SLICED INVERSE REGRESSION IN METRIC SPACES

Joni Virta, Kuang-Yao Lee, and Lexin Li
University of Turku
Temple University
University of California at Berkeley

S1. Proofs of the theoretical results

Proof of Lemma 1. As the metric space $\left(\Omega_{X}^{0}, d_{X}\right)$ is separable, so is \mathcal{H}_{X}^{0} Lukić and Beder, 2001, Lemma 4.3). Being a closed subspace of a separable Hilbert space, $\operatorname{ker}\left(\Sigma_{X X}^{0}\right)$ is also a separable Hilbert space, and hence admits a countable dense subset \mathcal{K}. Fixing $h \in \mathcal{K}$, we have $\operatorname{Var}\{h(X)\}=0$, implying that there exists a set $\mathcal{S}_{X h}$, such that $P_{X}\left(\mathcal{S}_{X h}\right)=1$ and that, for all $x \in \mathcal{S}_{X h}$, we have $h(x)-\mathrm{E}\{h(X)\}=$ $\left\langle h, \kappa_{X}(\cdot, x)-\mu_{X}\right\rangle_{\mathcal{H}_{X}^{0}}=0$.

Denoting $\Omega_{X}=\cap_{h \in \mathcal{K}} \mathcal{S}_{X h}$, the countability of \mathcal{K} implies that $P_{X}\left(\Omega_{X}\right)=1$. We next show that, for all $x \in \Omega_{X}$, we have $\kappa_{X}(\cdot, x)-\mu_{X} \in \operatorname{ker}\left(\Sigma_{X X}^{0}\right)^{\perp}=\mathcal{H}_{X}$. Taking an arbitrary $g \in \operatorname{ker}\left(\Sigma_{X X}^{0}\right)$, there exist a sequence of elements $h_{j} \in \mathcal{K}$, such that $\left\|g-h_{j}\right\|_{\mathcal{H}_{X}^{0}} \rightarrow 0$ as $j \rightarrow \infty$. Let \mathbb{N} denote the collection of natural numbers. Then, for an arbitrary $x \in \Omega_{X}$ and $j \in \mathbb{N}$, we have that,

$$
\begin{aligned}
\left|\left\langle\kappa_{X}(\cdot, x)-\mu_{X}, g\right\rangle_{\mathcal{H}_{X}^{0}}\right| & \leq\left|\left\langle\kappa_{X}(\cdot, x)-\mu_{X}, g-h_{j}\right\rangle_{\mathcal{H}_{X}^{0}}\right|+\left|\left\langle\kappa_{X}(\cdot, x)-\mu_{X}, h_{j}\right\rangle_{\mathcal{H}_{X}^{0}}\right| \\
& \leq\left\|\kappa_{X}(\cdot, x)-\mu_{X}\right\|_{\mathcal{H}_{X}^{0}}\left\|g-h_{j}\right\|_{\mathcal{H}_{X}^{0}}+0,
\end{aligned}
$$

which further implies that $\left\langle\kappa_{X}(\cdot, x)-\mu_{X}, g\right\rangle_{\mathcal{H}_{X}^{0}}=0$. This completes the proof of Lemma 1.

Proof of Lemma 2, (a). The proof is structurally similar to that of Proposition 1 in Li and Song (2017), but we include it for completeness.

Fix $f \in \mathcal{H}_{X}$. Denote $\Sigma_{Y Y}^{\dagger} \Sigma_{Y X}=R_{Y X}$, and fix an arbitrary $g \in \mathcal{H}_{Y}$. Then,
$\operatorname{Cov}\left\{\left(R_{Y X} f\right)(Y), g(Y)\right\}=\left\langle\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f, \Sigma_{Y Y} g\right\rangle_{\mathcal{H}_{Y}}=\left\langle\Sigma_{Y X} f, g\right\rangle_{\mathcal{H}_{Y}}=\operatorname{Cov}\{f(X), g(Y)\}$.

Consequently, for all $f \in \mathcal{H}_{X}$ and $g \in \mathcal{H}_{Y}$, we have,

$$
\begin{equation*}
\operatorname{Cov}\left\{f(X)-\left(R_{Y X} f\right)(Y), g(Y)\right\}=0, \tag{S1.1}
\end{equation*}
$$

Consider an arbitrary $h \in L_{2}\left(P_{Y}\right)$. By Assumption 2, there exist a sequence $\left\{h_{n}\right\}$ of elements of \mathcal{H}_{Y}, such that $\operatorname{var}\left\{h(Y)-h_{n}(Y)\right\} \rightarrow 0$, as $n \rightarrow \infty$. Therefore, by (S1.1),

$$
\begin{aligned}
& \left|\operatorname{Cov}\left\{f(X)-\left(R_{Y X} f\right)(Y), h(Y)\right\}\right| \\
\leq & \left|\operatorname{Cov}\left\{f(X)-\left(R_{Y X} f\right)(Y), h(Y)-h_{n}(Y)\right\}\right|+\left|\operatorname{Cov}\left\{f(X)-\left(R_{Y X} f\right)(Y), h_{n}(Y)\right\}\right| \\
\leq & {\left[\operatorname{Var}\left\{f(X)-\left(R_{Y X} f\right)(Y)\right\} \operatorname{Var}\left\{h(Y)-h_{n}(Y)\right\}\right]^{1 / 2}+0, }
\end{aligned}
$$

for all n. The first variance in the final expression above is finite, since $\operatorname{Var}\{f(X)\} \leq$ $\left\|\Sigma_{X X}\right\|_{\mathrm{OP}}\|f\|_{\mathcal{H}_{X}}^{2}<\infty$, and $\operatorname{Var}\left\{\left(R_{Y X} f\right)(Y)\right\} \leq\left\|R_{Y X}\right\|_{\mathrm{OP}}\left\|\Sigma_{Y X}\right\|_{\mathrm{OP}}\|f\|_{\mathcal{H}_{X}}^{2}<\infty$. This implies that (S1.1) holds also when g is replaced with any $h \in L_{2}\left(P_{Y}\right)$.

Note that a square-integrable random variable Z is almost surely equal to the conditional expectation $\mathrm{E}\{f(X) \mid Y\}$, if

$$
\begin{equation*}
\mathrm{E}[\{f(X)-Z\} h(Y)]=0 \tag{S1.2}
\end{equation*}
$$

for all $h \in L_{2}\left(P_{Y}\right)$. A direct computation using s1.1) shows that the choice $Z=$ $\left(R_{Y X} f\right)(Y)-\mathrm{E}\left\{\left(R_{Y X} f\right)(Y)\right\}+\mathrm{E}\{f(X)\}$ satisfies (S1.2) for all $h \in L_{2}\left(P_{Y}\right)$, which implies the following holds almost surely,

$$
\begin{equation*}
\mathrm{E}\{f(X) \mid Y\}-\mathrm{E}\{f(X)\}=\left(\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f\right)(Y)-\mathrm{E}\left\{\left(\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f\right)(Y)\right\} \tag{S1.3}
\end{equation*}
$$

Finally, by Lemma 1, the right-hand side of (S1.3) is almost surely equal to the random variable $\left\langle\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f, \kappa_{Y}(\cdot, Y)-\mu_{Y}\right\rangle_{\mathcal{H}_{Y}}$, where we take $\kappa_{Y}(\cdot, Y)-\mu_{Y}$ to equal the zero element for those values of Y for which it is not a member of \mathcal{H}_{Y}. This proves the assertion (a).
(b). By definition,

$$
\mathrm{E}\left\langle g,\left[\left\{\kappa_{Y}(\cdot, Y)-\mu_{Y}\right\} \otimes\left\{\kappa_{Y}(\cdot, Y)-\mu_{Y}\right\}\right] g^{\prime}\right\rangle_{\mathcal{H}_{Y}}=\left\langle g, \Sigma_{Y Y} g^{\prime}\right\rangle_{\mathcal{H}_{Y}}
$$

for all $g, g^{\prime} \in \mathcal{H}_{Y}$. This, in conjunction with part (a) of the lemma, implies that the left-hand side of the assertion (b) equals,

$$
\begin{aligned}
& \mathrm{E}\left\langle\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f,\left[\left\{\kappa_{Y}(\cdot, Y)-\mu_{Y}\right\} \otimes\left\{\kappa_{Y}(\cdot, Y)-\mu_{Y}\right\}\right] \Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f^{\prime}\right\rangle_{\mathcal{H}_{Y}} \\
= & \left\langle\Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f, \Sigma_{Y Y} \Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f^{\prime}\right\rangle_{\mathcal{H}_{Y}}=\left\langle f, \Sigma_{X Y} \Sigma_{Y Y}^{\dagger} \Sigma_{Y X} f^{\prime}\right\rangle_{\mathcal{H}_{X}}
\end{aligned}
$$

This proves the assertion (b), and completes the proof of Lemma 2 .

Proof of Theorem 1. By Theorem 1 in Douglas (1966), and Assumption 3, both $\Sigma_{Y Y}^{\dagger} \Sigma_{Y X}$ and $\Sigma_{X X}^{\dagger} \Sigma_{X Y}$ are bounded. Henceforth, $\Lambda_{\text {SIR }}$ is also bounded.

To prove the unbiasedness of Λ_{SIR}, we first note that the set $\mathcal{S}_{Y \mid X}$ is closed because measurability is preserved in taking point-wise limits, which in an RKHS is implied by the convergence in norm. Concurrently, $\mathcal{S}_{Y \mid X}=\overline{\operatorname{span}}\left\{f \in \mathcal{H}_{X} \mid\right.$ f is $\mathcal{G}_{Y \mid X}$-measurable $\}$, and we have the desired result of $\overline{\operatorname{ran}}\left(\Lambda_{\mathrm{SIR}}\right) \subseteq \mathcal{S}_{Y \mid X}$, as long as we can show that $\mathcal{S}_{Y \mid X}^{\perp} \subseteq \operatorname{ker}\left(\Lambda_{\text {SIR }}^{*}\right)$.

We begin by establishing this inclusion for the elements of $\operatorname{ran}\left(\Sigma_{X X}\right)$. Let $f=$ $\Sigma_{X X} m$ for an arbitrary $m \in \mathcal{H}_{X}$. Suppose $\langle f, h\rangle_{\mathcal{H}_{X}}=0$ for all $h \in \mathcal{S}_{Y \mid X}$, which implies that, $\operatorname{Cov}\{m(X), h(X)\}=\left\langle\Sigma_{X X} m, h\right\rangle_{\mathcal{H}_{X}}=0$ for all $h \in \mathcal{S}_{Y \mid X}$. Let $\mathcal{S}_{Y \mid X}^{*}=$ $\left\{h \in L_{2}\left(P_{X}\right) \mid h\right.$ is $\mathcal{G}_{Y \mid X}$-measurable $\}$. Then, by (Li, 2018, Theorem 13.3), we have that $\operatorname{Cov}\{m(X), h(X)\}=0$ for all $h \in \mathcal{S}_{Y \mid X}^{*}$. This in turn implies that

$$
\langle m-\mathrm{E}\{m(X)\}, h\rangle_{L_{2}\left(P_{X}\right)}=0
$$

for all $h \in \mathcal{S}_{Y \mid X}^{*}$, where $\mathrm{E}\{m(X)\}$ represents the constant function taking the value $\mathrm{E}\{m(X)\}$ everywhere. Therefore, following Lee et al. (2013, Lemma 1), we have that

$$
\begin{equation*}
\mathrm{E}\left\{m(X) \mid \mathcal{G}_{Y \mid X}\right\}-\mathrm{E}\{m(X)\}=0, \quad \text { almost surely } \tag{S1.4}
\end{equation*}
$$

We next show that (S1.4) leads to $\mathrm{E}\{m(X) \mid Y\}=\mathrm{E}\{m(X)\}$ almost surely. Let $\sigma\left(Y, \mathcal{G}_{Y \mid X}\right)$ be the smallest σ-field containing both $\sigma(Y)$ and $\mathcal{G}_{Y \mid X}$. By rule of iterative expectation, we have, almost surely,
$\mathrm{E}\{m(X) \mid Y\}=\mathrm{E}\left[\mathrm{E}\left\{m(X) \mid \sigma\left(Y, \mathcal{G}_{Y \mid X}\right)\right\} \mid Y\right]=\mathrm{E}\left[\mathrm{E}\left\{m(X) \mid \mathcal{G}_{Y \mid X}\right\} \mid Y\right]=\mathrm{E}\{m(X)\}$,
where the second equality follows from the fact that $Y \Perp X \mid \mathcal{G}_{Y \mid X}$, and the third equality is by (S1.4).

Combining the above result with Lemma 2 leads to that, for all $g \in \mathcal{H}_{X}$,

$$
0=\left\langle m, \Sigma_{X Y} \Sigma_{Y Y}^{\dagger} \Sigma_{Y X} g\right\rangle_{\mathcal{H}_{X}}=\left\langle f, \Lambda_{\mathrm{SIR}} g\right\rangle_{\mathcal{H}_{X}} .
$$

In other words, $f \in \operatorname{ker}\left(\Lambda_{\mathrm{SIR}}^{*}\right)$. Therefore, $\operatorname{ran}\left(\Sigma_{X X}\right) \cap \mathcal{S}_{Y \mid X}^{\perp} \subseteq \operatorname{ker}\left(\Lambda_{\mathrm{SIR}}^{*}\right)$.
To extend this inclusion to hold in the full orthogonal complement $\mathcal{S}_{Y \mid X}^{\perp}$, we invoke Assumption 4, which implies that, for $f \in \mathcal{S}_{Y \mid X}^{\perp}$, there exist a sequence of elements f_{n} of $\operatorname{ran}\left(\Sigma_{X X}\right) \cap \mathcal{S}_{Y \mid X}^{\perp}$, such that $\left\|f_{n}-f\right\|_{\mathcal{H}_{X}} \rightarrow 0$, as $n \rightarrow 0$. Because $\Lambda_{\text {SIR }}^{*} f_{n}=0$ for all n, we also have $\Lambda_{\text {SIR }}^{*} f=0$ by continuity. This completes the proof of Theorem 1 .

Proof of Theorem 3: We first present three auxiliary lemmas, under the same set of conditions of Theorem 3. We then prove Theorem 3 based on these lemmas.

The first auxiliary lemma shows that the sample covariance operators are root- n consistent estimators of the corresponding population counterparts.

Lemma S1.1. Suppose the conditions of Theorem 3 hold. Then, $\left\|\hat{\Sigma}_{X X}-\Sigma_{X X}\right\|_{\mathrm{HS}}$, $\left\|\hat{\Sigma}_{X Y}-\Sigma_{X Y}\right\|_{\mathrm{HS}}$ and $\left\|\hat{\Sigma}_{Y Y}-\Sigma_{Y Y}\right\|_{\mathrm{HS}}$ are of the order $\mathcal{O}_{p}(1 / \sqrt{n})$.

Proof of Lemma S1.1. Denote $h_{X}=\kappa_{X}(\cdot, X)-\mu_{X}$. By definition, the covariance operator $\Sigma_{X X}$ satisfies that,

$$
\left\langle f, \Sigma_{X X} g\right\rangle_{\mathcal{H}_{X}}=\mathrm{E}\left(\left\langle f, h_{X}\right\rangle_{\mathcal{H}_{X}}\left\langle g, h_{X}\right\rangle_{\mathcal{H}_{X}}\right)=\mathrm{E}\left\{\left\langle f,\left(h_{X} \otimes h_{X}\right) g\right\rangle_{\mathcal{H}_{X}}\right\},
$$

where h_{X} is to be the zero element for those realizations $x \in \Omega$ not belonging to the almost sure set in Lemma 1 .

Since the covariance operator in a separable Hilbert space is a trace-class operator (Zwald et al., 2004), we have that $\left\|\Sigma_{X X}\right\|_{H S}<\infty$. To show $\left\|\hat{\Sigma}_{X X}-\Sigma_{X X}\right\|_{H S}=$ $\mathcal{O}_{p}(1 / \sqrt{n})$, we note that,

$$
\hat{\Sigma}_{X X}=\frac{1}{n} \sum_{i=1}^{n}\left(b_{X_{i}} \otimes b_{X_{i}}\right)
$$

where $b_{X_{i}}=\kappa_{X}\left(\cdot, X_{i}\right)-(1 / n) \sum_{j=1}^{n} \kappa_{X}\left(\cdot, X_{j}\right)$. Denoting $h_{X_{i}}=\kappa_{X}\left(\cdot, X_{i}\right)-\mu_{X}$, we further have that $b_{X_{i}}=h_{X_{i}}-\bar{h}_{n}$ where $\bar{h}_{n}=(1 / n) \sum_{i=1}^{n} h_{X_{i}}$. Therefore,

$$
\begin{equation*}
\left\|\hat{\Sigma}_{X X}-\Sigma_{X X}\right\|_{\mathrm{HS}} \leq\left\|\frac{1}{n} \sum_{i=1}^{n}\left(h_{X_{i}} \otimes h_{X_{i}}\right)-\Sigma_{X X}\right\|_{\mathrm{HS}}+\left\|\bar{h}_{n} \otimes \bar{h}_{n}\right\|_{\mathrm{HS}} \tag{S1.5}
\end{equation*}
$$

For the second term on the right-hand-side of (S1.5), we have that,

$$
\begin{equation*}
\mathrm{E}\left\|\bar{h}_{n} \otimes \bar{h}_{n}\right\|_{\mathrm{HS}}=\mathrm{E}\left\|\bar{h}_{n}\right\|_{\mathcal{H}_{X}}^{2}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left\langle h_{X_{i}}, h_{X_{j}}\right\rangle_{\mathcal{H}_{X}} . \tag{S1.6}
\end{equation*}
$$

For any pair of distinct indices $i \neq j, h_{X_{i}}$ and $h_{X_{j}}$ are independent. This means that,

$$
\begin{equation*}
\mathrm{E}\left\langle h_{X_{i}}, h_{X_{j}}\right\rangle_{\mathcal{H}_{X}}=\mathrm{E}_{X_{j}}\left\langle\mathrm{E}_{X_{i}}\left(h_{X_{i}}\right), h_{X_{j}}\right\rangle_{\mathcal{H}_{X}}=\mathrm{E}_{X_{j}}\left\langle 0, h_{X_{j}}\right\rangle_{\mathcal{H}_{X}}=0 \tag{S1.7}
\end{equation*}
$$

where $\mathrm{E}_{X_{i}}(\cdot)$ is the expectation with respect to the distribution of X_{i}. Consequently,

$$
\mathrm{E}\left\|\bar{h}_{n} \otimes \bar{h}_{n}\right\|_{\mathrm{HS}}=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathrm{E}\left\|h_{X_{i}}\right\|_{\mathcal{H}_{X}}^{2}=\frac{1}{n} \mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{2}
$$

where $\mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{2}=\mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}^{0}}^{2}=\mathrm{E}\left\{\kappa_{X}\left(X_{1}, X_{1}\right)\right\}-\left\|\mu_{X}\right\|_{\mathcal{H}_{X}^{0}}^{2}<\infty$, which holds by Assumption 8. Therefore, $\mathrm{E}\left\|\bar{h}_{n} \otimes \bar{h}_{n}\right\|_{\mathrm{HS}}=\mathcal{O}(1 / n)$, which, by Markov's inequality, further implies that $\left\|\bar{h}_{n} \otimes \bar{h}_{n}\right\|_{\mathrm{HS}}=\mathcal{O}_{p}(1 / n)$.

For the first term on the right-hand-side of (S1.5), we have that,

$$
\begin{equation*}
\mathrm{E}\left\|\frac{1}{n} \sum_{i=1}^{n}\left(h_{X_{i}} \otimes h_{X_{i}}\right)-\Sigma_{X X}\right\|_{\mathrm{HS}}^{2}=\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left\langle H_{i}, H_{j}\right\rangle_{\mathrm{HS}} \tag{S1.8}
\end{equation*}
$$

where $H_{i}=\left(h_{X_{i}} \otimes h_{X_{i}}\right)-\Sigma_{X X}$. By the definition of the Hilbert-Schmidt norm,

$$
\mathrm{E}\left\langle H_{i}, H_{j}\right\rangle_{\mathrm{HS}}=\mathrm{E}\left\langle h_{X_{i}} \otimes h_{X_{i}}, h_{X_{j}} \otimes h_{X_{j}}\right\rangle_{\mathrm{HS}}-\left\langle\Sigma_{X X}, \Sigma_{X X}\right\rangle_{\mathrm{HS}}
$$

Therefore, adopting he same strategy used to simplify (S1.6), we have $\mathrm{E}\left\langle h_{X_{i}} \otimes\right.$ $\left.h_{X_{i}}, h_{X_{j}} \otimes h_{X_{j}}\right\rangle_{\mathrm{HS}}=\left\langle\Sigma_{X X}, \Sigma_{X X}\right\rangle_{\mathrm{HS}}$, for $i \neq j$. This allows us to ignore all pairs of distinct indices in S1.8), and we obtain that,

$$
\begin{equation*}
\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left\langle H_{i}, H_{j}\right\rangle_{\mathrm{HS}}=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathrm{E}\left\|H_{i}\right\|_{\mathrm{HS}}^{2}=\frac{1}{n} \mathrm{E}\left\|H_{1}\right\|_{\mathrm{HS}}^{2} \tag{S1.9}
\end{equation*}
$$

Correspondingly,

$$
\begin{aligned}
\mathrm{E}\left\|H_{1}\right\|_{\mathrm{HS}}^{2} & \leq \mathrm{E}\left\|h_{X_{1}} \otimes h_{X_{1}}\right\|_{\mathrm{HS}}^{2}+2 \mathrm{E}\left\|h_{X_{1}} \otimes h_{X_{1}}\right\|_{\mathrm{HS}}\left\|\Sigma_{X X}\right\|_{\mathrm{HS}}+\left\|\Sigma_{X X}\right\|_{\mathrm{HS}}^{2} \\
& =\mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{4}+2 \mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{2}\left\|\Sigma_{X X}\right\|_{\mathrm{HS}}+\left\|\Sigma_{X X}\right\|_{\mathrm{HS}}^{2}
\end{aligned}
$$

which is finite, because $\Sigma_{X X}$ is a Hilbert-Schmidt operator, and that, by Assumption 8, $\mathrm{E}\left\|\kappa_{X}\left(\cdot, X_{1}\right)\right\|_{\mathcal{H}_{X}}^{4}=\mathrm{E}\left\{\kappa_{X}\left(X_{1}, X_{1}\right)^{2}\right\}<\infty$, guaranteeing that $\mathrm{E}\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{4}$ is finite. Together, (S1.8) and (S1.9), along with Markov's inequality, imply that

$$
\left\|\frac{1}{n} \sum_{i=1}^{n}\left(h_{X_{i}} \otimes h_{X_{i}}\right)-\Sigma_{X X}\right\|_{\mathrm{HS}}=\mathcal{O}_{p}(1 / \sqrt{n})
$$

Combining the results above, we obtain that $\left\|\hat{\Sigma}_{X X}-\Sigma_{X X}\right\|_{\mathrm{HS}}=\mathcal{O}_{p}(1 / \sqrt{n})$. The results for $\hat{\Sigma}_{X Y}$ and $\hat{\Sigma}_{Y Y}$ can be established similarly. This completes the proof of Lemma S1.1.

The second auxiliary lemma shows that the inverse operators $G_{n 1}^{-1}$ and $G_{n 2}^{-1}$ are bounded in the operator norm, where $G_{n 1}^{-1}=\left(\hat{\Sigma}_{X X}+\tau I\right)^{-1}$ and $G_{n 2}^{-1}=\left(\Sigma_{X X}+\tau I\right)^{-1}$.

Lemma S1.2. Suppose the conditions of Theorem 3 hold. Then, $\left\|G_{n 1}^{-1}\right\|_{\mathrm{OP}} \leq 1 / \tau$, and $\left\|G_{n 2}^{-1}\right\|_{\mathrm{OP}} \leq 1 / \tau$.

Proof of Lemma S1.2. Note that $\left\|G_{n 2}^{-1}\right\|_{\mathrm{OP}}=(1 / \tau)\left\|\left(\Sigma_{X X} / \tau+I\right)^{-1}\right\|_{\mathrm{OP}} \leq 1 / \tau$. This relation holds because, by the positive semi-definiteness of $T=\Sigma_{X X} / \tau$, we have, for arbitrary $f \in \mathcal{H}_{X}$,

$$
\begin{aligned}
\left\|(T+I)^{-1} f\right\|_{\mathcal{H}_{X}}^{2} & \leq\left\langle(T+I)(T+I)^{-1} f,(T+I)^{-1} f\right\rangle_{\mathcal{H}_{X}} \\
& \leq\|f\|_{\mathcal{H}_{X}}\left\|(T+I)^{-1} f\right\|_{\mathcal{H}_{X}},
\end{aligned}
$$

implying that $\left\|(T+I)^{-1} f\right\|_{\mathcal{H}_{X}} \leq\|f\|_{\mathcal{H}_{X}}$. Similarly, we can show that $\left\|G_{n 1}^{-1}\right\|_{\mathrm{OP}} \leq 1 / \tau$. This completes the proof of Lemma S1.2.

The third auxiliary lemma establishes the convergence rate for the effect of replacing the pseudo-inverse with its regularized counterpart on the population level.

Lemma S1.3. Suppose the conditions of Theorem 3 hold. Then, $\left\|G_{n 2}^{-1} \Sigma_{X Y}-\Sigma_{X X}^{\dagger} \Sigma_{X Y}\right\|_{\mathrm{OP}}=$ $\mathcal{O}(\tau)$.

Proof of Lemma S1.3. By Assumption 9 and Theorem 1 of Douglas (1966), we have $\Sigma_{X Y}=\Sigma_{X X}^{2} C$, for some bounded operator $C: \mathcal{H}_{X} \rightarrow \mathcal{H}_{X}$. This further implies that,

$$
\begin{aligned}
\left\|G_{n 2}^{-1} \Sigma_{X Y}-\Sigma_{X X}^{\dagger} \Sigma_{X Y}\right\|_{\mathrm{OP}} & \leq\left\|\left(G_{n 2}^{-1} \Sigma_{X X}-I\right) \Sigma_{X X}\right\|_{\mathrm{OP}}\|C\|_{\mathrm{op}} \\
& =\left\|-\tau G_{n 2}^{-1} \Sigma_{X X}\right\|_{\mathrm{oP}}\|C\|_{\mathrm{oP}}=\tau\left\|\tau G_{n 2}^{-1}-I\right\|_{\mathrm{oP}}\|C\|_{\mathrm{op}}
\end{aligned}
$$

where $\left\|\tau G_{n 2}^{-1}-I\right\|_{\mathrm{OP}} \leq \tau\left\|G_{n 2}^{-1}\right\|_{\mathrm{OP}}+\|I\|_{\mathrm{OP}} \leq 2$, by Lemma S1.2. Therefore,

$$
\left\|G_{n 2}^{-1} \Sigma_{X Y}-\Sigma_{X X}^{\dagger} \Sigma_{X Y}\right\|_{\mathrm{OP}}=\mathcal{O}(\tau)
$$

This completes the proof of Lemma S1.3.

Based on the above three auxiliary lemmas, we next prove Theorem 3 .
We first establish the closeness of $G_{n 1}^{-1} \hat{\Sigma}_{X Y}$ to the operator $G_{n 2}^{-1} \Sigma_{X Y}$. Note that

$$
\begin{align*}
& \left\|G_{n 1}^{-1} \hat{\Sigma}_{X Y}-G_{n 2}^{-1} \Sigma_{X Y}\right\|_{\mathrm{OP}} \tag{S1.10}\\
\leq & \left\|G_{n 1}^{-1}\right\|_{\mathrm{OP}}\left\|\hat{\Sigma}_{X Y}-\Sigma_{X Y}\right\|_{\mathrm{oP}}+\left\|\left(G_{n 1}^{-1}-G_{n 2}^{-1}\right) \Sigma_{X Y}\right\|_{\mathrm{OP}}
\end{align*}
$$

To simplify (S1.10), we observe that, by Assumption 9, we have $\Sigma_{X Y}=\Sigma_{X X} D$ for some bounded operator D. This implies that

$$
\begin{aligned}
\left\|\left(G_{n 1}^{-1}-G_{n 2}^{-1}\right) \Sigma_{X Y}\right\|_{\mathrm{OP}} & =\left\|G_{n 1}^{-1}\left(G_{n 1}-G_{n 2}\right) G_{n 2}^{-1} \Sigma_{X Y}\right\|_{\mathrm{OP}} \\
& \leq\left\|G_{n 1}^{-1}\right\|_{\mathrm{oP}}\left\|G_{n 1}-G_{n 2}\right\|_{\mathrm{OP}}\left\|G_{n 2}^{-1} \Sigma_{X Y}\right\|_{\mathrm{oP}} \\
& \leq(1 / \tau)\left\|\hat{\Sigma}_{X X}-\Sigma_{X X}\right\|_{\mathrm{oP}}\left\|G_{n 2}^{-1} \Sigma_{X Y}\right\|_{\mathrm{OP}} \\
& \leq \mathcal{O}_{p}(1 /\{\tau \sqrt{n}\})\left\|\left(\Sigma_{X X}+\tau I\right)^{-1} \Sigma_{X X}\right\|_{\mathrm{OP}}\|D\|_{\mathrm{OP}} \\
& =\mathcal{O}_{p}(1 /\{\tau \sqrt{n}\})
\end{aligned}
$$

where the last equality holds because the largest eigenvalue of the operator $\left(\Sigma_{X X}+\right.$ $\tau I)^{-1} \Sigma_{X X}$ is bounded from above by one.

Therefore, together with Lemmas S1.1 and S1.2, we have that

$$
\begin{equation*}
\left\|G_{n 1}^{-1} \hat{\Sigma}_{X Y}-G_{n 2}^{-1} \Sigma_{X Y}\right\|_{\mathrm{OP}}=\mathcal{O}_{p}(1 /\{\tau \sqrt{n}\}) \tag{S1.11}
\end{equation*}
$$

Combining (S1.11) with Lemma 51.3 leads to

$$
\left\|G_{n 1}^{-1} \Sigma_{X Y}-\Sigma_{X X}^{\dagger} \Sigma_{X Y}\right\|_{\mathrm{OP}}=\mathcal{O}_{p}(\tau+1 /\{\tau \sqrt{n}\})
$$

The sample convergence of $\left(\hat{\Sigma}_{Y Y}+\tau I\right)^{-1} \hat{\Sigma}_{Y X}$ can be established similarly. This completes the proof of Theorem 3 .

Proof of Theorem 4: Denote $\mathbb{I}_{i k}=\mathbb{I}\left(Y_{i}=k\right), N_{k}=\sum_{i=1}^{n} \mathbb{I}_{i k}$, and $h_{X_{i}}=\kappa_{X}\left(\cdot, X_{i}\right)-$ μ_{X}. We have that

$$
\hat{\gamma}_{X \mid k}=\frac{1}{N_{k}} \sum_{i=1}^{n} \mathbb{I}_{i k} h_{X_{i}}-\frac{1}{n} \sum_{i=1}^{n} h_{X_{i}}=\frac{1}{N_{k}} \sum_{i=1}^{n} \mathbb{I}_{i k} h_{X_{i}}-\bar{h}_{n}
$$

Consequently,

$$
\begin{align*}
& \mathrm{E}\left\|\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}=\mathrm{E}\left\|\frac{1}{N_{k}} \sum_{i=1}^{n} \mathbb{I}_{i k} h_{X_{i}}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}+\mathrm{E}\left\|\bar{h}_{n}\right\|_{\mathcal{H}_{X}}^{2} \tag{S1.12}\\
&-2 \mathrm{E}\left\langle\frac{1}{N_{k}} \sum_{i=1}^{n} \mathbb{I}_{i k} h_{X_{i}}-\gamma_{X \mid k}, \bar{h}_{n}\right\rangle_{\mathcal{H}_{X}}
\end{align*}
$$

The first term of the right-hand-side of (S1.12) is equal to,

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left(\frac{1}{N_{k}^{2}} \mathbb{I}_{i k} \mathbb{I}_{j k}\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{j}}-\gamma_{X \mid k}\right\rangle_{\mathcal{H}_{X}}\right) \tag{S1.13}
\end{equation*}
$$

Denote $v_{i j}=\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{j}}-\gamma_{X \mid k}\right\rangle_{\mathcal{H}_{X}}$. Then, for any distinct $i \neq j$, conditioning on the values of the corresponding indicators implies the summand in S1.13) equals

$$
\mathrm{E}\left(\left.\frac{1}{N_{k}^{2}} v_{i j} \right\rvert\, \mathbb{I}_{i k} \mathbb{I}_{j k}=1\right) \pi_{k}^{2}=\mathrm{E}\left(\left.\frac{1}{N_{k}^{2}} \right\rvert\, \mathbb{I}_{i k} \mathbb{I}_{j k}=1\right) \mathrm{E}\left(v_{i j} \mid \mathbb{I}_{i k} \mathbb{I}_{j k}=1\right) \pi_{k}^{2}
$$

where $\pi_{k}=P(Y=k)$. Using a similar argument as in S1.7) and the definition of $\gamma_{X \mid k}$, we have that $\mathrm{E}\left(v_{i j} \mid \mathbb{I}_{i k} \mathbb{I}_{j k}=1\right)=0$, implying that S 1.13$)$ is further equal to

$$
\begin{align*}
& \sum_{i=1}^{n} \mathrm{E}\left(\frac{1}{N_{k}^{2}} \mathbb{I}_{i k}\left\|h_{X_{i}}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}\right) \tag{S1.14}\\
= & n \pi_{k} \mathrm{E}\left(\left.\frac{1}{N_{k}^{2}} \right\rvert\, \mathbb{I}_{1 k}=1\right) \mathrm{E}\left(\left\|h_{X_{1}}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2} \mid \mathbb{I}_{1 k}=1\right) .
\end{align*}
$$

Correspondingly, we have that

$$
\begin{aligned}
\pi_{k} \mathrm{E}\left(\left\|h_{X_{1}}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2} \mid \mathbb{I}_{1 k}=1\right) & =\pi_{k}\left\{\mathrm{E}\left(\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{2} \mid \mathbb{I}_{1 k}=1\right)-\left\|\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}\right\} \\
& \leq \mathrm{E}\left(\left\|h_{X_{1}}\right\|_{\mathcal{H}_{X}}^{2}\right)<\infty
\end{aligned}
$$

We next tackle the term $\mathrm{E}\left(1 / N_{k}^{2} \mid \mathbb{I}_{1 k}=1\right)$. Conditioning on $\left\{\mathbb{I}_{1 k}=1\right\}$, the distribution of $(n-1)^{2} / N_{k}^{2}$ is that of $(n-1)^{2} /(B+1)^{2}$, where B follows a $\operatorname{Binomial}\left(n-1, \pi_{k}\right)$ distribution. By Theorem 1 of Shi et al. (2010), the expected value of $(n-1)^{\alpha} /(B+c)^{\alpha}$
is of the order $\mathcal{O}(1)$ for any $c, \alpha>0$. This further implies that (S1.14) and, consequently, the first term on the right-hand-side of (S1.12), is of the order $\mathcal{O}(1 / n)$.

The second term of the right-hand-side of (S1.12), as shown in Theorem 3 and by Assumption 8, is of the order $\mathcal{O}(1 / n)$.

The third term of the right-hand-side of (S1.12) can be expressed as

$$
\begin{equation*}
-\frac{2}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathrm{E}\left(\frac{1}{N_{k}} \mathbb{I}_{i k}\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{j}}\right\rangle\right) . \tag{S1.15}
\end{equation*}
$$

Conditioning on the indicators, we can rewrite the contribution of any index pair of $i \neq j$ to the sum as

$$
\sum_{\ell=1}^{K} \pi_{k} \pi_{\ell} \mathrm{E}\left(1 / N_{k} \mid \mathbb{I}_{i k} \mathbb{I}_{j \ell}=1\right) \mathrm{E}\left(\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{j}}\right\rangle \mid \mathbb{I}_{i k} \mathbb{I}_{j \ell}=1\right)
$$

where the final expected value is equal to zero, following a similar argument to (S1.7). Therefore, only the index pairs of $i=j$ contribute to the sum (S1.15), which then takes the form,

$$
\begin{aligned}
& -\frac{2}{n} \sum_{i=1}^{n} \mathrm{E}\left(\frac{1}{N_{k}} \mathbb{I}_{i k}\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{i}}\right\rangle\right) \\
= & -2 \pi_{k} \mathrm{E}\left(1 / N_{k} \mid \mathbb{I}_{i k}=1\right) \mathrm{E}\left(\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{i}}\right\rangle \mid \mathbb{I}_{i k}=1\right) .
\end{aligned}
$$

Now, $\mathrm{E}\left(1 / N_{k} \mid \mathbb{I}_{i k}=1\right)=\mathcal{O}(1 / n)$ by Theorem 1 of Shi et al. (2010). Moreover, we can show that the term $\pi_{k} \mathrm{E}\left(\left\langle h_{X_{i}}-\gamma_{X \mid k}, h_{X_{i}}\right\rangle \mid \mathbb{I}_{i k}=1\right)$ is of the order $\mathcal{O}(1)$. Consequently, the third term on the right-hand-side of $(\mathrm{S} 1.12)$ is of the order $\mathcal{O}(1 / n)$.

Applying the Markov's inequality obtains that $\left\|\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}=\mathcal{O}_{p}(1 / \sqrt{n})$.
We next show that $\sum_{k=1}^{K}\left(N_{k} / n\right)\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)$ converges in the Hilbert-Schmidt norm to $\Gamma_{X X \mid Y}=\sum_{k=1}^{K} \pi_{k}\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)$. Note that the norm of the difference $\sum_{k=1}^{K}\left(N_{k} / n\right)\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)-\sum_{k=1}^{K} \pi_{k}\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)$ is upper-bounded by

$$
\begin{align*}
& \left\|\sum_{k=1}^{K}\left(N_{k} / n\right)\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)-\sum_{k=1}^{K} \pi_{k}\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)\right\|_{\mathrm{HS}} \\
\leq & \sum_{k=1}^{K}\left\|\left(N_{k} / n\right)\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)-\pi_{k}\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)\right\|_{\mathrm{HS}} \\
\leq & \sum_{k=1}^{K}\left\{\left(N_{k} / n\right)\left\|\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)-\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)\right\|_{\mathrm{HS}}+\left|\left(N_{k} / n\right)-\pi_{k}\right|\left\|\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right\|_{\mathrm{HS}}\right\} \\
\leq & \sum_{k=1}^{K}\left\{\left(N_{k} / n\right)\left\|\left(\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right) \otimes \hat{\gamma}_{X \mid k}\right\|_{\mathrm{HS}}\right. \\
& \left.+\left(N_{k} / n\right)\left\|\left\{\gamma_{X \mid k} \otimes\left(\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right)\right\}\right\|_{\mathrm{HS}}+\left|\left(N_{k} / n\right)-\pi_{k}\right|\left\|\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right\|_{\mathrm{HS}}\right\} . \quad \text { (S1.16 } \tag{S1.16}
\end{align*}
$$

Note that $\left\|\left(\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right) \otimes \hat{\gamma}_{X \mid k}\right\|_{\text {HS }}^{2}=\left\|\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}\left\|\hat{\gamma}_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}=\mathcal{O}_{p}(1 / n)$, because $\left\|\hat{\gamma}_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}$ converges to the finite constant $\left\|\gamma_{X \mid k}\right\|_{\mathcal{H}_{X}}^{2}$ as $n \rightarrow \infty$. Similarly, we can show that $\left\|\gamma_{X \mid k} \otimes\left(\hat{\gamma}_{X \mid k}-\gamma_{X \mid k}\right)\right\|_{\text {HS }}^{2}=\mathcal{O}_{p}(1 / n)$, and that $\left|\left(N_{k} / n\right)-\pi_{k}\right|=\mathcal{O}_{p}(1 / \sqrt{n})$, which follows from the standard Central Limit Theorem. Substituting all terms with their rates in S1.16), we have that $\left\|\sum_{k=1}^{K}\left(N_{k} / n\right)\left(\hat{\gamma}_{X \mid k} \otimes \hat{\gamma}_{X \mid k}\right)-\sum_{k=1}^{K} \pi_{k}\left(\gamma_{X \mid k} \otimes \gamma_{X \mid k}\right)\right\|_{\text {HS }}=$ $\mathcal{O}_{p}(1 / \sqrt{n})$.

We further employ the proof of Theorem 3 to deal with the inclusion of the pseudo-inverses. This completes the proof of Theorem 4 .

References

Douglas, R. G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space. Proceedings of the American Mathematical Society 17(2), 413-415.

Lee, K.-Y., B. Li, and F. Chiaromonte (2013). A general theory for nonlinear sufficient dimension reduction: Formulation and estimation. The Annals of Statistics 41 (1), 221-249.

Li, B. (2018). Sufficient Dimension Reduction: Methods and Applications with R. Chapman and Hall, CRC.

Li, B. and J. Song (2017). Nonlinear sufficient dimension reduction for functional data. The Annals of Statistics 45, 1059-1095.

Lukić, M. and J. Beder (2001). Stochastic processes with sample paths in reproducing kernel Hilbert spaces. Transactions of the American Mathematical Society 353(10), 3945-3969.

Shi, X., Y. Wu, and Y. Liu (2010). A note on asymptotic approximations of inverse moments of nonnegative random variables. Statistics 8 Probability Letters 80(1516), 1260-1264.

Zwald, L., O. Bousquet, and G. Blanchard (2004). Statistical properties of kernel principal component analysis. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) 3120, 594-608.

