision matrix and, at the same time, maintain

the asymptotic efficiency and chi-squared test statistics.

The rest of the paper is organized as follows. We review the FT approach

and construct a minimal discrepancy approach with an FT in Section 2. The

four sub-optimal estimators are described in Section 3. In Section 4, simulation

studies and a real-data analysis are presented to support our theoretical analysis.

We conclude with a discussion in Section 5. All proofs, unless otherwise stated,

and addition simulation results are provided in the Supplementary Material.

2. Optimal Estimator with an FT

In this section, we introduce a new optimal family of minimum discrepancy

with FT approach in SDR and discuss its related properties.

2.1. FT via kernel matrix

Suppose matrix β ∈ Rp×d is a basis of the central subspace, where d is

the structural dimension. Define Y ⊥⊥ X as Y is statistically independent of

X. Our goal is to estimate β such that βTX fully describes the conditional

distribution of Y given X. The following properties about the central subspace

SY|X = Span(β) ensure the above goal is feasible (Cook (1998b); Cook and Zhang

(2014)): Y ⊥⊥ X|βTX ⇐⇒ X|(Y, βTX) ∼ X|βTX ⇐⇒ Y|X ∼ Y|βTX. These

properties show that using βTX as reduced new variables to fit a regression model

is sufficient and efficient.

The inverse, forward, and joint approaches have been developed for SDR

to solve β. The inverse approach uses the regression of X on Y. One way is

to estimate E(X|Y) and to categorize Y by slicing, for example, the SIR (Li

(1991)). In this study, we focus on the inverse approach using an FT (Zhu, Zhu

and Wen (2010); Weng and Yin (2018)).

Let X0 = X − E(X) and Σ be the covariance matrix of X. The FT of

E(X0|Y)f(Y) giving a frequency ω ∈ Rq is

φ(ω) =

∫
eiω

TYE(X0|Y)f(Y)dY = E(eiω
TYX)− E(eiω

TY)E(X),

where f(Y) is the marginal density of Y. Under the well-known linearity condi-

tion E(X|βTX) is a linear function of βTX, both the real and imaginary parts of

Σ−1φ(ω) are in the central subspace. It can be shown that if X has an elliptically

contoured distribution, then the linearity condition is satisfied (Li (2018)). The

linearity condition ensures Span{Σ−1E(eiω
TYX0),ω ∈ Rq} ⊆ SY|X. To facilitate
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the discussion, we use the commonly assumed coverage condition (Cook and Ni

(2005); Li and Wang (2007)) Span{Σ−1E(eiω
TYX0),ω ∈ Rq} = SY|X, which

enforces the equality of two subspaces.

The φ(ω) is superior to existing inverse regression approaches in three ways:

(1) estimating E(eiω
TYX) avoids a slicing scheme of Y; (2) the FT can easily deal

with a multivariate response, because ωTY transforms a multivariate response

to a scalar; and (3) one ω provides two vectors in the central subspace: the real

part Σ−1E[cos(ωTY)X0], and the imaginary part Σ−1E[sin(ωTY)X0].

Zhu, Zhu and Wen (2010) and Weng and Yin (2018) constructed the following

kernel matrix using φ(ω) to estimate a basis of SY|X:{
Σ−1E[cos(ωTY)X0], Σ−1E[sin(ωTY)X0], ω ∈ Rq

}
.

The matrix that consists of the eigenvectors corresponding to its largest d eigen-

values is one estimate of the basis of SY|X.

2.2. The choice of ω

We randomly generate ω from N(0, (sπ2/E(YTY))I) satisfying P (|ωTY| >
π) ≤ s, meaning that the probability of obtaining repeated information is less

than s. Random generation makes it possible to recover all potential directions

in the central subspace. Similar ideas have been implemented to deal with mul-

tivariate responses in SDR. For example, Li, Wen and Zhu (2008) introduced a

projective resampling method based on tTY , where t is generated uniformly from

a unit sphere.

Based on the simulation study presented in Zhu, Zhu and Wen (2010), the

estimator has stable and satisfactory performance when 0.02 < s < 0.30. The

effect of s is empirically insensitive to the estimation. We choose a moderate

value, 0.1, such that the probability of providing additional information in re-

covering the central subspaces is greater than 0.9. Other than the s value, ω

is determined by the magnitude of YTY. If the variance of ω is too small, the

subspace Span{Σ−1E(eiω
TYX0) : ω ∈ Rq} is close to the null space and will miss

some directions in the central space. To avoid extreme response values, we sug-

gest that if the ratio of the sample mean of YTY to its sample median is greater

than a threshold value, say 100, then use the sample median; otherwise, use the

mean. For instance, the models Y = exp(XTβ) + ε and Y = 1/XTβ + ε have

more extreme Y values or outliers, so using the median is preferable.

Here, ω is a tuning parameter in the Fourier transformation. Weng and Yin

(2018) showed that a finite and large enough number of ω is sufficient to recover
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the central subspace, and suggested that moderate m suffices to have excellent

performance. Our limited simulation supports that the proposed methods are

insensitive to the choice of ω when the number is sufficient.

2.3. FT via the minimum discrepancy function

Previously, we reviewed the FT approach based on a kernel matrix apply-

ing a singular value decomposition. However, this estimator can be obtained

as a special case via the minimum discrepancy function (MDF, Cook and Ni

(2005); Cook and Zhang (2014)). The MDF is the minimization of a quadratic

discrepancy function characterizing the difference between the sample and the

population values. Cook and Ni (2005) proposed the asymptotic optimal inverse

regression estimator (IRE); however, it relies on a slicing scheme of Y. Cook

and Zhang (2014) reduced the complexity of choosing a good slicing scheme by

introducing fusing methods (FIRE and DIRE). These methods still suffer from

the curse of dimensionality when the response is multivariate. Now, we follow

the framework of Cook and Ni (2005) and Cook and Zhang (2014) to generalize

the FT via the MDF.

Suppose the size of ω is m, and {ωj}mj=1 is generated as in the previous

section. Let ξj = Σ−1[E(eiω
T
j YX)− E(eiω

T
j Y)E(X)] ∈ Cp. Let the indices R and

I represent the real and imaginary parts, respectively, of a complex vector, and

let ξ = (ξRj , ξ
I
j )
m
j=1 denote a matrix combining each ξRj and ξIj . The working

meta-parameter is defined as Sξ =
∑m

j=1 Span(ξRj , ξ
I
j ). Note that β is a basis of

Sξ under the coverage condition; thus, there exists a vector γj ∈ Cp such that

ξj = βγj , for each j. Let ν = (γRj ,γ
I
j )mj=1 be the matrix combining each γRj and

γIj . Thus, ξ = βν.

The corresponding sample values can be achieved using the sample mean.

Suppose {yi,xi}, for i = 1, . . . , n, are independent and identically distributed

(i.i.d.) samples of (Y,X), and x̄ and

ξ̂j = Σ̂−1

(
1

n

n∑
k=1

eiω
T
j ykxk −

1

n

n∑
k=1

eiω
T
j yk x̄

)

denote the sample mean of X and the sample estimate of ξj , respectively. Then,

ξ̂ = (ξ̂Rj , ξ̂
I
j )
m
j=1 is a sample estimate of ξ, and we define the FT quadratic dis-

crepancy function (QDF) of B ∈ Rp×d and C ∈ Rd×2m, given the inner product

matrix V , as:

Fd(B,C;V ) = [vec(ξ̂)− vec(BC)]TV [vec(ξ̂)− vec(BC)]. (2.1)
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The minimization (β̂, ν̂) = argminFd(B,C;V ) is the estimate β̂, an orthogonal

basis of the central subspace, and the coordinates ν̂ of ξ̂ relative to the basis β̂.

We discuss the choice of the inner product matrix V , which may lead to different

estimators, and show the respective asymptotic properties of the estimates.

2.4. Properties of the FT inverse regression estimator

Note that ξ̂ is a matrix; therefore, the vectorization of ξ̂, vec(ξ̂), is employed

in deriving the asymptotic theorem. Define Z = Σ−1/2(X − µ). Although we

start with X, in proving or stating the final result, we may use Z for simple

presentations. As a result, the following theorem is fundamental and important.

Theorem 1. Assume that {yk,xk}, for k = 1, . . . , n, are random samples of

(Y,X) with finite fourth moments. Let εj = eiω
T
j Y − Eeiω

T
j Y − ZTE(eiω

T
j YZ)

be the population residual from an ordinary least squares fit of eiω
T
j Y on Z, and

ε =
(
εR1 , ε

I
1, . . . , ε

R
m, ε

I
m

)T
consist of real and imaginary parts. Then,

√
n[vec(ξ̂)− vec(βν)]

D→ N(0,Γ),

where Γ = Cov{vec[Σ−1/2ZεT ]} ∈ R2pm×2pm.

When minimizing the QDF using the information matrix V = Γ−1, the es-

timate β̂ is called the FT Inverse Regression Estimator (FT-IRE). To prove the

asymptotic distribution of the MDF, there are two basic assumptions: 1) the

identifiability of the parameters θ = (vec(β)T , vec(ν)T )T , and 2) the nonsingu-

larity of the information matrix corresponding to g(θ) = vec(βν). Our models

suffer from redundant parameters, so these two assumptions are violated. Based

on Shapiro (1986), we can still derive an asymptotic chi-squared distribution of

the MDF test statistics and an asymptotic distribution of the MDF estimators if

Γ is invertible. The limiting covariance matrix in Theorem 1 can be written as

Cov{vec[Σ−1(X− µ)εT ]} = Cov[vec(Σ−1/2ZεT )]

= Cov[(I2m ⊗ Σ−1/2)vec(ZεT )]

= (I2m ⊗ Σ−1/2)Cov[vec(ZεT )](I2m ⊗ Σ−1/2)

= (I2m ⊗ Σ−1/2)E(εεT ⊗ ZZT )(I2m ⊗ Σ−1/2).

Note that ε is uncorrelated with Z; that is, Cov(ε,Z) = 0 and E(ε) = 0. We

further assume that ε is independent of Z, a common assumption in regression

problems. Hence, E(εεT ⊗ZZT ) = E(εεT )⊗ Ip and Γ = (I2m ⊗Σ−1/2)[E(εεT )⊗
Ip](I2m ⊗ Σ−1/2) = E(εεT ) ⊗ Σ−1, which leads to V = E(εεT )−1 ⊗ Σ. The
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singularity of Γ depends on the covariance matrix of ε. Each component of ε can

be regarded as the real and imaginary parts of the population residual of eiω
TY

regressed on Z. The way we generate ω guarantees that each ωTY provides a

different random variable within one period [−π, π], so eiω
TY should differ from

each other. However, if some information is duplicated, we can omit it from the

matrix. Hence, under mild conditions, we can conclude that Γ is nonsingular.

Theorem 2. Assume that {yk,xk}, for k = 1, . . . , n, are random samples of

(Y,X) with finite fourth moments. Let (β̂, ν̂) = argminB,C Fd(B,C; Γ̂−1), where

Γ̂ is a consistent estimate of Γ. Then, the following results hold:

1. vec(β̂ν̂) is asymptotically efficient, and
√
n[vec(β̂ν̂)−vec(βν)] is asymptotic

normal with mean zero and covariance matrix ∆(∆TV∆)−∆T , where V =

Γ−1 and ∆ = (vT ⊗ Ip, I2m ⊗ β), with 2mp× d(p+ 2m) dimensions.

2. nF̂d has an asymptotic chi-squared distribution with degrees of freedom (p−
d)(2m− d).

3. Span(β̂) is a consistent estimator of Sξ.

Part 2 of Theorem 2 can be used to estimate dimensions using the sequential

tests. Let Tk = nF̂k be a test statistic for H0 : d = k vs. Ha : d > k, where

k is an integer from zero to p. Note that Tk follows the asymptotic chi-squared

distribution with the degrees of freedom (p− k)(2m− k). The first time we fail

to reject the null hypothesis, for example, H0 : d = d0, we can conclude that the

dimension should be d0. In addition, Theorem 2 requires the covariance matrix

Γ to be nonsingular. If it is not, we use two approaches.

1). We employ the generalized inverse matrix of Γ, that is, Γ− = UD−UT ,

where the columns of U are the eigenvectors of Γ, and the diagonal matrix

D has diagonal elements corresponding to the eigenvalues of Γ. The diagonal

elements of D− are reciprocal of eigenvalues if they are not zero, otherwise

they are zero. The eigenvalue zero indicates that the corresponding columns

of ξ are linearly correlated, which is equivalent to deleting the correlated

columns and using a smaller number of m.

2). We apply a QL decomposition of Γ = QL (assuming the sparsity of Γ): the

product of a unitary matrix Q (i.e., QQT = QTQ = I) and a lower trian-

gular matrix L. Thus, Γ−1 = L−1QT . When m is small (e.g., 4 or 6 when

d = 1, 2), using the QL decomposition of the soft-thresholding covariance

Γ (Bickel and Levina (2008); Rothman, Levina and Zhu (2009)) can pro-
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vide more accurate estimation. The detailed algorithm is provided in the

Supplementary Material.

2.5. Predictor hypothesis tests for FT-IRE

We now investigate the conditional independence hypothesis test for FT-

IRE. Suppose H is a user-specified subspace for predictors with r dimensions.

Let PH be the orthogonal projection onto H in the usual inner product, and

QH = I − PH be the orthogonal projection onto the orthogonal complement of

H. A conditional independence hypothesis means that H0 : Y ⊥⊥ PHX|QHX.

Following Cook (2004) and Cook and Zhang (2014), we have

Y ⊥⊥ PHX|QHX⇔ PHSY|X = Op ⇔ PHSξ = Op ⇔ HT ξ = 0,

where Op is the origin in Rp and H ∈ Rp×r is a basis for H. Note that if

r + dim(SY|X) > p, PHSY|X = Op can never be true. Hence, the following

discussion only considers r ≤ p− dim(SY|X). We discuss three hypothesis tests,

their test statistics, and asymptotic distributions based on the framework of Cook

and Ni (2005).

1. Marginal predictor hypotheses, H0 : HT ξ = 0 vs. Ha : HT ξ 6= 0. This

tests on predictors, without requiring a specific value for d. Theorem 1

indicates that
√
n[vec(ξ̂)−vec(ξ)]→ N(0,Γ), implying that

√
n[vec(HT ξ̂)−

vec(HT ξ)] → N [0, (I2m ⊗ HT )Γ̂(I2m ⊗ H)], by Slutsky’s theorem. This

asymptotic distribution can be used to construct the Wald test statistics for

the null hypothesis HT ξ = 0,

T (H) = nvec(HT ξ̂)T [(I2m ⊗HT )Γ̂(I2m ⊗H)]−1vec(HT ξ̂),

which is χ2
2rm asymptotically. Let A = (I2m ⊗HT )Γ̂(I2m ⊗H). Then, the

rank (A1/2A−1A1/2) = 2rm, the df. In addition, T (H) is invariant with

respect to the choice of basis of H, and can be applied to test Y ⊥⊥ Xk|X−k,
where Xk is the kth predictor, and X−k indicates the remaining predictors

after taking away Xk (Cook and Ni (2005)).

2. Joint dimension predictor hypotheses, H0 : HT ξ = 0 and d = t vs. Ha :

HT ξ 6= 0 or d > t, test on both predictors and d = t. Combining information

from the predictor and dimension parts, we rewrite ξ = QHξ = QHβv =

H0βH0
v, where β ∈ Rp×t, v ∈ Rt×2m, and the coordinates βH0

∈ R(p−r)×t of

β in terms of the basis H0 for Span(QH). The constrained optimal discrep-

ancy function under a joint hypothesis is
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Ft,H(B,C) = [vec(ξ̂)− vec(H0BC)]T Γ̂−1[vec(ξ̂)− vec(H0BC)].

The test statistic is defined as nF̂t,H(B,C), which is asymptotically χ2
(p−t

)(2m−t)+tr. Because the Jacobian matrix is ∆ξ,H = (I2m⊗H0)(vT⊗Ip−r, I2m⊗
βH0) ∈ R2pm×t(p−r+2m), its df is 2pm− rank(∆ξ,H) = 2pm− t(p− r − t+

2m) = (p− t)(2m− t) + tr.

3. Conditional predictor hypotheses, H0 : d = t vs. Ha : d > t given HT ξ =

0, test on the specific dimension, given that the user-specified subspace is

independent of the central subspace. The test statistic is the difference of

two discrepancy functions:

T (H|d) = nFd,H(B,C)− nFd(B,C; Γ̂−1).

Here, T̂ (H|d) ∼ χ2
rd under the null hypothesis. In fact, T (H|d) is asymptot-

ically equivalent to UT (Pξ − Pξ,H)U , where U ∈ R2pm is a standard normal

random vector, and Pξ and Pξ,H are the projections with respect to the

usual inner product onto Span(Γ−1/2∆) and Span(Γ−1/2∆ξ,H), respectively.

It can be shown that Span(∆ξ,H) ⊆ Span(∆), and thus Span(Γ−1/2∆ξ,H) ⊆
Span(Γ−1/2∆). Then, (Pξ−Pξ,H) is a projection with rank(∆)− rank(∆ξ,H) =

d(p− d+ 2m)− d(p− r − d+ 2m) = rd.

3. Suboptimal Estimators

Note that pm(2pm− 1) parameters in the limiting covariance of ξ̂ (Theorem

1) increases the complexity of the computation. In this section, we investigate

other suboptimal estimators that employ different inner product matrices, such

as a diagonal block covariance and a robust version of the limiting covariance.

3.1. Degenerated estimator

Previously, we introduced an optimal estimator FT-IRE in an intuitive way

based on the asymptotic limiting distribution. However, FT-IRE may encounter a

singular covariance matrix, especially whenm is too large. Alternatively, diagonal

block inner product matrices reduce the number of parameters to alleviate the

singular problem. Equivalently, we repeatedly construct several QDFs with their

limiting covariance matrices, and regard them as independent. Let K be the

number of QDFs. The lth QDF has ω of size ml, corresponding to the limiting

covariance matrix Γl ∈ R2pml×2pml , where l = 1, . . . ,K and
∑K

l=1ml = m. The

degenerated QDF is defined as the summation of the K QDFs; that is,
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Fd(B,C; {Vl}) =

K∑
l=1

[vec(ξ̂l)− vec(BCl)]
TVl[vec(ξ̂l)− vec(BCl)], (3.1)

which is equivalent to (2.1) with a new inner product matrix V = Γ̂−1
D =

diag({Γ̂−1
l }). We denote the degenerated estimator β̂ minimizing (3.1) as the FT

degenerated inverse regression estimator (FT-DIRE). Compared with the FT-

IRE, the FT-DIRE is computationally cheaper because the inner product matrix

is structurally simpler, with fewer parameters to estimate. Similarly to the FT-

IRE, it is easy to prove the consistency of the FT-DIRE and the asymptotic

distribution of its MDF.

Theorem 3. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite fourth moments. Let (β̂, ν̂) = argminB,C Fd(B,C; Γ̂−1
D ). We

have

1. Span(β̂) is a consistent estimator of Sξ.

2. As n → ∞, Λ̂d = nF̂d(B,C; Γ̂−1
D )

D→
∑(p−d)(2m−d)

k=1 λkCk. Here, Cks are

independent chi-squared random variables, each with one degree of freedom,

and λ1 ≥ λ2 ≥ · · · ≥ λ(p−d)(2m−d) are eigenvalues of the covariance matrix

QΦΩQΦ, where Φ and Ω are defined in the Supplementary Material.

Note that Theorem 3 allows us to test the structural dimension d and indi-

cates a consistent estimator of a basis of Sξ.

3.2. Special estimator

Section 2.1 indicates that an FT approach in Weng and Yin (2018) is based

on the generalized singular value decomposition of a kernel matrix K. It is also

a sub-optimal estimator with V = diag{Σ̂}, as shown in the following lemma:

Lemma 1. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite fourth moments. Let û1, . . . , ûp be the eigenvectors of K cor-

responding to the eigenvalues λ̂1 ≥ · · · ≥ λ̂p. Let (β̂, ν̂) = argminB,C Fd(B,C;

{Σ̂}). Then, Span(β̂) is equal to Span(û1, . . . , ûd).

We denote β̂ as the FT special inverse regression estimator (FT-SIRE). The

special QDF is written as:

Fd(B,C; diag{Σ̂}) = [vec(ξ̂)− vec(BC)]Tdiag{Σ̂}[vec(ξ̂)− vec(BC)]

=
∑2m

l=1(ξ̂l −BCl)T Σ̂(ξ̂l −BCl),
(3.2)

where each column of ξ is considered to be independent of each other. Then, we
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can state the consistency of the estimate and the QDF’s asymptotic distribution,

as follows.

Theorem 4. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite fourth moments. Let (β̂, ν̂) = argminB,C Fd(B,C; diag{Σ̂}).
We have

1. Span(β̂) is a consistent estimator of Sξ.

2. As n→∞, Λ̂d = nF̂d(B,C; diag{Σ̂}) D→
∑(p−d)(2m−d)

k=1 λkCk.

Both Theorems 3 and 4 indicate that the corresponding test statistic Λ̂d
follows a weighted χ2 instead of a χ2 distribution as in Theorem 2. However,

Λ̂d can have the same asymptotic χ2 distribution under the marginal covariance

condition (Cook (1998b)), which simplifies QΦΩQΦ.

3.3. Robust estimators

To achieve a consistent estimate of Γ−1 = Cov{vec[Σ−1/2ZεT ]}−1, we need

to plug in a consistent sample estimate of Γ, which involves fourth moments

of the predictors. We consider a robust estimator and first let the covariance

matrix Σ be known. Let ξ̃j = Σ−1(n−1
∑n

k=1 e
iωT

j ykxk−n−1
∑n

k=1 e
iωT

j yk x̄), and

ε̃ = eiω
TY − Eeiω

TY. Define ξ̃ = (ξ̃Rj , ξ̃
I
j )
m
j=1 ∈ Rp×2m.

Theorem 5. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite second moments. Let ε̃ = (ε̃R1 , ε̃
I
1, . . . , ε̃

R
m, ε̃

I
m)T , where ε̃Rj and

ε̃Ij are the real and imaginary parts, respectively, of ε̃j, for j = 1, . . . ,m. Then,

√
n[vec(ξ̃)− vec(βν)]

D→ N(0, Γ̃),

where Γ̃ = (I ⊗ Σ−1/2)Cov[vec(Zε̃T )](I ⊗ Σ−1/2).

The proof of Theorem 5 follows from Theorem 1, so we omit it here. The

resulting limiting covariance matrix is Γ̃ = (I⊗Σ−1/2)Cov[vec(Zε̃T )](I⊗Σ−1/2),

which requires only the second moments of the preditor. In addition, comput-

ing its inverse Γ̃−1 = (I⊗Σ1/2)Cov[vec(Zε̃T )]−1(I⊗Σ1/2) is structurally simplier

and computationally cheaper than computing Γ−1 = Cov{vec[Σ−1/2ZεT ]}−1. Be-

cause Γ−1 involves estimating the predictor’s fourth moments, while Γ̃−1 needs

only its second moments, the FT robust inverse regression estimator (FT-RIRE)

is more theoretically robust.

Theorem 5 shows the limiting covariance matrix Γ̃ of ξ̃, so it is natural to
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define the robust QDF as

Fd(B,C; G̃−1) = [vec(ξ̂)− vec(BC)]T G̃−1[vec(ξ̂)− vec(BC)],

where G̃ = (I ⊗ Σ̂−1/2)Ĉov[vec(Zε̃T )](I ⊗ Σ̂−1/2). The estimator that minimizes

the robust QDF is called as the FT-RIRE, which has the following properties.

Theorem 6. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite second moments, and let (β̂, ν̂) = argminB,C Fd(B,C; G̃−1).

Then,

1. nF̂d(B,C; G̃−1) has an asymptotic chi-squared distribution with degrees of

freedom (p− d)(2m− d).

2. Span(β̂) is a consistent estimator of Sξ.

We can also define a diagonal block inner product matrix, G̃−1
D = diag{G̃−1

1 ,

. . . , G̃−1
K } following the notation in Section 3.1. The degenerated robust estimator

minimizing Fd(B,C; G̃−1
D ) is called the FT degenerated robust inverse regression

estimator (FT-DRIRE).

Theorem 7. Assume that {yk,xk}, for k = 1, . . . , n, are random samples on

(Y,X) with finite second moments. Let (β̂, ν̂) = argminB,C Fd(B,C; G̃−1
D ). We

have

1. Span(β̂) is a consistent estimator of Sξ.

2. As n→∞, Λ̂d = nF̂d(B,C; G̃−1
D )

D→
∑(p−d)(2m−d)

k=1 λkCk.

We then have a similar discussion for the robust estimators to that in Sections

3.1 and 3.2. The proofs of 6 and 7 follow straightforwardly from Theorem 3.

Hence, we omit them here.

In summary, the FT-IRE is optimal because it is asymptotically efficient

without any constraints or strong assumptions. On the other hand, the other

four estimators, FT-DIRE, FT-SIRE, FT-RIRE, and FT-DRIRE, are suboptimal

because we employ either a diagonal block covariance matrix, assuming some

independent structure, or a robust version of the limiting covariance matrix.

Those estimators are minimizers over the corresponding constrained spaces. We

present additional simulations in the next section.

4. Numerical Study

In this section, we provide simulations to evaluate the performance of the

minimum discrepancy with FT approaches. The following criterion is used to
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compare the accuracy between B and its estimate B̂, where both are p×d orthog-

onal matrices. The trace correlation r2 =
√∑d

i=1 ρ
2
i /d (Ye and Weiss (2003)),

where ρi are the eigenvalues of matrix B̂TBBT B̂, for i = 1, . . . , d. Note that

r2 ∈ [0, 1], and a bigger r2 indicates a better estimate. The Frobenius norm is

||B̂B̂T − BBT ||F (Li, Zha and Chiaromonte (2005)). Here, a smaller Frobenius

norm indicates a better estimate.

4.1. Simulations

Model 1. This model shows the effect of different sizes of ω on the performance

of the FT-IRE, FT-DIRE, FT-SIRE, FT-RIRE, and FT-DRIRE. We examine

four examples, where examples 1.1–1.3 are modifications of those in Lin, Zhao

and Liu (2019), and 1.4 is a multivariate response example, similar to example

3 of Zhu, Zhu and Wen (2010). Let p = 10, n = 100, and X ∼ N(0, Ip). For

1.1–1.3, column βi, for i = 1, 2, has coefficient one at three random positions,

and zero otherwise; furthermore, βi 6= βj , for i 6= j. The error term ε ∼ N(0, 1).

For 1.4, β1 and β2 have fixed coefficients.

1.1. Y = (βT1 X)3/2 + ε, d = 1.

1.2. Y = exp(βT1 X + 0.5ε), d = 1.

1.3. Y = |βT2 X/4 + 2|3sign(βT1 X) + ε, d = 2.

1.4. Y1 = 1 + βT1 X + sin(βT2 X) + ε1, Y2 = βT2 X/(0.5 + (βT1 X + 1)2) + ε2, Y3 =

|βT1 X|ε3, Y4 = ε4, Y5 = ε5, with d = 2, β1 = (1, 0, . . . , 0)T , and β2 =

(0, 1, 1, 0, . . . , 0)T . The error terms are ε = (ε1, ε2, . . . , εq)
T ∼ Nq(0,Σ),

where q = 5 and Σ =

(
A 0

0 D

)
, with A =

(
1 − 1/2

−1/2 1/2

)
and D =

diag(1/2, 1/3, . . . , 1/q).

Figure 1 plots the mean values of r2 over 100 simulated data versus the differ-

ent sizes of ω: {2, 4, . . . , 40} using the QL decomposition of the soft-thresholding

covariance Γ. In these four panels, r2 increases rapidly when the size of ω reaches

4, indicating that m = 4 includes important information. All the estimates are

accurate and stable because the size of ω is sufficiently large (say, larger than

2 when d is 1 or 2). For examples 1.1–1.3, the FT-IRE and FT-DIRE perform

as well as their corresponding robust versions. The FT-SIRE exhibits the best

accuracy for example 1.4 and is more stable than the others for example 1.2. The

FT-SIRE is promising because it has the simplest structure of the inner product

matrix Λ = Γ−1, and is also computationally faster than the other methods.
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Figure 1. Using the QL decomposition of the soft-thresholding covariance: Mean values
of r2 over 100 simulated data vs. different sizes of ω: {2, 4, . . . , 40} in Model 1.

Model 2. This model is used to compare our approaches with the FIRE, DIRE

(Cook and Zhang (2014)), and IRE (Cook and Ni (2005)), and also to compare the

corresponding robust versions FT-RIRE and FT-DRIRE with the robust FIRE,

robust DIRE (Cook and Zhang (2014)), and robust IRE (Ni and Cook (2007)):

Y = |XTβ|+ 0.2ε,

where p = 10, d = 1, and β = (1, 1, 1, 1, 0, . . . , 0)T ∈ Rp. The predictors

X ∼ N(µs,Σ), where µs ∈ Rp is a p-dimensional vector with the value two

at one random place of j = 1, . . . , p, and zero otherwise, and Σ has a first-order

autoregressive structure with (j1, j2)th entry 0.5|j1−j2|. The sample sizes range
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Figure 2. Mean values of r2 over 100 simulated data vs. various sample sizes from 100
to 800 in increments of 100 in Model 2.

from 100 to 800 with increments of 100. We use the size m of ω equal to four.

Other values of m = 6, 10, 16 are reported in the Supplementary Material (Figure

S2.4). There is no difference in terms of what value m is used because m = 4

produces stable results for this model. Settings for existing methods are as fol-

lows, unless otherwise specified: the fused slices for the FIRE and DIRE are

H = {3, 4, . . . , 15}, and the slice number for the IRE is h = 5.

The left panel of Figure 2 compares our approaches, FT-IRE, FT-DIRE, and

FT-SIRE with the existing methods, FIRE, DIRE, and IRE. Our approaches out-

perform FIRE, DIRE, and IRE in terms of having higher r2 values. As expected,

a larger sample size produces better estimates for all these methods. Even for a

sample size as small as n = 100 our approaches have larger r2 than those of the

other three slicing methods.

The right panel of Figure 2 compares our robust estimators, FT-RIRE and

FT-DRIRE, with the robust FIRE, robust DIRE (Cook and Zhang (2014)), and

robust IRE (Ni and Cook (2007)). Overall, our methods outperform the others

in terms of estimation accuracy, especially for smaller sample sizes.

Model 3. This model evaluates the asymptotic performance of our proposed

methods in terms of dimension detection compared with that of an FT approach

in Weng and Yin (2018). We examine four examples. Examples 3.1–3.2 are mod-

ifications of the examples in Lin, Zhao and Liu (2019), and the predictor vector

X ∼ N(0, Ip) with p = 10 and dimension d = 2. The column βi, for i = 1, 2,
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has coefficient one at three random positions, and zero otherwise; furthermore

βi 6= βj , for i 6= j. The error term ε ∼ N(0, 1). For example 3.3, β1 and β2 have

fixed coefficients. This example comes from Weng and Yin (2018), and involves a

certain degree of collinearity. The predictors X1, X3, X5, . . . , Xp
i.i.d.∼ N(0, 1), and

X2 = X1 +Z, where Z ∼ N(0, 1) and X4 = (1 +X2)Z. Let {ei} be p× 1 vectors

whose ith entry is one and all other entries are zero. Then, (β1, β2) = (e1, e2).

The last example 3.4 is the same as example 1.4.

3.1. Y = (βT1 X) exp(βT2 X) + ε.

3.2. Y = (βT1 X) exp(βT2 X + ε).

3.3. Y = X1 + 0.5X2
2 .

3.4. This is the same as example 1.4.

Figure 3 shows the percentages of correctly detecting the dimensions (d = 2)

over 100 simulated data observations for different sample sizes {100, . . . , 1000},
using the QL decomposition of the soft-thresholding covariance with m = 4.

Overall, the FT-IRE and FT-RIRE have higher correct rates than the other

methods. However, these rates do not increase for the degenerated estimators

FT-DIRE and FT-DRIRE as the sample size increases (see Figure S2.5 in the

Supplementary Material). We do not recommend using the degenerated estima-

tors for structural dimension and predictor hypothesis tests, owing to their strong

assumption of the discrepancy functions.

Almost none of the inverse approaches depending on E(X|Y) detect the sym-

metric link function. Fortunately, both examples 3.3 and 3.4 contain two linear

terms, which can be obtained using the inverse approaches. In particular, exam-

ple 3.3 can be written as Y = X1+0.5X4+0.5X2
1 +0.5(X1−1)Z. Other symmetric

components produce more noise, increasing the challenges during testing. The

test statistic for the FT and FT-SIRE follow a weighted chi-squared distribution.

Li (1998) noted that the weights are nonzero eigenvalues of some nonnegative

definite symmetric matrix, and the variances of the weights are most likely siz-

able. The estimation of the weights has a significant impact on the performance

of the dimension detection. It turns out that the test statistics’ distributions for

the FT-SIRE and FT are not as accurate as those for the FT-IRE and FT-RIRE,

especially when the signal is not strong enough. Figure 3 (c, d) indicates that

our proposed methods identify two directions from the noise, but that the FT

fails in most cases.
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Figure 3. Percentages of correctly detecting dimensions (d = 2) over 100 simulated data
vs. sample sizes n: {100, . . . , 1000} in Model 3.

Model 4. This model investigates the effect of the sample size on the perfor-

mance of the marginal predictor hypothesis tests. Here, we compare the FT-

IRE and FT-RIRE with the SIR and IRE for testing user-specified subspaces.

Similarly to the structural dimension testings, the FT-SIRE, FT-DIRE, and FT-

DRIRE are not suggested because of their assumptions on the quadratic func-

tions. The predictor p× 1 vector X ∼ N(0, I), with p = 10 and n = 100. In the

two examples 4.1–4.2, column βi, for i = 1, 2, has coefficient one at three random

positions, and zero otherwise; furthermore βi 6= βj , for i 6= j. The error term

ε ∼ N(0, 1). Let d = 2 and use m = 4:
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Figure 4. Percentages of rejection using marginal predictors hypothesis tests with m = 4
in Model 4.

4.1. Y = βT1 X(βT2 X + 1) + ε,

4.2. Y = βT1 X/(0.5 + (βT2 X + 1.5)2) + ε.

Two user-specified subspaces are H1 ∈ Rp×1, with ones in the rows of the

same nonzero rows of β, and zeros otherwise, and H2 ∈ Rp×1, with ones in

the rows of the same zero rows of β, and zeros otherwise. The percentages of

rejecting the null hypothesis H0: HTβ = 0 (H represents H1 or H2) are presented

for 100 simulated data, given the significance level 0.05. The rejection rate for

H1 indicates the power, and that for H2 refers to the type I error.

The left two panels of Figure 4 show that the power of our marginal predictor

tests is close to one when the sample size varies from 500 to 1,000. The right
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Table 1. The MSEs with six regression models for each method.

d = 2 d = 1

Regression Models IRE FIRE DIRE SIR FT-IRE FT-DIRE

Nadaraya-Watson 0.9293 0.8088 0.7979 0.6971 0.6941 0.6944

Local Linear 0.8585 0.8264 0.7822 0.7341 0.7348 0.7348

Polynomial (dg=2) 0.8697 0.8778 0.9158 0.7205 0.7170 0.7200

Polynomial (dg=3) 0.9415 0.8265 0.9420 0.7518 0.7488 0.7495

GAM 0.9198 0.7804 0.9413 0.7549 0.7360 0.7412

Linear Regression 0.8699 0.7790 0.8402 0.7070 0.7037 0.7046

two panels of Figure 4 illustrate that the empirical type-I error rates of the FT-

IRE or FT-RIRE in the marginal predictor hypothesis tests are under reasonable

control, below 0.05. The SIR and IRE have huge type-I error rates, close to one.

However, as long as the sample size is larger than 500, our tests are superior with

smaller type-I errors, supporting the asymptotic results.

4.2. Data analysis

We use prostate data (Stamey et al. (1989)) to compare the FT-IRE and

FT-DIRE with the SIR, IRE, FIRE, and DIRE. The data describe the level of

a prostate-specific antigen associated with eight clinical measures in 97 male pa-

tients taking a radical prostatectomy. The data are availabe at rafalab.github.

io.

The eight clinical measurements are as follows: logarithm of cancer volume

(lcavol) and of prostate weight (lweight), age (age), logarithm of benign prostatic

hyperplasia amount (lbph), seminal vesicle invasion (svi), logarithm of capsular

penetration (lcp), Gleason score (gleason), and percentage Gleason scores 4 or 5

(pgg45). The outcome is the logarithm of the prostate-specific antigen (lpsa).

Testing the structural dimension using the SIR and FT-IRE result in d = 1,

whereas the IRE results in d = 2. We use both values of d to illustrate our

points. Furthermore, we fit the following six regression models (using the respec-

tive estimated d): a Nadaraya–Watson kernel regression, local linear regression,

polynomial regression with degree two, polynomial regression with degree three,

generalized additive model, and linear regression. For each model and method,

we calculate the mean squared error (MSE) using the five-folds cross-validation,

as shown in Table 1. We conclude that our FT-IRE performs best among all

these comparisons.

To further assess the performance of these six methods, we use the IRE

estimate with d = 2. Then, we fit a polynomial model of order two without the

https://rafalab.github.io/pages/649/prostate.html
https://rafalab.github.io/pages/649/prostate.html
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Table 2. Comparing six methods using IRE estimation with d = 2.

n Criteria IRE FIRE DIRE SIR FT-IRE FT-DIRE

50 MSE 1.0716 0.9755 1.0194 0.8311 0.8193 0.8208

r2 0.5870 0.5872 0.5460 0.6404 0.6663 0.6604

Norm 1.5997 1.5895 1.6487 1.5112 1.4657 1.4764

100 MSE 1.0353 0.8392 0.9196 0.8121 0.8068 0.8069

r2 0.6146 0.6680 0.6121 0.7041 0.6929 0.6900

Norm 1.5617 1.4670 1.5501 1.4045 1.4269 1.4319

200 MSE 1.0331 0.8313 0.8881 0.8245 0.8228 0.8228

r2 0.6017 0.6933 0.7088 0.7114 0.7147 0.7137

Norm 1.5818 1.4283 1.3902 1.3932 1.3878 1.3902

400 MSE 1.0142 0.8349 0.8442 0.8295 0.831 0.8292

r2 0.6192 0.7131 0.7074 0.7393 0.7414 0.7409

Norm 1.5468 1.3924 1.4047 1.3353 1.3312 1.3319

intersection term because it is nonsignificant (p-value is less than 0.05), resulting

in σ̂ and Ŷ = α1X
∗
1 +α2X

∗
2 +α11X

∗2
1 +α22X

∗2
2 . We generate another 100 data sets

using Y = Ŷ + ε, with sample sizes 50, 100, 200, and 400, where ε ∼ N(0, σ̂). We

evaluate the estimation as accurate. Table 2 indicates that our approaches have

the higher accuracy in estimation (smaller in terms of the MSE and Frobenius

norm, and higher in terms of r2) compared with that of the IRE, FIRE, and

DIRE, and slightly better than that of the SIR.

5. Discussion

We have developed an optimal minimum discrepancy with FT approach in

SDR that is especially useful in multivariate scenarios without a slicing scheme

of the response. Four sub-optimal estimators are introduced and discussed for

computational efficiency and robustness.

Of the five proposed methods, we recommend first considering the FT-IRE in

a real application. From a theoretical perspective, the FT-IRE is asymptotically

efficient, and so is optimal. Empirically, the FT-IRE not only provides an esti-

mation that is competitive with that of the other four methods, but also exhibits

better performance in terms of testing the structural dimension and significant

predictor. In contrast, the FT-DIRE and FT-SIRE are superior in scenarios with

a limited computational environment. The FT-RIRE and FT-DRIRE are better

for a small sample size.

In addition, we have developed marginal, conditional predictor, and joint

tests for the FT-IRE. We have also demonstrated the effectiveness and usefulness
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of our proposed approaches. Furthermore, the minimum discrepancy with FT

approach can be extended to partial SDR (Chiaromonte, Cook and Li (2002);

Li, Cook and Chiaromonte (2003)) when dealing with categorical and numeric

variables. These topics are left to future research.

Supplementary Material

The online Supplementary Material contains proofs of the theorems and de-

tailed tables and figures for the simulation studies.

Acknowledgments

This work was supported, in part, by an NSF grant CIF 1813330. The

authors would like to thank the editor, associate editor, and two referees for their

valuable comments and suggestions.

References

Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. The Annals of

Statistics 36, 2577–2604.

Chiaromonte, F., Cook, R. D. and Li, B. (2002). Sufficient dimension reduction in regressions

with categorical predictors. The Annals of Statistics 30, 475–497.

Cook, R. D. (1996). Graphics for regressions with a binary response. Journal of the American

Statistical Association 91, 983–992.

Cook, R. D. (1998a). Principal Hessian directions revisited. Journal of the American Statistical

Association 93, 84–94.

Cook, R. D. (1998b). Regression Graphics: Ideas for Studying Regressions through Graphics.

John Wiley & Sons, Inc., New York.

Cook, R. D. (2004). Testing predictor contributions in sufficient dimension reduction. The Annals

of Statistics 32, 1062–1092.

Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression: A minimum

discrepancy approach. Journal of the American Statistical Association 100, 410–428.

Cook, R. D. and Setodji, C. M. (2003). A model-free test for reduced rank in multivariate

regression. Journal of the American Statistical Association 98, 340–351.

Cook, R. D. and Weisberg, S. (1991). Comment on “Sliced inverse regression for dimension

reduction” by K.-C. Li. Journal of the American Statistical Association 86, 328–332.

Cook, R. D. and Zhang, X. (2014). Fused estimators of the central subspace in sufficient dimen-

sion reduction. Journal of the American Statistical Association 109, 815–827.

Li, B. (2018). Sufficient Dimension Reduction: Methods and Applications with R. Chapman and

Hall/CRC, Boca Raton.

Li, B., Cook, R. D. and Chiaromonte, F. (2003). Dimension reduction for the conditional mean

in regressions with categorical predictors. The Annals of Statistics 31, 1636–1668.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the

American Statistical Association 102, 997–1008.



2402 WENG AND YIN

Li, B., Wen, S. and Zhu, L. (2008). On a projective resampling method for dimension reduction

with multivariate responses. Journal of the American Statistical Association 103, 1177–

1186.

Li, B., Zha, H. and Chiaromonte, F. (2005). Contour regression: A general approach to dimen-

sion reduction. The Annals of Statistics 33, 1580–1616.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). Journal of

the American Statistical Association 86, 316–327.

Li, K.-C. (1998). Principal Hessian directions revisited: Comment. Journal of the American

Statistical Association 93, 94–97.

Lin, Q., Zhao, Z. and Liu, J. (2019). Sparse sliced inverse regression via Lasso. Journal of the

American Statistical Association 114, 1726–1739.

Ni, L. and Cook, R. D. (2007). A robust inverse regression estimator. Statistics and Probability

Letters 77, 343–349.

Qian, W., Ding, S. and Cook, R. D. (2019). Sparse minimum discrepancy approach to sufficient

dimension reduction with simultaneous variable selection in ultrahigh dimension. Journal

of the American Statistical Association 114, 1277–1290.

Rothman, A. J., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance

matrices. Journal of the American Statistical Association 104, 177–186.

Saracco, J. (2005). Asymptotic for pooled marginal slicing estimator based on SIRα approach.

Journal of Multivariate Analysis 96, 117–135.

Shapiro, A. (1986). Asymptotic theory of overparameterized structural models. Journal of the

American Statistical Association 81, 142–149.

Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F., Redwine, E. A. et al.

(1989). Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the

prostate. II. Radical prostatectomy treated patients. The Journal of Urology 141, 1076–

1083.

Wang, H. and Xia, Y. (2008). Sliced regression for dimension reduction. Journal of the American

Statistical Association 103, 811–821.

Weng, J. and Yin, X. (2018). Fourier transform approach for inverse dimension reduction

method. Journal of Nonparametric Statistics 30, 1049–1071.

Ye, Z. and Weiss, R. E. (2003). Using the bootstrap to select one of a new class of dimension

reduction methods. Journal of the American Statistical Association 98, 968–979.

Yin, X. and Bura, E. (2006). Moment-based dimension reduction for multivariate response

regression. Journal of Statistical Planning and Inference 136, 3675–3688.

Yin, X. and Hilafu, H. (2015). Sequential sufficient dimension reduction for large p, small n prob-

lems. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 77, 879–

892.

Yin, X., Li, B. and Cook, R. D. (2008). Successive direction extraction for estimating the central

subspace in a multiple-index regression. Journal of Multivariate Analysis 99, 1733–1757.

Zhu, L., Zhu, L. and Wen, S. (2010). On dimension reduction in regressions with multivariate

responses. Statistica Sinica 20, 1291–1307.

Zhu, Y. and Zeng, P. (2006). Fourier methods for estimating the central subspace and the central

mean subspace in regression. Journal of the American Statistical Association 101, 1638–

1651.



FOURIER TRANSFORM 2403

Jiaying Weng

Mathematical Sciences, Bentley University, Waltham, MA 02452, USA.

E-mail: jweng@bentley.edu

Xiangrong Yin

Department of Statistics, University of Kentucky, Lexington, KY 40536, USA.

E-mail: yinxiangrong@uky.edu

(Received August 2020; accepted February 2021)

mailto:jweng@bentley.edu
mailto:yinxiangrong@uky.edu

	Introduction
	Optimal Estimator with an FT
	FT via kernel matrix
	The choice of 
	FT via the minimum discrepancy function
	Properties of the FT inverse regression estimator
	Predictor hypothesis tests for FT-IRE

	Suboptimal Estimators
	Degenerated estimator
	Special estimator
	Robust estimators

	Numerical Study
	Simulations
	Data analysis

	Discussion

