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Abstract: The enveloping approach employs sufficient dimension-reduction tech-

niques to gain estimation efficiency, and has been used in several multivariate anal-

ysis contexts. However, its Bayesian development has been sparse, and the only

Bayesian envelope construction is in the context of a linear regression. In this pa-

per, we propose a Bayesian envelope approach to a quantile regression, using a gen-

eral framework that may potentially aid enveloping in other contexts as well. The

proposed approach is also extended to accommodate censored data. Data augmen-

tation Markov chain Monte Carlo algorithms are derived for approximate sampling

from the posterior distributions. Simulations and data examples are included for

illustration.
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1. Introduction

The envelope methodology (Cook (2018)) induces a class of models that uses

dimension reduction to increase the estimation efficiency in a multivariate anal-

ysis, and is sometimes equivalent to taking many additional observations. First

proposed for multivariate linear regressions (Cook, Li and Chiaromonte (2010)),

it has since been extended to many other contexts, including the partial least

squares (PLS) (Cook, Helland and Su (2013); Zhu and Su (2020)), generalized

linear models (Cook and Zhang (2015)), elliptical multivariate linear regressions

(Forzani and Su (2021)), variable selection (Su et al. (2016)), matrix or tensor

variate regressions (Ding and Cook (2018); Li and Zhang (2017)), spatial re-

gressions (Rekabdarkolaee et al. (2020)), and quantile regressions (Ding et al.

(2021)). These advances have primarily been made from a frequentist perspec-

tive. In practice, there is often a strong motivation to adopt a Bayesian ap-

proach. First, a Bayesian approach can incorporate existing knowledge into the
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model through prior specification. Second, it coherently quantifies all model un-

certainties through the posterior distribution, without requiring any asymptotic

assumptions. Consequently, using computational methods, an exact inference can

be made for any given sample size. However, Bayesian approaches to envelope

models have thus far been sparse, primarily because the key parameter is defined

on a manifold in envelope models. This makes the probabilistic modeling of the

parameter both theoretically and computationally challenging. The only existing

Bayesian method (Khare, Pal and Su (2017)) considers a matrix-Bingham prior.

However, this approach depends on the form of a multi-response linear regression

model, making extensions to other contexts difficult. See the second paragraph

in the Supplementary Material S2.2 for more details.

In this article, we propose a Bayesian approach to envelope quantile regres-

sions. Quantile regressions were introduced in the seminal work of Koenker and

Bassett (1978), and have since been an active area of research (Koenker, Chesher

and Jackson (2005, for an overview)). Unlike the standard (mean) regression,

a quantile regression focuses on conditional quantiles instead of the conditional

mean of the response variable, given the predictors. Consequently, it can provide

a full picture of the response predictor relationship, and can be robust to outliers.

Furthermore, it can incorporate heteroskedasticity, thus allowing it to handle a

possibly richer set of data. In a frequentist setting, a quantile regression is imple-

mented by optimizing a distribution-free quantile loss function. The frequentist

envelope quantile regression follows a similar path (Ding et al. (2021)), which is

markedly different from other likelihood-based (frequentist) envelope models.

Several Bayesian frameworks for the quantile regression have been proposed

(Remark 1). The most commonly used framework uses the asymmetric Laplace

distribution (ALD) associated with the quantile loss as a data-generating model

(Yu and Moyeed (2001); Kozumi and Kobayashi (2011)). We use this framework

here as a working model after a reparameterization that frees the envelope model

from any manifold structure. The resulting Bayesian envelope quantile regression

(BEQR) model features distributions that are straightforward to interpret and

compute.

The major contribution of this study lies in the formulation of a novel en-

veloping strategy for a Bayesian quantile regression (BQR). Owing to the con-

nection between predictor envelope models (Cook, Helland and Su (2013)) and

the PLS (Wold, (1966)), the proposed approach can also be treated as a rigorous

Bayesian development for a PLS quantile regression. Our approach embeds an

envelope structure in a BQR framework; however, the key enveloping strategy

is foundational, and we believe that it can be used in other Bayesian modeling
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contexts. The implementation of our model is based on a simple and computa-

tionally efficient Markov chain Monte Carlo (MCMC) sampler that is shown to be

Harris ergodic, which ensures strong theoretical guarantees for the MCMC draws.

An extension of the proposed model for censored observations is also provided.

Results with both simulated and real data demonstrate the efficiency gains of the

proposed BEQR approach compared with the standard BQR approach.

2. A Review of the Envelope Quantile Regression Model

We introduce the envelope model in the context of a quantile regression. A

standard quantile regression model is formulated as

Qτ (Y |X) = µτ + βTτ (X − µX), (2.1)

where Y is the response variable, X ∈ Rp is the predictor vector having mean

µX and covariance ΣX , and Qτ (Y |X) denotes the τth conditional quantile of

Y given X (0 ≤ τ ≤ 1; τ = 0.5 produces the median regression). The unknown

intercept and slope are denoted by µτ and βτ ∈ Rp, respectively. An envelope

model seeks a sufficient dimension reduction ofX that loses no information about

Qτ (Y |X). Formally, let (G1τ ,G2τ ) ∈ Rp×p be an orthogonal matrix, where

G1τ has dimension p × dτ (0 ≤ dτ ≤ p). The envelope model imposes the

following two conditions on GT
1τX and GT

2τX: (a) Qτ (Y |X) = Qτ (Y |GT
1τX)

and (b) cov(GT
1τX,GT

2τX) = 0. These conditions suggest that GT
2τX carries

no information on Qτ (Y |X), directly or indirectly, through the association with

GT
1τX. Let span(M) denote the column space of a matrix M . Ding et al. (2021)

showed that (a) and (b) are equivalent to (i) span(β) ⊆ span(G1τ ) and (ii)

ΣX = PG1τ
ΣXPG1τ

+ QG1τ
ΣXQG1τ

, where P denotes the projection matrix

and Q = I − P . The intersection of all subspaces that satisfy (i) and (ii) is

called the ΣX -envelope of βτ , denoted as EΣX
(βτ ). Thus, the envelope subspace

EΣX
(βτ ) is the smallest subspace that satisfies (i) and (ii) or, equivalently, (a)

and (b). Let uτ (0 ≤ uτ ≤ p) denote the dimension of EΣX
(βτ ), and Γ1τ ∈ Rp×uτ

be an orthonormal basis of EΣX
(βτ ). Then, ΓT1τX contains all information about

Qτ (Y |X), and is called the material part. The envelope quantile regression model

(Ding et al. (2021)) is formulated as

Qτ (Y |X) = µτ + ηTτ ΓT1τ (X − µX), ΣX = Γ1τΩ1τΓ
T
1τ + Γ2τΩ2τΓ

T
2τ , (2.2)

where βτ = Γ1τητ , and ητ ∈ Ruτ carries the coordinates of βτ with respect

to Γ1τ . The matrix Γ2τ ∈ Rp×(p−uτ ) is an orthonormal basis of EΣX
(βτ )⊥, the
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orthogonal complement of EΣX
(βτ ). The matrices Ω1τ ∈ Ruτ×uτ and Ω2τ ∈

R(p−uτ )×(p−uτ ) are both positive definite, and carry the coordinates of ΣX with

respect to Γ1τ and Γ2τ , respectively. When uτ = p, the envelope quantile regres-

sion (2.2) reduces to the standard quantile regression (2.1).

In a standard linear regression model Y = µ + βT (X − µX) + ε, where

Y ∈ Rr is univariate (r = 1) or multivariate (r > 1) and ε has mean zero and

covariance matrix ΣY |X , imposing the above envelope structure (2.2) onto β

and ΣX produces a so-called predictor envelope model (Cook, Helland and Su

(2013)), a framework closely connected with that of the PLS (Wold, (1966)). The

PLS is a popular alternative to the ordinary least squares regression, owing to

its potential of ability to improve prediction performance, particularly in high-

dimensional problems. The PLS uses a sequential moment-based algorithm, such

as SIMPLS (De Jong (1993)) or NIPALS (Wold (1975)), to estimate a dimension-

reduction subspace of X. Cook, Helland and Su (2013) showed that the target

subspace that the PLS pursues is essentially the predictor envelope subspace

EΣX
(β). This implies that the PLS can be cast into, and hence investigated

using, the framework of predictor envelope models. Thus, an envelope quantile

regression provides a model-based formulation of the PLS in a quantile regression

(Dodge and Whittaker (2009, partial quantile regression)). By implication, the

BEQR aids a Bayesian formulation for the partial quantile regression model.

3. The BEQR

3.1. Formulation

We begin with the ALD working model for a BQR (Koenker and Machado

(1999); Yu and Moyeed (2001); Khare and Hobert (2012)): Y = µτ,Y + βTτ (X −
µX) + σε, where µτ,Y is an intercept, σ is the scale parameter, and ε fol-

lows ALD(τ) with density gALD(ε; τ) = τ(1− τ)
[
e(1−τ)εI(ε < 0) + e−τεI(ε > 0)

]
.

Koenker and Machado (1999) showed that the frequentist quantile regression esti-

mator is the same as the maximum likelihood estimator under the above working

model. This motivates the construction of the BEQR model:

Y = µτ,Y + ηTΓT1τ (X − µX) + σε, ε ∼ ALD(τ)

X ∼ Np

(
µX , Γ1τΩ1Γ

T
1τ + Γ2τΩ2Γ

T
2τ

)
.

(3.1)

As in (2.2), we include X in the model because it aids identifying the material

part ΓT1τX.

We now consider a reparameterization that identifies both EΣX
(βτ ) and
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EΣX
(βτ )⊥ with an unconstrained matrix (Ma and Zhu (2013); Cook, Forzani

and Su (2016)), described as follows. For an arbitrary basis Γ1τ , assume that

the first uτ rows form a nonsingular matrix G1. If not, permute the rows of Γ1τ

(equivalent to reordering elements in X) to achieve that. Call the matrix formed

by the remaining rows G2. Then,

Γ1τ =

(
G1

G2

)
=

(
Iuτ

G2G
−1
1

)
G1 ≡

(
Iuτ
A

)
G1 ≡ CAG1. (3.2)

Thus, CA is also a basis of EΣX
(βτ ). This procedure shows that A and EΣX

(βτ )

have a one-to-one correspondence: if a different basis of EΣX
(βτ ) is used, by fol-

lowing the procedure in (3.2), we obtain the same A matrix. We can obtain a

unique orthonormal basis of EΣX
(βτ ) fromA as Γ1τ = Γ1τ (A) = CA(CT

ACA)−1/2,

and of EΣX
(βτ )⊥ as Γ2τ = Γ2τ (A) = DA(DT

ADA)−1/2, whereDT
A = (−A, Ir−uτ )

(Chen et al. (2020)). Consequently, BEQR (3.1) can be written as

Y = µτ,Y + ηTΓ1τ (A)T (X − µX) + σε, ε ∼ ALD(τ),

X ∼ Np

(
µX , Γ1τ (A)Ω1Γ1τ (A)T + Γ2τ (A)Ω2Γ2τ (A)T

)
.

(3.3)

Remark 1. Alternative approaches to a BQR using Dirichlet process priors (Kot-

tas and Gelfand (2001)), the substitution likelihood (Dunson, Watson and Taylor

(2003)), and the empirical likelihood (Lancaster and Jun (2010); Yang and He

(2012)) have been proposed to circumvent the independent and identically dis-

tributed (i.i.d.) (and thus homoskedastic) error assumptions of the ALD model.

These approaches could also potentially be used to derive a BEQR; however, we

use the ALD approach because it is the simplest to implement, and it provides

some robustness to likelihood misspecification, as evidenced in empirical (Yu and

Moyeed (2001)) and theoretical (Sriram, Ramamoorthi and Ghosh (2013)) anal-

yses. Furthermore, the results in Sriram (2015) and Yang, Wang and He (2016)

suggest that under certain regularity conditions, posterior samples from the ALD-

based BQR model can help construct valid estimates of the asymptotic covariance

matrix of the frequentist quantile regression estimators, even when the likelihood

is misspecified. This illustrates the potential usefulness of the ALD-based BQR

model in assessing estimation variability, even in the frequentist estimation.

3.2. Prior specification and posterior distributions

We consider a joint prior density for the model parameters µτ,Y ,µX ,η,

Ω1,Ω2,A, and σ in the BEQR model (3.3) as π(µτ,Y ,µX , η,Ω1,Ω2,A, σ) =

π(µτ,Y )π(µX)π(σ)π(η | σ,A)π(A)π(Ω1)π(Ω2), where
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1. π(µτ,Y ) and π(µX) are improper flat densities for µτ,Y and µX , respectively

(i.e., π(µτ,Y ) ∝ 1 and π(µX) ∝ 1).

2. π(σ) is the density of IG (a, b), where IG denotes the inverse gamma distri-

bution, a > 0 and b > 0.

3. π(A) is the density of MNp−uτ ,uτ (A0, K, L), where MN denotes a ma-

trix normal distribution, K ∈ R(p−uτ )×(p−uτ ) and L ∈ Ruτ×uτ are positive

definite, and A0 ∈ R(p−uτ )×uτ .

4. Conditional on σ andA, π(η | σ,A) is the density of the normal distribution

Nuτ

(
Γ1τ (A)Te, σγ2M−1), where γ2 = 2/[τ(1 − τ)], e ∈ Ruτ , and M ∈

Ruτ×uτ is positive definite.

5. π(Ω1) and π(Ω2) are inverse Wishart densities of IWuτ (Ψ1, ν1) and IWp−uτ
(Ψ2, ν2), respectively, with ν1 > 0 and ν2 > 0, and Ψ1 ∈ Ruτ×uτ and

Ψ2 ∈ R(p−uτ )×(p−uτ ) are positive definite.

Definitions of the distributions, including the matrix normal, inverse Wishart,

and generalized inverse Gaussian distributions, are given in the Supplementary

Material S1.1. Comments on choosing a prior distributions are provided in the

Supplementary Material S2.1. The resulting posterior density is intractable for

direct computation and i.i.d. sampling. Instead, we derive an MCMC sampler

using the data augmentation scheme in Kozumi and Kobayashi (2011): Let

(Xi, Yi) be independent observations from (X, Y ), and θ = (1− 2τ)/(τ(1− τ)).

The augmented data Z1, . . . , Zn are i.i.d. Exponential(σ) random variables such

that (Yi, Zi) are independent for i = 1, . . . , n, with Yi | (Xi, Zi) ∼ N(µτ,Y +

ηTΓ1τ (A)T (Xi − µX) + θZi, Ziσγ
2). Straightforward derivations show that

Yi | Xi is µτ,Y + ηTΓ1τ (A)T (Xi − µX) + σε, where ε follows ALD, as de-

sired. To simplify the notation, we define Wi = Yi − θZi; then, Wi|(Xi, Zi) ∼
N(µτ,Y + ηTΓ1τ (A)T (Xi − µX), Ziσγ

2). Let YT = (Y1, . . . , Yn) ∈ Rn, XT =

(X1, . . . ,Xn) ∈ Rn×p, ZT = (Z1, . . . , Zn) ∈ Rn, WT = (W1, . . . ,Wn) ∈ Rn, and

1n = (1, . . . , 1)T ∈ Rn. The data-augmented log-likelihood is

l (W,X|µτ,Y ,µX ,η,Ω1,Ω2,A, σ,Z) =

− n

2
log σ − n

2
log |Ω1| −

n

2
log |Ω2| −

1

2σγ2

{
(W− µτ,Y 1n

− (X− 1nµ
T
X)Γ1τη)TD−1(W− µτ,Y 1n − (X− 1nµ

T
X)Γ1τη)

}
− 1

2
trace

{(
X− 1nµ

T
X

) (
Γ1τΩ

−1
1 ΓT1τ + Γ2τΩ

−1
2 ΓT2τ

) (
X− 1nµ

T
X

)T}
,
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where D = diag (Z1, . . . , Zn). Expressions for the resulting data-augmented un-

normalized log posterior density are provided in (S3.1) of the Supplementary

Material.

Note that the real benefit of introducing the augmented data Z1, . . . , Zn lies

in the simplification of the model parameters to conditional posterior densities.

This facilitates the construction of a computationally efficient MCMC sampler,

as shown in Section 3.3. Theorem 1 shows the propriety of the target poste-

rior density. Proofs of all theoretical results are provided in the Supplementary

Material S3.

Theorem 1. The posterior density of (µτ,Y ,µX ,η,Ω1,Ω2,A, σ,Z), as provided

in (S3.1) of the Supplementary Material is proper.

3.3. Data augmentation MCMC sampler

This section proposes a data augmentation algorithm for MCMC sampling

from the posterior density, Algorithm 1 displays one iteration of the proposed

sampler. Derivations are provided in the Supplementary Material S4.

Algorithm 1

One iteration of the data augmentation Metropolis-within-Gibbs sampler for

the BEQR parameters

Step 1 Generate independent Z1, . . . , Zn from

Zi ∼ GIG

({
Yi − µτ,Y − ηTΓ1τ (A)T (Xi − µX)

}2
σγ2

,
θ2 + 2γ2

σγ2
,
1

2

)
,

where GIG denotes a generalized inverse Gaussian distribution. Then, up-

date Wi = Yi − θZi, for i = 1, . . . , n.

Step 2 Generate µτ,Y ∼ N(WZ+ηTΓ1τ (A)T
(
µX −XZ

)
, 1∑n

i=1 1/Zi
σγ2), where

WZ =
1∑n
i=1

1
Zi

n∑
i=1

Wi/Zi, XZ =
1∑n

i=1 1/Zi

n∑
i=1

1

Zi
Xi.

Step 3 Generate µX from N
(
∆−1µX

ΞµX
, ∆−1µX

)
, where X = 1TnX/n,

ΞµX
=

1

σγ2

(
n∑
i=1

1

Zi

)
Γ1τ (A)η

(
ηTΓ1τ (A)TXz + µτ,Y −WZ

)
+ n

(
Γ1τ (A)Ω−11 Γ1τ (A)T + Γ2τ (A)Ω−12 ΓT2τ (A)

)
X,
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∆µX
=

1

σγ2

(
n∑
i=1

1

Zi

)
Γ1τ (A)ηηTΓ1τ (A)T

+ n
(
Γ1τ (A)Ω−11 Γ1τ (A)T + Γ2τ (A)Ω−12 ΓT2τ (A)

)
.

Step 4 Generate η from N
(
η̃0, ∆−1η

)
, where

∆η =
1

σγ2

{
Γ1τ (A)T

(
X− 1nµ

T
X

)T
D−1

(
X− 1nµ

T
X

)
Γ1τ (A) +M

}
,

η̃0 =
1

σγ2
∆−1η

{
Γ1τ (A)T

(
X− 1nµ

T
X

)
D−1 (W− µτ,Y 1n) +MΓ1τ (A)Te

}
.

Step 5 Generate σ from IG((3n/2) + (uτ/2) + a, b̃), where

b̃ = b+

n∑
i=1

Zi

+
1

2γ2

{(
W− µτ,Y 1n − (X− 1nµ

T
X)Γ1τ (A)η

)T
D−1(W− µτ,Y 1n

− (X− 1nµ
T
X)Γ1τη) +

(
η − Γ1τ (A)Te

)T
M
(
η − Γ1τ (A)Te

)}
.

Step 6 Generate Ω1 from IWuτ (Ψ1+Γ1τ (A)T (X−1nµ
T
X)T (X−1nµ

T
X)Γ1τ (A),

ν1 + n).

Step 7 Generate Ω2 from IWp−uτ (Ψ2 + Γ2τ (A)T (X − 1nµ
T
X)T (X − 1nµ

T
X)

Γ2τ (A), ν2 + n).

Step 8 Generate a Markov chain realization for A with stationary density pro-

portional to H(A), which is the full conditional posterior density of A

(see (S4.9) in the Supplementary Material). Let aj ∈ Rp−uτ denote the

jth column of A, for j = 1, . . . , uτ . Given the tuning parameter ξ > 0,

for j = i1, . . . , iuτ , where {i1, . . . , iuτ} denotes a random permutation of

{1, . . . , uτ}, perform the following:

1. Generate a∗j from Np−uτ
(
aj , ξ

2Ip−uτ
)
. Replace the jth column of A

with a∗j , and denote the resulting matrix as A∗. Compute ρ (A, A∗) =

exp [H(A∗)−H(A)].

2. Perform a Bernoulli experiment with probability of success min(1, ρ(A,

A∗)). If a success is obtained, update a∗j to aj ; otherwise retain aj .

3. After updating A, update CA, DA, and ΣX .
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Remark 2. Algorithm 1 can account for the two degenerated cases uτ = 0

and uτ = p, as follows: when uτ = 0, A does not exist and we have η = 0,

Γ2τ (A) = Ip, and ΣX = Ω2. Thus, the steps involving η, Ω1, and A (Step

4, Step 6, and Step 8, respectively) are not required. On the other hand, when

uτ = p, the BEQR reduces to the BQR: A does not exist, Γ1τ (A) = Ip and

ΣX = Ω1, and the steps involving A and Ω2 (Step 7 and Step 8 ) are not

needed. In each case, Algorithm 1 becomes a full Gibbs sampler.

Theorem 2 shows that a Markov chain generated using Algorithm 1 is Harris

ergodic (see the Supplementary Material S1.2 for a technical definition). This

provides the theoretical guarantee that for all starting points, Markov chains

generated using Algorithm 1 converge to the target density. This property en-

sures consistent estimations of posterior expectations (Meyn and Tweedie (2012)).

Without this property, an MCMC algorithm, in general, is only guaranteed to

converge when the starting point falls outside a pathological set of measure zero.

Such pathological sets can be consequential, and may arise naturally in prac-

tice; see Roberts and Rosenthal (2006). Typically, virtually no information on

such pathological starting points is available in applications. The Harris ergodic

property is thus essential for an MCMC algorithm to be useful in practice.

Theorem 2. A Markov chain generated using the data augmentation Metropolis-

within-Gibbs sampler in Algorithm 1, or its generalization to cases uτ = 0 and

uτ = p, is Harris ergodic, that is, φ-irreducible with respect to some measure φ,

aperiodic, and Harris recurrent.

Remark 3. An algorithm for fast computation of posterior modes can be con-

structed using the full conditional distributions described in the above sampler.

The details are provided in S5 of the Supplementary Material.

4. Bayesian Envelope Quantile Regression with Censored Data

This section discusses an extension of the BEQR that handles censored data.

Censored data occur naturally in many applications, and their statistical analy-

ses have received increased attention over the past few decades (Powell (1986);

Buchinsky, M. Hahn (1998); Bilias, Chen and Ying (2000), among many others).

The Bayesian paradigm provides a natural way of handling such data by modeling

the censored points as augmented observations (Yu and Stander (2007); Kozumi

and Kobayashi (2011)). We adapt the BEQR in a setting with tobit censored

(i.e., left censored at zero) responses for illustration, and provide an extension of

Algorithm 1 for sampling from the posterior. The proposed model and algorithm
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can be adjusted easily to handle other types of censoring, such as interval and

right censoring (Remark 4).

Let Y ∗i be an unobserved response; the corresponding observed response is

Yi = Y ∗i 1{Y ∗
i >0}, for i = 1, . . . , n, where 1{·} denotes the indicator function. Using

Y ∗i for the response in BEQR (3.3), we obtain the formulation of a BEQR with

a tobit-censored response (BETQR)

Y ∗i = µτ,Y + ηTΓ1τ (A)T (Xi − µX) + σεi, εi ∼ ALD(τ),

Xi ∼ Np

(
µX , Γ1τ (A)Ω1Γ1τ (A)T + Γ2τ (A)Ω2Γ2τ (A)T

)
.

We treat the unobserved response Y ∗i corresponding to the censored Yi (i.e.,

the zero values) as augmented data in the model. To sample from the posterior,

we iteratively generate random draws of the unobserved data given the model

parameters, and vice versa. Thus, one full iteration of the Markov chain sampler

consists of two data augmentation steps: one for generating Y ∗i , and one for Zi;

the latter also appears in Algorithm 1. For distinction, we call the former the

response variable imputation step.

Conditional on Y ∗i , the model effectively reduces to (3.3). Hence, the steps

for generating the model parameters µτ,Y , µX , η, Ω1, Ω2, A, and σ given Y ∗i are

the same as in Algorithm 1, with Yi replaced by Y ∗i . To generate random draws

for Y ∗i , first note that conditional on Yi > 0, Y ∗i = Yi with probability one, while

conditional on Yi = 0 (and the model parameters and the augmented data Zi), Y
∗
i

has a truncated normal distribution TN(−∞,0](µτ,Y +ηTΓ1τ (A)T (Xi−µX)+θZi,

Ziσγ
2). Therefore, in the response variable imputation step, we set Y ∗i = Yi

when Yi > 0, and sample Y ∗i from the above truncated normal distribution when

Yi = 0. A complete MCMC sampler is provided in Algorithm S6.1 in the Sup-

plementary Material S6. The following theorem establishes the Harris ergodicity

of the sampler.

Theorem 3. The Metropolis-within-Gibbs sampler in Algorithm S6.1 and its

extension to the cases uτ = 0 and uτ = p is Harris ergodic, that is, φ-irreducible

with respect to some measure φ, aperiodic, and Harris recurrent.

Remark 4. With appropriate adjustments, the proposed approach can also

handle other types of censoring, such as right and interval censoring. Con-

sider [a0, b0] interval-censored responses as an example, where a0, b0 ∈ R are

known and fixed. Then, Yi = Y ∗i 1{a0<Y ∗
i <b0} + a01{Y ∗

i ≤a0} + b01{Y ∗
i ≥b0}, and

Y ∗i is generated as follows. Set Y ∗i = Yi if a0 < Yi < b0; generate Y ∗i from

TN(−∞,a0]

(
µτ,Y + ηTΓ1τ (A)T (Xi − µX) + θZi, Ziσγ

2
)

if Yi = a0, and from

TN[b0,∞)

(
µτ,Y + ηTΓ1τ (A)T (Xi − µX) + θZi, Ziσγ

2
)

if Yi = b0.
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5. Illustrations

This section investigates the performance of the BEQR in terms of its estima-

tion efficiency. The censored data are also addressed. We consider simulated and

real data sets, and compare the estimation performance of the envelope model

with that of the full (BQR; uτ = p) model in each data set. For the data anal-

ysis, we consider a vague non-informative prior on the model parameters. More

specifically, we consider the following: (i) a = b = 10−4 in the prior π(σ) (Gelman

(2006)); (ii) each element of e in π(η | σ,A) is 10−3, and M in π(η | σ,A) is 10−6

times a diagonal matrix with diagonal elements generated from a χ2 distribution

with degrees of freedom one; (iii) A0 in π(A) is the zero matrix; (iv) the co-

variance matrices in the matrix normal prior and the scale matrix in each inverse

Wishart prior are 106 times the identity matrix; and (v) the degrees of freedom in

each inverse Wishart prior is the column dimension of the corresponding random

matrix.

Selecting the envelope dimension uτ is a critical step in envelope modeling.

Here, we view this as a model selection problem and use the leave-one-out infor-

mation criterion (LOOIC) (Vehtari, Gelman and Gabry (2017a,b)). The LOOIC

aims to approximate the expected out-of-sample log (posterior) predictive densi-

ties (ELPD), and chooses the most parsimonious model with a high ELPD. To

this end, we first fit all BEQR models using uτ = 0, . . . , p, and compute the

LOOIC (−2 times the ELPD) from each fit. The smallest uτ with a LOOIC

not substantially different from (within two standard errors of) the smallest com-

puted LOOIC is then regarded as optimal. The R package loo is used for the

LOOIC computations. Because the LOOIC requires fitting BEQR models with

all possible envelope dimensions, that is, uτ = 0, . . . , p, it can be computation-

ally expensive to perform in high-dimensional problems. However, fitting BEQR

models with different uτ can be run in parallel, which can greatly reduce the total

computing time in a modern multicore computer.

5.1. Simulated data

To aid assessment under possible model misspecification (heteroskedasticity),

we generated data from the following model:

Yi = µY + ηTΓT1τ (A)Xi + (5 +αTXi)εi;

Xi ∼ Np

(
µX , Γ1τ (A)Ω1Γ1τ (A)T + Γ2τ (A)Ω2Γ2τ (A)T

)
, i = 1, . . . , n.

(5.1)

We fixed p = 10 and uτ = 2, and varied the sample size n from 50, 100, 200, 400,

and 800. For each sample size, 200 replications were generated. The elements in



2350 LEE, CHAKRABORTY AND SU

A and η were generated from the uniform distributions unif(9, 10) and unif(4, 8),

respectively. We took Ω1 and Ω2 to be diagonal matrices, with the two diagonal

entries of Ω1 generated from unif(70, 80) and unif(40, 50), respectively, and those

in Ω2 sampled from unif(1, 3). Elements of the predictor mean µX and the

intercept µY were generated from unif(−10, 10) and unif(20, 50), respectively.

The first five elements in α were fixed at zero and the rest were fixed at 0.1.

Finally, the error εi was a standard normal variate. The envelope dimension uτ
was selected using the LOOIC. We obtained Bayesian point estimators for the

BEQR (with selected uτ ) and BQR (uτ = p) using their respective posterior

means computed from 5,000 MCMC iterations (after discarding the first 5,000

burn-in iterations).

To compare the BEQR and BQR estimators, we computed the estimation

variance and mean squared error (MSE) from the 200 replications for each element

in βτ for each estimator. For the BQR, let β
(k)
i denote the ith element of the

estimated βτ from the kth replication. The estimation variance is defined as∑200
k=1(β

(k)
i −βi)2/200, and the MSE is defined as

∑200
k=1(β

(k)
i −βi,true)2/200, where

βi =
∑200

k=1 β
(k)
i /200 and βi,true is the ith element of the true coefficients. We

perform the same calculations for the BEQR. We consider the quantiles 0.1, 0.25,

0.5, 0.75, and 0.9 as examples; the estimation variances and squared biases for

the second elements of the BEQR and BQR estimators are displayed in Figure 1.

Figure 1 shows that the estimation variance is the dominant part of the MSE

across all quantile levels for both the BEQR and BQR estimators. The squared

biases of the two estimators are comparable; however, the BEQR achieved much

smaller estimation variances compared with those of the BQR.

To better understand the efficiency gains, we computed the ratio of the es-

timation variance and the MSE of the BQR estimator versus that of the BEQR

estimator for each coordinate of βτ . We summarize these ratios (across all coor-

dinates) using their respective medians and ranges for τ = 0.1 and 0.5 in Table 1.

The results for the other quantile levels are similar. These ratios are strictly

greater than one for all n, demonstrating the efficiency achieved by the envelope

approach.

To aid the comparison with existing approaches, we also consider the R

implementation bayesQR (Benoit and Van den Poel (2017)) of the BQR. Note

that bayesQR uses a similar ALD working model; however, unlike the BQR, the

predictors in bayesQR are assumed to be nonstochastic. A comparison between

the BEQR and this estimator conveys a similar message (see the Supplementary

Material S7.1).

We also investigated the dimension selection performance of the LOOIC. The
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Figure 1. Estimation variances and squared biases of the second element in the BEQR
estimator (line with star) and the BQR estimator (line with circle) with τ = 0.1 (solid
line), 0.25 (long dashed line), 0.5 (dotted line), 0.75 (dot dashed line), and 0.9 (dashed
line).

Table 1. Medians (ranges) of the estimation variance and MSE ratios. RatioV : Estima-
tion variance ratio of the BQR estimator versus that of the BEQR estimator. RatioM :
Mean squared error ratio of the BQR estimator versus that of the BEQR estimator.

n τ = 0.1 τ = 0.5

RatioV RatioM RatioV RatioM
50 1.58 (1.34, 2.13) 1.57 (1.34, 2.12) 1.73 (1.58, 2.63) 1.73 (1.58, 2.62)

100 1.88 (1.53, 2.52) 1.82 (1.51, 2.55) 1.80 (1.30, 2.77) 1.81 (1.30, 2.77)

200 2.01 (1.71, 2.41) 2.00 (1.64, 2.40) 1.83 (1.51, 2.43) 1.83 (1.50, 2.44)

400 1.89 (1.64, 2.92) 1.85 (1.55, 2.86) 1.88 (1.49, 2.62) 1.88 (1.49, 2.62)

800 2.02 (1.80, 3.02) 1.99 (1.71, 2.69) 1.68 (1.47, 1.99) 1.69 (1.47, 1.97)

selection results for τ = 0.1 and 0.5 are shown in Table 2 (recall that the “true” uτ
is 2). The results for the other quantile levels τ = 0.25, 0.75, and 0.9 are similar to

those in Table 2. The LOOIC selects the true uτ most often, especially for larger

sample sizes. For smaller sample sizes, rather than underestimating, the LOOIC

tends to overestimate uτ . The overestimation issue in the LOOIC, particular

when p is large, is discussed in Piironen and Vehtari (2017). Overestimation

curtails the efficiency gains, but does not produce an estimation bias, whereas

underestimation may introduce bias owing to the loss of material information. A

mild overestimation of uτ is usually less of a concern in practice (as illustrated

by the efficiency gains in Table 1.) An additional simulation comparing the
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Table 2. Number of replications (out of 200) for which a given value of uτ is selected.

τ = 0.1 τ = 0.5

Selected uτ : 1 2 3 4 5 1 2 3 4 5

n = 50 8 101 60 30 1 5 121 47 24 3

n = 100 9 120 52 19 0 4 138 37 19 2

n = 200 2 153 35 10 0 2 157 22 17 2

n = 400 0 148 30 21 1 0 159 20 19 2

n = 800 0 160 27 12 1 0 152 18 25 5

frequentist and Bayesian envelope quantile regression estimators is included in the

Supplementary Material S7.2, and we investigate the effect of skewed distributions

in the Supplementary Material S7.3. We also left censored the response in (5.1)

at zero and examined the effect of censoring on the efficiency gains; the results are

given in the Supplementary Material S7.4. The effect of different censoring levels

is investigated in the Supplementary Material S7.5. An additional simulation on

censored data is provided in the Supplementary Material S7.6.

5.2. Real-data analysis

5.2.1. LPGA data

The 2009 data set for Ladies Professional Golf Association (LPGA) perfor-

mance statistics (http://users.stat.ufl.edu/~winner/data/lpga2009.dat)

contains winning prizes for 146 golfers, along with nine performance measures:

average drive, fairways hit (%), greens reached in regulation (%), average putts

per round, sand saves (%), greens in regulation putts per hole, average percentile

in tournaments, rounds completed, and average strokes per round. The mean

and the median of the winning prizes in USD were approximately 294K and

126K, respectively, indicating right-skewness. Thus, a quantile regression rather

than a standard linear (mean) regression is more suitable to analyze this data

set. We standardized all variables and computed the BEQR, BQR, and bayesQR

estimators on 11 quantile levels: 0.05, 0.10, 0.20, . . . , 0.90, and 0.95. We then ob-

tained the posterior mean and 95% credible interval estimates of each regression

coefficient for each model. The estimates for the coefficient of average drive are

plotted in Figure 2 across all quantile levels for all three models (similar plots for

other predictors are provided in Figure 5 in the Supplementary Material S7.7).

As depicted in Figure 2, the BEQR estimator has the smallest variation, and the

bayesQR estimator has the largest variation, specifically for the extreme quantile

levels 0.05 and 0.95.

http://users.stat.ufl.edu/~winner/data/lpga2009.dat
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Figure 2. Point and 95% interval estimates of the coefficient of average drive. Solid
lines mark BEQR estimators, dashed lines mark BQR estimators, and dotted lines mark
bayesQR estimators.

The LOOIC-based dimension selection results and the ratios of the lengths

of the credible intervals for the BQR versus the BEQR and the bayesQR versus

the BEQR estimators are provided in Table 14 of the Supplementary Material.

For all quantile levels, the envelope approach is able to provide efficiency gains.

For example, with τ = 0.1, the LOOIC chose ûτ = 2. The ratios of the credi-

ble interval lengths of the BQR versus those of the BEQR varied from 1.91 to

10.4, with a median of 6.33, and the corresponding bayesQR to BEQR ratios

ranged from 13.28 to 91.15, with a median of 59.69. The efficiency gains from

the envelope estimators reflected in these ratios (especially at extreme quantile

levels) permit enhanced detection of important predictor effects under the BEQR

model. For example, average strokes (at levels τ = 0.1, 0.9), greens in regulation

(τ = 0.1, 0.9), average drive (τ = 0.9), and average putts (τ = 0.1) all have signif-

icant effects (95% credible intervals for the coefficients exclude zero) on winning

prizes under the BEQR model, but are identified as nonsignificant under the

BQR model. In contrast, at τ = 0.5, the significant predictors detected by both

models mostly agree, except for greens in regulation, which is significant only in

the BEQR model. All predictors are nonsignificant with the bayesQR estimator.

For the BEQR and BQR, the significance of the predictors at various quantile

levels is detailed in Table 15 of the Supplementary Material S7.7.
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5.2.2. Women’s labor force data

In this section, we consider a data set of labor force participation (Mroz

(1987)) to understand the relationship between married women’s working hours

(in units of 100 hours) and four predictors, namely, age, education (years), pre-

vious work experience (years), and other family income (in units USD1,000).

Of the 753 women included in the data set, 325 have zero working hours, thus

the corresponding responses are tobit censored. Because more than 40% of the

observations are left censored, we focus on the quantile levels 0.5, 0.75, and 0.9.

The LOOIC selected the envelope dimension uτ as 1 and 2 for τ = 0.90 and

0.75, respectively, but suggested uτ = 4 for τ = 0.5 (in this case, the BETQR

degenerates to a BTQR). We then computed the ratio of 95% credible interval

lengths of the BTQR estimator versus that of the BETQR estimator for each co-

efficient. The ranges of the ratios are (0.98, 1.63) and (1.14, 16.2), with averages

of 1.210 and 1.631 for τ = 0.75 and τ = 0.9, respectively. The improved efficiency

from the envelope approach again enhances the identification of important pre-

dictors in the data set. For example, other family income (at both τ = 0.75 and

τ = 0.90) and education (at τ = 0.9) show significant effects under the BETQR,

but are inferred to be nonsignificant by the BTQR.

6. Discussion

There are several research directions in which the proposed framework could

be extended. First, it would be of interest to examine whether the envelope

approach could be profitably combined with a nonparametric alternative to the

ALD framework (Remark 1). Second, one could investigate whether the pro-

posed envelope modeling and posterior sampling strategy can aid the develop-

ment of Bayesian envelope models for other contexts, such as generalized linear

and matrix/tensor variate regressions. Finally, it would be worth incorporating

sparsity-inducing shrinkage priors to handle a large number of predictors in the

proposed framework.

Supplementary Material

The online Supplementary Material contains proofs, technical details, and

additional simulations.
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