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Abstract: In this article, we propose a general nonlinear sufficient dimension reduc-

tion (SDR) framework when both the predictor and the response lie in some general

metric spaces. We construct reproducing kernel Hilbert spaces with kernels that are

fully determined by the distance functions of the metric spaces, and then leverage

the inherent structures of these spaces to define a nonlinear SDR framework. We

adapt the classical sliced inverse regression within this framework for the metric

space data. Next we build an estimator based on the corresponding linear opera-

tors, and show that it recovers the regression information in an unbiased manner.

We derive the estimator at both the operator level and under a coordinate system,

and establish its convergence rate. Lastly, we illustrate the proposed method using

synthetic and real data sets that exhibit non-Euclidean geometry.

Key words and phrases: Covariance operator, metric space, reproducing kernel

Hilbert space, sliced inverse regression, sufficient dimension reduction.

1. Introduction

High-dimensional data are now commonplace in almost every branch of sci-

ence and business, and dimension reduction plays a central role in analyzing such

data. A particularly useful reduction paradigm is sufficient dimension reduction

(SDR), which embodies a family of methods that aim to reduce the dimensional-

ity in a regression setting, without losing any information. Since the pioneering

work of the sliced inverse regression (Li (1991, SIR)), SDR has developed rapidly.

For a univariate response Y and a p-dimensional predictor X, SDR seeks a low-

dimensional representation, usually in the form of linear combinations βTX, for

a p× d matrix β = (β1, . . . , βd) with d ≤ p, such that

Y X | βT

1X, . . . , β
T

dX. (1.1)

As such, βTX contains full regression information of Y givenX, and the dimension

is reduced because d is often much smaller than p. SDR then seeks the minimum

subspace spanned by β, called the central subspace, which exists uniquely under
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very mild conditions (Yin, Li and Cook (2008)). Numerous SDR methods have

since been proposed based on SIR (Li (1991)), mostly in a model-free fashion

that does not impose a specific parametric form on the association between Y

and βTX. Examples include the works of Cook and Weisberg (1991), Li (1992),

Cook and Li (2002), Xia et al. (2002), Li and Wang (2007), and Ma and Zhu (2012,

2013), among many others. See also Li (2018b) for a comprehensive review.

The SDR in (1.1) achieves a linear dimension reduction, because the low-

dimensional representation takes the form of linear combinations of X. However,

although it preserves the original coordinates of X and is easier to interpret, it

is also less flexible. A more recent line of SDR research instead seeks nonlinear

dimension reduction (Fukumizu, Bach and Jordan (2004, 2009); Li, Artemiou

and Li (2011); Lee, Li and Chiaromonte (2013); Li and Song (2017)), such that

Y X | f1(X), . . . , fd(X), (1.2)

where f1, . . . , fd are some functions in a Hilbert space. Nonlinear SDR is more

flexible, and may require fewer functions than its linear counterpart to capture

the full regression information. However, in general, it is also more difficult to

interpret.

Despite the substantial progress of SDR, most existing SDR solutions target

data in a Euclidean space. However, modern data objects are becoming increas-

ingly complex, and often reside in non-Euclidean spaces. Such data are routinely

collected in applications such as medical imaging, computational biology, and

computer vision, and thus it is of great interest to understand the associations

between these complex data objects (Lin et al. (2017); Cornea et al. (2017);

Dubey and Müller (2019); Petersen and Müller (2019); Lin and Yao (2019); Pan

et al. (2020)). As examples, we consider geometric data, positive-definite matrix

data, and compositional data. For instance, in brain structural and functional

connectivity analyses (Zhu et al. (2009); Zhang, Sun and Li (2020)), the data are

usually in the form of positive-definite matrices that measure the connectivity

strengths of pairs of nodes of a network and admit a certain manifold structure.

In chemistry, geology, and microbiome analysis (Lu, Shi and Li (2019)), the data

are the proportions of individual components that sum to a fixed constant. There

are many other examples of complex object data (Wang and Marron (2007)). In

all these examples, the data reside in some non-Euclidean spaces, and a proper

metric is needed to characterize the intrinsic features of the data.

We propose a general nonlinear SDR framework when both the predictor and

the response lie in some general, and possibly different, metric spaces. Our key
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idea is to construct a pair of reproducing kernel Hilbert spaces (RKHSs), the ker-

nels of which are fully determined by the distance functions of the metric spaces.

We then leverage the inherent structures of these spaces to define a nonlinear

SDR framework for the metric space data. Here, we adapt the sliced inverse

regression of Li (1991) within this framework. We build the estimator based on

some linear operators, and show that it recovers the regression information in an

unbiased manner. We derive the estimator at both the operator level and under

a coordinate system. We also establish the convergence rate of the estimator

under both settings when the response lies on a general metric space, and when

the response is categorical. We illustrate the proposed method using synthetic

and real data sets that exhibit non-Euclidean geometry.

Our proposal is related to, but also differs from the nonlinear SDR method of

Lee, Li and Chiaromonte (2013), as well as some recent SDR solutions involving

functional or non-Euclidean data, such as those of Yeh, Huang and Lee (2008),

Li and Song (2017), Tomassi et al. (2019), Ying and Yu (2020), and Lee and

Li (2022). In particular, Lee, Li and Chiaromonte (2013) developed a general

framework for nonlinear SDR in which they estimate the functions f1, . . . , fd in

(1.2) as the eigenfunctions of some linear operator defined on a Hilbert space H.

However, they target Euclidean data, and take H to be an L2-space at the popu-

lation level and an RKHS at the sample level. Our framework is similar to theirs,

but we consider data residing in a general metric space. Moreover, we take H to

be an RKHS at both the population and the sample levels, which makes the con-

nection between the population and sample versions of the estimation procedure

more transparent. Yeh, Huang and Lee (2008) proposed a kernel SIR under the

framework of (1.2), but require a functional version of the linearity condition. We

instead adopt a general form of conditional independence based on σ-fields, and

avoid relying on the linearity condition. Li and Song (2017) considered nonlinear

SDR for functional data, where X is a function residing in some Hilbert space,

and Lee and Li (2022) studied linear SDR when X and Y are both functions

in some Hilbert space. In contrast, we consider more general data objects than

functional data. Tomassi et al. (2019) developed linear SDR for compositional

data, but restricted their solution to a specific set of parametric models for the

conditional distribution of X given Y . Ying and Yu (2020) developed SDR when

the response is in a metric space and the predictors reside in a Euclidean space.

However, because the dimension reduction is performed for the predictors, our

method differs considerably from that of Ying and Yu (2020).

The rest of the article is organized as follows. In Section 2, we develop the

general framework for nonlinear SDR for data in metric spaces, and in Section
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3, we derive the metric version of SIR under this framework. In Section 4, we

describe a finite-sample implementation, and in Section 5, we study the conver-

gence properties of the estimator. In Section 6, we present the results of our

numerical studies. All proofs are provided in the online Supplementary Material.

2. Nonlinear SDR for Metric Space Data

In this section, we propose a general framework for conducting nonlinear SDR

on data residing in arbitrary metric spaces. First, we define a minimal σ-field

that captures the full regression information. Then, we construct RKHSs for X

and Y from the metric spaces, and use these RKHSs to define a representation

of the minimal σ-field that is easier to estimate.

Let (Ω,F , P ) be a complete probability space. Let (Ω0
X , dX) and (Ω0

Y , dY )

be arbitrary separable metric spaces in which the predictor and the response,

respectively, take values. We make no further assumption on the data space and,

depending on Ω0
X and Ω0

Y , there may be multiple feasible choices for the metrics

dX and dY . For instance, in Section 6, we take Ω0
X to be some manifold spaces

and consider different choices of metrics for dX .

Let FX and FY be the Borel σ-fields generated by the open sets in the

metric topologies in Ω0
X and Ω0

Y , respectively. Consider X : Ω → Ω0
X to be an

F/FX -measurable random variable with the distribution PX = P ◦X−1, and Y :

Ω→ Ω0
Y to be an F/FY -measurable random variable with the distribution PY =

P ◦Y −1. For simplicity, suppose the joint random variable (X,Y ) is F/(FX×FY )-

measurable. Let PX|Y : FX ×Ω0
Y → R be the conditional distribution of X given

Y = y, and suppose the set {PX|Y (· | y) | y ∈ Ω0
Y } is dominated by a σ-finite

measure. Let σX be the σ-field generated by X. We adopt the following definition

from Lee, Li and Chiaromonte (2013).

Definition 1. A sub-σ-field G of σX is said to be an SDR σ-field for Y given X

if the random elements Y and X are conditionally independent given G, in that

Y X | G. When the set of conditional distributions {PX|Y (· | y) | y ∈ Ω0
Y } is

dominated by a σ-finite measure, the intersection of all SDR σ-fields is itself an

SDR σ-field, called the central σ-field, and is denoted by GY |X .

Definition 1 suggests that there exists a unique smallest SDR σ-field. In our pur-

suit of nonlinear SDR, we seek a set of functions f1, . . . , fd, lying in some suitable

function space HX , that are GY |X -measurable, and achieve the dimension reduc-

tion by replacingX with the corresponding sufficient predictors f1(X), . . . , fd(X).

A natural candidate for the function space HX is L2(PX), the class of all

square integrable functions f : Ω0
X → R; see Lee, Li and Chiaromonte (2013).
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We instead take HX to be a suitably defined RKHS, which makes the subse-

quent methodology and theory development considerably simpler. To connect

the RKHS HX to the metric structure of the space Ω0
X , we consider a posi-

tive semi-definite kernel κX : Ω0
X × Ω0

X → R, for which there exists a function

ρ : R→ R, such that, for all x1, x2 ∈ Ω0
X ,

κ(x1, x2) = ρ{dX(x1, x2)}, (2.1)

where dX is the metric of Ω0
X . We further impose the following finite second-

order moment requirement for the kernel function, which is essentially the RKHS-

equivalent of requiring a random variable to be square integrable, and is a rather

mild condition.

Assumption 1. Suppose E{κX(X,X)} <∞, and E{κY (Y, Y )} <∞.

There are multiple choices for this type of kernel function, including the Gaussian

kernel and the Laplace kernel, among others. Here, we use a Gaussian kernel with

a positive covariance.

Given the kernels κX and κY , let H0
X and H0

Y be the RKHSs generated by

κX and κY , respectively. By Assumption 1, we have that H0
X ⊆ L2(PX) and

H0
Y ⊆ L2(PY ). Moreover, by the Riesz representation theorem, there exist a

unique mean element µX ∈ H0
X and a unique covariance operator Σ0

XX , such

that

〈f, µX〉H0
X

= E{f(X)}, for all f ∈ H0
X ,

〈f,Σ0
XXf

′〉H0
X

= Cov{f(X), f ′(X)}, for all f, f ′ ∈ H0
X .

Note that every f0 ∈ ker(Σ0
XX) satisfies Var{f0(X)} = 〈f0,Σ0

XXf0〉H0
X

= 0, and

is almost surely equal to a constant, where ker(·) denotes the null space. As such,

we restrict our attention to HX = ran(Σ0
XX), where ran(·) denotes the range, and

ran(·) denotes the closure of the range.

Lemma 1. Suppose Assumption 1 holds. There exists a set ΩX ⊆ Ω0
X , such that

PX(ΩX) = 1 and κX(·, x)− µX ∈ HX , for all x ∈ ΩX .

Lemma 1 states that the functions κX(·, x)−µX , for x ∈ ΩX , belong to the space

HX , which allows us to perform centering using the inner product, 〈f, κX(·, x)−
µX〉HX

= f(x) − E{f(X)}. The proof of Lemma 1 also shows that the space

HX admits an alternative characterization, HX = span{κX(·, x)−µX : x ∈ ΩX},
where span(·) denotes the closure of the space spanned by the set of functions. A

similar result was obtained by Li and Song (2017, Lemma 1). However, their proof
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implicitly assumes that the empty set is the only set for which PX assigns a zero

probability, essentially ruling out all continuous distributions; our Lemma 1 fixes

this issue. Furthermore, this characterization does not imply that the elements

f ∈ HX are centered in the sense that E{f(X)} = 0. Instead, focusing on HX
removes the constant functions that are of no interest to us in terms of dimension

reduction. We construct µY , Σ0
Y Y , and the RKHS HY in an analogous manner.

Definition 2. We call the set of all f ∈ HX that are GY |X -measurable the central

class, and denote this set by SY |X .

We make two remarks. First, our notion of dimension reduction is based on the

smallest SDR σ-field, that is, the central σ-field. In our setting, the concept of

“dimensionality” is less obvious than that in the classical SDR setting, where it

is simply the dimension of the central subspace. This is because there are sets

that generate the same σ-field, but with different dimensions. Nevertheless, our

formulation is useful when one is interested in reducing the dimensionality in

the class sense, because the central class induced by the central σ-field contains

all sets of functions that generate the same σ-field, and we seek the smallest

one. Second, the relation between the central σ-field GY |X and the central class

SY |X is analogous to the relation between the central subspace and the sufficient

predictors in the classical setting. That is, in lieu of estimating GY |X , we search

for subsets of elements of SY |X , which are more concrete and easier to estimate.

3. Metric SIR

In this section, we derive the population-level SIR for metric space data. In

the classical SIR (Li (1991)), X and Y both lie in a Euclidean space, and one

estimates the central subspace using the range of the matrix,

Var(X)−1Var{E(X | Y )}. (3.1)

We next derive the operator analogue for (3.1) for two cases: the general case of

Y residing in a metric space, and the special case of Y being a discrete random

variable.

3.1. Metric response

We first define a number of covariance operators that serve as the building

blocks of our nonlinear metric SIR procedure:

ΣXX : HX → HX , 〈f,ΣXXf
′〉HX

= Cov{f(X), f ′(X)},
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ΣXY : HY → HX , 〈f,ΣXY g〉HX
= Cov{f(X), g(Y )}, (3.2)

ΣY Y : HY → HY , 〈g′,ΣY Y g〉HY
= Cov{g′(Y ), g(Y )},

for f, f ′ ∈ HX and g, g′ ∈ HY . In addition, the cross-covariance operator

ΣY X : HX → HY can be obtained as ΣY X = Σ∗XY , the adjoint of the opera-

tor ΣXY . Furthermore, because HX = ran(Σ0
XX), we have ker(ΣXX) = {0} and

ran(ΣXX) = HX .

We next introduce two regularity conditions.

Assumption 2. Suppose that HX + R and HY + R are dense in L2(PX) and

L2(PY ), respectively, where + denotes the direct sum.

Assumption 3. Suppose ran(ΣY X) ⊆ ran(ΣY Y ) and ran(ΣXY ) ⊆ ran(ΣXX).

Assumption 2 is typical in kernel learning and holds in general, for example,

when κX is a Gaussian kernel (Fukumizu, Bach and Jordan (2009)). In this

assumption, by “dense” we mean that, for every f ∈ L2(PX), there exists a

sequence of elements fn ∈ HX , such that var{f(X) − fn(X)} → 0, as n → ∞.

Assumption 3 is essentially a smoothness condition on the relation between X

and Y (Li (2018a)). Similar conditions are common in the SDR literature (Ying

and Yu (2020); Li and Song (2022)). Assumption 3 guarantees that the operator

Σ†Y Y ΣY X is both well-defined and bounded (Douglas (1966, Thm. 1)), where †
denotes the Moore–Penrose pseudo-inverse of ΣY Y ; see Li (2018a) for details on

the Moore–Penrose pseudo-inverse of an operator.

The next lemma provides some useful expressions for the conditional mo-

ments of X given Y at the operator level that are essential in the construction

of the operator analogue for the SIR estimator (3.1). In addition, they help turn

conditional moments into unconditional moments, thus avoiding the slicing step

in the original SIR.

Lemma 2. Suppose Assumptions 1, 2, and 3 hold. Then,

(a) for any f ∈ HX , E{f(X) |Y } − E{f(X)} = 〈Σ†Y Y ΣY Xf, κY (·, Y )− µY 〉HY
;

(b) for any f, f ′∈HX , Cov[E{f(X) |Y },E{f ′(X) |Y }]=〈f,ΣXY Σ†Y Y ΣY Xf
′〉HX

.

By Lemma 2, the operator ΣXY Σ†Y Y ΣY X can be viewed as the analogue of

the matrix Var{E(X | Y )} in (3.1), and the operator Σ†XX can be viewed as the

analogue of Var(X)−1 in (3.1). Consequently, a direct operator counterpart of

(3.1) is

ΛSIR = Σ†XXΣXY Σ†Y Y ΣY X . (3.3)
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This operator is well-defined, by Assumption 3. Moreover, if we choose linear

kernels κX and κY , then ΛSIR reduces precisely to the matrix of the canonical

correlation analysis (CCA).

The next theorem shows that the operator ΛSIR is bounded and that the

closure of its range is unbiased for the central class, mirroring the classical SIR

for linear SDR of Euclidean data. We need an additional regularity condition.

Assumption 4. Suppose the set ran(ΣXX)∩S⊥Y |X is dense in the set S⊥Y |X , where

the orthogonal complement is taken with respect to HX .

Assumption 4 requires that the intersection between ran(ΣXX) and S⊥Y |X is suit-

ably rich in S⊥Y |X . This is a mild condition, because ran(ΣXX) is, by definition,

dense in its closure HX . A similar condition is imposed implicitly in Li and Song

(2017).

Theorem 1. Suppose Assumptions 1 to 4 hold. Then, ΛSIR is a bounded operator

and ran(ΛSIR) ⊆ SY |X .

Theorem 1 suggests that we can recover the central class using the range of

ΛSIR, or equivalently, by using the spectral decomposition of ΛSIRΛ∗SIR. This

is the foundation of our estimation procedure, developed in Section 4. We call

our proposed nonlinear SDR method based on ΛSIR the metric sliced inverse

regression (MSIR).

3.2. Discrete response

Next, we consider a special case in which Y lies in the usual Euclidean space

and is discrete. This scenario is perhaps most often encountered in real appli-

cations. The main difference between this special case and the general case is

that, when Y is discrete, we can obtain direct RKHS representations for the con-

ditional moments, rather than resorting to unconditional representations, as in

Lemma 2.

Specifically, suppose Ω0
Y = {1, . . . ,K}, and let πk = P (Y = k) and πk > 0,

for all k ∈ Ω0
Y . By the Riesz representation theorem, elements γX|k ∈ HX , for

k = 1, . . . ,K, exist such that, for any f ∈ HX ,

E{f(X) | Y = k} − E{f(X)} = 〈γX|k, f〉HX
.

The elements γX|k provide a discrete counterpart of Lemma 2(a). We then define

the covariance operator
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ΓXX|Y =

K∑
k=1

πk(γX|k ⊗ γX|k) : HX → HX , (3.4)

where ⊗ denotes the tensor product. Note that, for any f, f ′ ∈ HX ,

Cov[E{f(X) | Y },E{f ′(X) | Y }] = 〈f,ΓXX|Y f ′〉HX
.

Consequently, the counterpart of ΛSIR in (3.3) when Y is categorical is

ΛSIR,D = Σ†XXΓXX|Y . (3.5)

This operator is well-defined under the following smoothness condition, and the

closure of its range provides an unbiased estimator of the central class.

Assumption 5. Suppose ran(ΓXX|Y ) ⊆ ran(ΣXX).

Theorem 2. Suppose Assumptions 1, 2, 4 and 5 hold. Then, ΛSIR,D is a bounded

operator and ran(ΛSIR,D) ⊆ SY |X .

4. Sample Estimation

In this section, we develop the sample estimator for the proposed metric SIR,

first at the operator level, then under a coordinate system, given the independent

and identically distributed (i.i.d.) random sample observations {(X1, Y1), . . . ,

(Xn, Yn)} of (X,Y ).

4.1. Estimation at the operator level

For the general case when the response Y resides in a metric space, we

first obtain the sample estimators of the mean elements as µ̂X = En{κX(·, X)}
and µ̂Y = En{κY (·, Y )}, where En is the sample mean operator, such that

Enω = n−1
∑n

i=1 ωi for the samples ω1, . . . , ωn from ω. We next obtain the

sample estimators of the covariance operators ΣXX ,ΣXY , and ΣY Y in (3.2) as

Σ̂XX = En[{κX(·, X)− µ̂X} ⊗ {κX(·, X)− µ̂X}],
Σ̂XY = En[{κX(·, X)− µ̂X} ⊗ {κY (·, Y )− µ̂Y }],
Σ̂Y Y = En[{κY (·, Y )− µ̂Y } ⊗ {κY (·, Y )− µ̂Y }].

Moreover, we have Σ̂Y X = Σ̂∗XY . We then obtain the sample estimator of the

metric SIR operator ΛSIR in (3.3) as

Λ̂SIR = (Σ̂XX + τ1I)−1Σ̂XY (Σ̂Y Y + τ2I)−1Σ̂Y X ,
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where we use a ridge regularization to estimate the pseudo-inverses, τ1 and τ2
are the ridge parameters, and I is the identity operator. Finally, we estimate the

range of ΛSIR using the spectral decomposition of the operator Λ̂SIRΛ̂∗SIR. Suppose

f̂1, . . . , f̂d are the d leading eigenfunctions of Λ̂SIRΛ̂∗SIR. Then, the estimated suf-

ficient predictors corresponding to the observation X ∈ Ω0
X are f̂1(X), . . . , f̂d(X).

For the special case when Y resides in the usual Euclidean space and is

discrete, we obtain the sample estimator of the covariance operator ΓXX|Y in

(3.4) as

Γ̂XX|Y =
1

n

K∑
k=1

nk(γ̂X|k ⊗ γ̂X|k),

where nk is the number of samples belonging to the class k, I(·) is the indicator

function, and γ̂X|k = (n/nk)En{I(Y = k)κX(·, X)} − µ̂X , for k = 1, . . . ,K. We

then obtain the sample estimator of the metric SIR operator ΛSIR,D in (3.5) as

Λ̂SIR,D = (Σ̂XX + τ1I)−1Γ̂XX|Y .

Finally, we estimate the range of ΛSIR,D using the spectral decomposition of

Λ̂SIR,DΛ̂∗SIR,D.

4.2. Estimation under a coordinate representation

We next develop an estimation procedure under a chosen coordinate system.

We divide the procedure into three main steps, and focus on the general case in

which Y resides in a metric space. We do also briefly discuss the special case in

which Y is discrete.

In Step 1, we choose the kernel functions κX and κY . Although there are mul-

tiple choices of kernel functions, we use the Gaussian kernel throughout. We use

the leave-one-out cross-validation method to determine the bandwidth parame-

ters in κX and κY , following a similar strategy to that in Lee, Li and Chiaromonte

(2013). We then compute the Gram matrices KX = (κX(Xi, Xi′))
n
i,i′=1 ∈ Rn×n

and KY = (κY (Yi, Yi′))
n
i,i′=1 ∈ Rn×n, where the kernel functions κX and κY are

evaluated under the given metrics dX and dY , as in (2.1). Let Q = I − n−111T

denote the centering matrix, where 1 ∈ Rn is a vector of ones. We then compute

the centered version of the Gram matrices as

GX = QKXQ, and GY = QKYQ. (4.1)

In Step 2, we compute the coordinate representation of the sample metric SIR

operator Λ̂SIR. Consider the sample counterpart of the space H0
X , which is the
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span of the sample elements, Ĥ0
X = span

{
κX(·, Xi) | i = 1, . . . , n

}
. We impose

the following linear independence assumption, which is a mild requirement. When

it does not hold, we can simply delete a subset of the elements to obtain a linearly

independent set. Alternatively, we can construct a linearly independent basis

using the Karhunen–Loève expansion; see, for example, Lee and Li (2022).

Assumption 6. The elements κX(·, Xi), for i = 1, . . . , n, are linearly indepen-

dent.

Under Assumption 6, the elements κX(·, Xi), for i = 1, . . . , n, form a basis for

Ĥ0
X and, given an arbitrary member f ∈ Ĥ0

X , we define its coordinate [f ] ∈ Rn

as the vector of its coefficients under this basis. As such, for any f ∈ Ĥ0
X and

X ∈ Ω0
X , f(X) = [f ]TkX(X), where kX(X) = (κX(X,X1), . . . , κX(X,Xn))T.

In addition, we take the inner product of Ĥ0
X to be the bilinear form (f, f ′) 7→

〈f, f ′〉Ĥ0
X

= [f ]TKX [f ′], for f, f ′ ∈ Ĥ0
X , and the Gram matrix KX is ensured to be

positive definite by Assumption 6. Analogously, consider the sample counterpart

of the space HX , which is the span of the centered sample elements, ĤX =

span
{
κX(·, Xi) − µ̂X | i = 1, . . . , n

}
. We construct the sample spaces Ĥ0

Y and

ĤY similarly.

Correspondingly, following Fukumizu, Bach and Jordan (2009), the coordi-

nates of the sample covariance operators Σ̂XX , Σ̂XY , Σ̂Y X , and Σ̂Y Y are

[Σ̂XX ] = n−1GX , [Σ̂XY ] = n−1GY , [Σ̂Y X ] = n−1GX , and [Σ̂Y Y ] = n−1GY ,

respectively, where GX and GY are as defined in (4.1). Although this coordinate

representation seems to suggest that Σ̂Y X does not depend on Y , this is not

the case. Actually, Σ̂XX and Σ̂Y X share the same coordinate, namely n−1GX ,

but they involve different sets of bases, because they have different range spaces.

For simplicity, we drop the underlying bases in the coordinate bracket notation.

However, note that Σ̂Y X depends on Y through the underlying bases; a similar

discussion applies to Σ̂XY .

We then obtain the coordinate representation of Λ̂SIR in the next lemma.

The proof follows immediately by the definition of Λ̂SIR, and is thus omitted.

Lemma 3. The metric SIR operator Λ̂SIR has the coordinate representation

[Λ̂SIR] = G†XGYG
†
YGX , (4.2)

where † denotes the Moore–Penrose pseudo-inverse of a matrix.

To improve the numerical stability, we replace the pseudo-inverse G†X in

Lemma 3 with its ridge-regularized counterpart {GX +τ1In}−1, where τ1 is taken
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to be c × φ1(GX), φ1(·) is the largest eigenvalue of the designated matrix, and

c = 0.2. A similar procedure was also employed in Lee and Li (2022). Similarly,

we replace G†Y with {GY + τ2In}−1, where τ2 = c× φ1(GY ).

In Step 3, we estimate the range of Λ̂SIR using the eigen-decomposition of

its coordinate in (4.2). Letting v1, . . . , vd denote the d leading eigenvectors of

[Λ̂SIR][Λ̂SIR]T, the estimated sufficient predictors corresponding to an observa-

tion X ∈ Ω0
X are vT

1QkX(X), . . . vT

dQkX(X), where kX(X) = (κX(X,X1), . . . ,

κX(X,Xn))T. Alternatively, one can also use the eigenvectors of the matrix [Λ̂SIR].

The computational complexity of our proposed method is O(n3). When the

sample size n is huge, the computation can be intensive. For such a case, we

propose an alternative estimation strategy similar to that of Hung and Huang

(2019). That is, we first divide all sample observations into Q disjoint subsets,

I1, . . . , IQ. We then estimate the sufficient predictors, given each subset Iq, for

q = 1, . . . , Q. To accommodate possible discrepancies in the signs of the resulting

eigenvectors, we choose their signs such that, for each j = 1, . . . , d, we maxi-

mize the sum
∑Q

q,q′=1 v
T

j,qvj,q′ , where vj,q is the jth eigenvector of [Λ̂SIR][Λ̂SIR]T

computed based on the qth subset Iq. We then average the estimated sufficient

predictors over all Q subsets to produce the final estimate for the full sample.

For the special case in which Y resides in the usual Euclidean space and

is discrete, the coordinate representation of γX|k is [γ̂X|k] = (1/nk)1k − (1/n)1,

where the ith element of the vector 1k ∈ Rn is the indicator I(Yi = k), for

i = 1, . . . , n. Correspondingly, the coordinate representation of Λ̂SIR,D is

[Λ̂SIR,D] = G†XQ

(
K∑
k=1

1

nk
1k1

T

k

)
QGX .

Finally, we briefly comment on the problem of selecting the reduced dimen-

sion d in the SDR. Several information criterion-based selection methods have

been proposed for the SDR of Euclidean data (Zhu, Miao and Peng (2006); Luo

et al. (2009); Xia, Xu and Zhu (2015)). We expect a similar information crite-

rion is applicable for our metric SIR as well, which we leave as a topic for future

research.

5. Asymptotic Theory

In this section, we establish the convergence rate of the proposed metric SIR

estimator at the operator level for the general Y and categorical Y settings.

We begin with some regularity conditions.
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Assumption 7. Suppose the kernel functions κX and κY are continuous.

Assumption 8. Suppose E{κX(X,X)2} <∞ and E{κY (Y, Y )2} <∞.

Assumption 9. Suppose ran(ΣY X) ⊆ ran(Σ2
Y Y ) and ran(ΣXY ) ⊆ ran(Σ2

XX).

Assumption 7 is quite mild and, together with the separability of the metric

spaces Ω0
X and Ω0

Y , ensures that the RKHSs HX and HY are separable (Hein

and Bousquet (2004)), which, in turn, ensures that HX and HY admit countable

orthonormal bases. Assumption 8 is analogous to the requirement that a random

variable has a finite fourth moment, and is reasonable. Assumption 9 can be

viewed as a stronger version of Assumption 3; that is, compared with Assumption

3, the mapping of ΣXY needs to concentrate even more on the leading eigenspaces

of ΣXX and ΣY Y . This, again, can be understood as a smoothness condition.

In our sample estimation, we use the ridge regularization for the pseudo-

inverses. For simplicity, in our theoretical analysis, we suppose the ridge parame-

ters τ1 = τ2 = τ , and that τ approaches zero as the sample size n diverges. Denote

the operator norm of a linear operator A : H → H′ as ‖A‖OP = sup{‖Af‖H′ :

‖f‖H = 1}. The next theorem establishes the convergence of Λ̂SIR in terms of

the operator norm for the general response case.

Theorem 3. Suppose Assumptions 7 to 9 hold. Then, as n→∞,∥∥∥Λ̂SIR − ΛSIR

∥∥∥
OP

= Op
(
τ +

1

τ
√
n

)
.

For the special case of Y being categorical, we replace the smoothness con-

dition of Assumption 9 with the following counterpart.

Assumption 10. Suppose ran(ΓXX|Y ) ⊆ ran(Σ2
XX).

Theorem 4. Suppose Assumptions 7, 8, and 10 hold. Then, as n→∞,∥∥∥Λ̂SIR,D − ΛSIR,D

∥∥∥
OP

= Op
(
τ +

1

τ
√
n

)
.

Theorems 3 and 4 suggest that our metric SIR estimator is consistent. Its conver-

gence rate consists of two parts. The first part is due to the ridge regularization,

and the second part represents the convergence of the sample operators to their

population counterparts. If τ = n−β, for some constant β > 0, then the conver-

gence rate becomes n−β + nβ−1/2, implying that the best possible convergence

rate given by our result is O(n−1/4), achieved when β = 1/4. Note that this is the

same as the rate obtained by Li and Song (2017) in nonlinear SDR for functional

data.
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6. Numerical Studies

In this section, we investigate the empirical performance of our proposed

MSIR, under various choices of distance metrics, and compare it with that of

the nonlinear SIR method of Lee, Li and Chiaromonte (2013, GSIR). Although

the GSIR method was originally formulated using Euclidean geometry, it can be

extended easily to incorporate an arbitrary distance metric.

6.1. Torus manifold data

As the first example, we consider a two-dimensional torus as the predictor,

and simulate the response using different distance metrics. A torus is best vi-

sualized as a unit square [0, 1]2 in which the opposite edges have been “glued

together.” We consider two generative models:

Model 1: Yi = dG{Xi, (0.5, 0.5)T}+ εi;

Model 2: Yi = dG{Xi, (1, 1)T}+ εi,

where the two-dimensional predictor Xi is uniformly distributed in [0, 1]2, the

error term εi is drawn from a normal distribution with mean zero and variance

σ2, and dG denotes the geodesic distance. Because the point (0.5, 0.5)T lies in the

middle of the unit square, we have dG{Xi, (0.5, 0.5)T} = dE{Xi, (0.5, 0.5)T}, where

dE denotes the Euclidean distance. Consequently, in Model 1, the true relation

between the response and the predictor is a smooth function of the Euclidean

distance between the predictor and the center point of the square, and we expect

the two distance functions to perform similarly under Model 1. However, the same

is not true for Model 2, where the reference point (1, 1)T lies at the corner of the

square. In this case, the true regression relationship is not a smooth function of

the Euclidean distance, but is so for the geodesic distance, making the geodesic

distance more favorable under Model 2. For both models, we consider two sample

sizes n = 250, 500, and two noise levels σ = 0.05, 0.10. We further divide the data

into 80% training samples, and 20% testing samples. We consider two distance

metrics, namely, the geodesic distance and the Euclidean distance.

Table 1 reports the distance correlation between the response and the first

two estimated sufficient predictors evaluated on the testing samples, averaged over

200 data replications. The results show that the proposed MSIR outperforms the

competing GSIR by achieving a higher distance correlation and a smaller standard

error. Moreover, the Euclidean metric is slightly better suited to Model 1, where

the toroidal geometry plays no role, whereas the geodesic metric is considerably

better for Model 2, where the toroidal geometry plays a crucial role. An increased
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Table 1. The torus data example: the average distance correlation (with the standard
deviation shown in parentheses) between the response and the estimated sufficient pre-
dictors.

Model 1 n = 250 n = 500

σ = 0.05 σ = 0.10 σ = 0.05 σ = 0.10

MSIR dG 0.912 (0.025) 0.766 (0.058) 0.911 (0.018) 0.777 (0.038)

GSIR dG 0.719 (0.082) 0.611 (0.088) 0.715 (0.071) 0.599 (0.081)

MSIR dE 0.926 (0.021) 0.779 (0.060) 0.926 (0.014) 0.790 (0.037)

GSIR dE 0.654 (0.092) 0.563 (0.091) 0.646 (0.083) 0.552 (0.082)

Model 2 n = 250 n = 500

σ = 0.05 σ = 0.10 σ = 0.05 σ = 0.10

MSIR dG 0.912 (0.025) 0.784 (0.054) 0.913 (0.017) 0.775 (0.040)

GSIR dG 0.726 (0.079) 0.623 (0.094) 0.724 (0.073) 0.616 (0.082)

MSIR dE 0.841 (0.046) 0.729 (0.067) 0.845 (0.032) 0.722 (0.046)

GSIR dE 0.602 (0.087) 0.526 (0.098) 0.587 (0.084) 0.509 (0.085)

sample size helps to reduce the standard error of the estimator. Figure 1 provides

a visualization of the estimated sufficient predictors for a single data replication

under Model 2 with n = 500 and σ = 0.05. The results agree with the qualitative

patterns observed in Table 1 that the MSIR produces sufficient predictors that

are more informative than those of the GSIR.

6.2. Positive-definite matrix data

As the second example, we consider a positive-definite matrix data example

from a neuroimaging-based autism study (Di Martino et al. (2014)). Autism is an

increasingly prevalent neurodevelopmental disorder, characterized by symptoms

such as social difficulties, communication deficits, stereotyped behaviors, and cog-

nitive delays (Rudie et al. (2013)). The data set consists of n = 795 subjects,

among whom 362 were diagnosed with autism, and the rest were healthy controls.

For each subject, a resting-state functional magnetic resonance imaging (fMRI)

scan was obtained, which measures the intrinsic functional architecture of the

brain using the correlated synchronizations of brain systems. The corresponding

brain functional connectivity network has been shown to alter under different dis-

orders or during different brain developmental stages. Such alterations contain

crucial insights for both disorder pathology and the development of the brain

(Fox and Greicius (2010)). Therefore, there is great scientific importance in un-

derstanding the association between the autism status and the brain connectivity

network. Thus, our goal is to produce sufficient predictors that correctly separate

the autism patients from the healthy controls.
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Figure 1. The torus data example: the sufficient predictors under two SDR methods and
two distance metrics.

We follow the data-processing procedure of (Sun and Li (2017)), and sum-

marize the brain connectivity network for each subject as a 116× 116 correlation

matrix, corresponding to the synchronizations of 116 brain regions-of-interest un-

der the commonly used Anatomical Automatic Labeling atlas (Tzourio-Mazoyer

et al. (2002)). Moreover, most of the observed connectivity matrices of this data

are numerically rank-deficit, with the typical numerical rank ranging from 60 to

80. As such, we employ a common principal components analysis, and project the

connectivity matrices onto the space of the top 30 common principal components,

such that the minimal eigenvalue is at least 10−4 for each resulting matrix.

We consider six distance metrics between two positive-definite matrices, M1

and M2: the affine invariant metric, dA(M1,M2) = ‖Log(M
−1/2
1 M2M

−1/2
1 )‖F ,

where Log(·) denotes the matrix logarithm, and ‖ · ‖F denotes the Frobenius

norm; the log-Euclidean metric, dLE(M1,M2) = ‖Log(M1) − Log(M2)‖F ; the

S-divergence (Sra (2016)), dS(M1,M2) = log |(M1 + M2)/2| − (1/2) log |M1M2|,
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Table 2. The positive-definite matrix data example: the leave-one-out cross-validation
prediction error under two SDR methods and three metrics.

Affine invariant S-divergence Euclidean

MSIR 0.306 0.302 0.333

GSIR 0.319 0.328 0.357

where |·| denotes the determinant; the symmetrized Kullback–Leibler divergence,

dKL(M1,M2) = {h(M1,M2)+h(M2,M1)}/2, where h(M1,M2) = {tr(M−11 M2)+

log |M1| − log |M2|}/2; the standard Euclidean metric, dE(M1,M2) = ‖M1 −
M2‖F ; and the Pearson metric, dP (M1,M2) = ‖M1/‖M1‖F − M2/‖M2‖F ‖F .

The first three distance metrics properly acknowledge the geometry of the matrix

space Md, the fourth hinges on the normality distribution, and the last two

leverage only Euclidean geometry.

Figure 2 shows the first two estimated sufficient predictors graphically. The

first sufficient predictors found by MSIR and GSIR are both able to separate the

two groups of subjects to a good extent, with MSIR achieving better separation,

in general, than that of GSIR. Moreover, the first three distance metrics achieve

better separation than the final three metrics, which agrees with our expectation.

Table 2 reports the leave-one-out cross-validation prediction error when applying

a quadratic discriminant analysis classifier to the first two sufficient predictors.

For simplicity, we consider only three metrics: the affine invariant metric and S-

divergence metric, owing to their competitive performance, as shown in Figure 2,

and the Euclidean metric, which serves as a benchmark. The results confirm

the visual observation from Figure 2 that MSIR outperforms GSIR, and that the

metrics that acknowledge the matrix geometry outperform those that do not.

6.3. Compositional data

As the final example, we consider a compositional data set from a gut micro-

biota study (Guo et al. (2016)). The data set consists of n = 83 subjects, among

whom 41 suffer from gout, and the rest do not. For each subject, p = 3,684

operational taxonomic units (OTUs) were measured, which together characterize

the structure of the subject’s intestinal microbiota. It is of scientific interest to

understand the association between the gout status and the OTU compositions

(Guo et al. (2016)). Thus, we aim to produce sufficient predictors that correctly

reflect the gout status of a subject.

We follow the data-processing procedure of Pan et al. (2020), who analyzed

the same data. Specifically, we first standardize the OTUs, so that the OTU
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Figure 2. The positive-definite matrix data example: the sufficient predictors under two
SDR methods and six metrics, with two groups of subjects, namely, autism and control,
marked by different colors.

measurements for each subject sum to one, and thus the data are compositional.

In addition, the data are highly sparse, in that, on average, only 202 out of 3,684

measurements are nonzero. As in Pan et al. (2020), we map the standardized

vector to the p-dimensional unit sphere by taking element-wise square roots of

the coordinates.
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Figure 3. The compositional data example: the sufficient predictors under two SDR
methods (row) and three metrics (column), with two groups of subjects, those with gout
or not, marked by different colors.

We consider three distance metrics. The first metric is the arc length dis-

tance between two transformed compositions. The second metric is the Hamming

distance, evaluated on the dichotomized transformation of the compositions; that

is, the nonzero entries all become equal to one. This is motivated by the obser-

vation that the compositions are very sparse, and that the positions rather than

the magnitudes of the nonzero entries are more relevant. The third metric is the

usual Euclidean distance.

Figure 3 shows the estimated top two sufficient predictors graphically. Here,

the first sufficient predictors found by MSIR and GSIR are both able to sep-

arate the two groups of subjects, to some extent. MSIR with the Hamming

distance metric achieves the best separation. Table 3 reports the leave-one-out

cross-validation prediction error when applying a quadratic discriminant analysis

classifier to the extracted sufficient predictors when d is taken as one and then

two. Again, the proposed MSIR with the Hamming distance metric achieves the

best prediction accuracy. Moreover, there is little difference between d = 1 and

d = 2, suggesting that a single summary predictor is sufficient, which agrees with

our expectation, because the response is only binary.
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Table 3. The compositional data example: the leave-one-out cross-validation prediction
error under two SDR methods, three metrics, and two working dimensions.

d Method Arc length Hamming Euclidean

1
MSIR 0.241 0.229 0.253

GSIR 0.253 0.229 0.289

2
MSIR 0.229 0.229 0.277

GSIR 0.253 0.229 0.289
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Figure 4. The compositional data example: histograms of the correlations between the
first sufficient predictor obtained using MSIR and the original predictor under the three
metrics.

To conclude this paper, we give an example on how to interpret the obtained

sufficient predictors. The key idea is to compute the correlations between the

sufficient and the original predictors. Figure 4 shows histograms of the correla-

tions between the first sufficient predictor obtained using MSIR and the original

predictor under the three metrics, which demonstrate a relatively clear bimodal

pattern. By Figure 3, a large value of the first MSIR sufficient predictor indi-

cates the presence of gout in a subject. As such, we expect the rightmost peaks

of the three histograms in Figure 4 to correspond to OTUs associated with gout.

To confirm this, we note that Guo et al. (2016) identified the OTUs of the geni

Coprococcus (78 in total) and Barnesiella (14 in total) as those most associated

with subjects without gout and those with gout, respectively. The OTUs of these

two geni have been colored in the rugs below the histograms of Figure 4, and are

indeed roughly divided between the two modes of the histograms, with Copro-

coccus concentrating to the left peak and Barnesiella to the right. This effect is

most pronounced in the middle histogram, corresponding to the Hamming dis-

tance, which is in line with our result that the Hamming distance gives the best

performance of the three distance metrics.
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Supplementary Material

The Supplementary Appendix contains the proofs of our theoretical results.
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