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Abstract: For effective dimension reduction (e.d.r.) in regression, the sliced in-

verse regression (SIR) is used to detect detailed structures of conditional distri-

butions and reduce the dimensionality of covariates in a nonparametric manner.

Subsequent analysis can then be based on features of a lower dimension, which

assists with model interpretation and increases the estimation efficiency. The con-

cept of e.d.r. has led to the framework of sufficient dimension reduction (SDR),

with promising developments in various fields. Here, we first review the SIR and

other estimation methods for SDR when a complete random sample with finite-

dimensional covariates is available. Then, we discuss extensions and applications to

cases with more complicated structures, including high-dimensional data and two

types of incomplete data. Lastly, we emphasize the importance of SDR in modern

statistical applications, and explain how conventional SDR methods need to adapt

to different data structures in order to ensure good performance.

Key words and phrases: Dimension reduction, high-dimensional data, semiparamet-

ric statistics.

1. Introduction

Advancements in science and technology are resulting in data increasing in

terms of both size and complexity. One characteristic of such complexity is the

abundance of available covariates, which complicates the dependence relationship

between the response variable and the covariates. To deal with multivariate or

high-dimensional covariates, conventional statistical approaches use parametric

models that simplify the task of estimation and inference. However, these ap-

proaches suffer from model misspecification, requiring a model diagnosis for each

of the fitted models. Although nonparametric smoothing can directly estimate

the conditional mean, or even the conditional distribution functions, without

specifying parametric model assumptions, the large number of covariates leads

to unstable estimates, owing to the curse of dimensionality.
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Influenced by the pioneering work of Li (1991) on effective dimension reduc-

tion (e.d.r.) in regression, the framework of sufficient dimension reduction (SDR,

Cook (1998)) has yielded many powerful statistical methods for regression anal-

ysis and supervised learning. These methods can detect detailed structures of

conditional distributions and reduce the dimension of covariates in a fully non-

parametric manner. Let Y ∈ R be a response of interest and X ∈ Rp be a vector

of covariates. SDR aims to find d (with 0 ≤ d ≤ p) linear indices βT

1 X, . . . , βT

dX

such that

Y X |BTX, (1.1)

where B = (β1, . . . , βd) is a p × d parameter matrix (Cook (1998)). Note that

(1.1) is equivalent to

P(Y ≤ y |X = x) = P(Y ≤ y |BTX = BTx), (1.2)

for all y ∈ R (Zeng and Zhu (2010)). That is, conditional on X, the distribution

of Y is the same as that conditional on BTX. Thus, we can make an inference

about Y given X based on BTX, without loss of information. If there exists d < p

such that (1.1) holds, dimension reduction is achieved using the non-trivial linear

indices βT

1 X, . . . , βT

dX.

To identify the estimable parameters in SDR, note that (1.1) implies that

Y X | (BA)TX for all nonsingular d× d matrices A. Because the column space

of a matrix is invariant under nonsingular transformations, it suffices to identify

the column space of B, which is called an SDR subspace. To reduce the dimension

by as much as possible, practitioners are interested in the SDR subspace with

the smallest dimension. Under mild conditions (Cook (1994, 1996, 1998)), the

intersection of all SDR subspaces is still an SDR subspace. This unique, smallest

SDR subspace is called the central subspace, and is denoted by SY |X. Note that

the definition of a central subspace is intrinsically nonparametric. The condi-

tional distribution function in (1.2) is completely fluent, and there is no need

to specify particular parametric models. Therefore, we not require a parametric

model diagnosis to validate validate (1.1), and SDR becomes particularly useful

in exploratory data analysis.

Another useful observation is that if we set Z = A−1(X−c) and z = A−1(x−
c), where A is a p × p nonsingular symmetric constant matrix, and c ∈ Rp

is a constant vector, then P(Y ≤ y |BTX = BTx) = P{Y ≤ y | (AB)TZ =

(AB)Tz}. It follows immediately that SY |X = A−1SY |Z. This property ensures

that centralizing and standardizing the covariates does not change the nature of

the SDR problem. Thus, to simplify the presentation, we assume that E(X) = 0
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and var(X) = Ip in Sections 2–3. However, we relax these conditions in Section

4 for further applications.

In the next section, we discuss the sliced inverse regression (SIR) and other

approaches for estimating SY |X. In Section 3, we review how SDR studies have

been extended to address high-dimensional and infinite-dimensional covariates.

In some applications, the response variables may be incomplete, in which case

no complete sample of (Y,X) is available. Thus, in Section 4, we review SDR

methods for two types of incomplete data, right-censoring and counterfactual

causal modeling.

2. Approaches for Estimation

2.1. SIR and its extensions

Let {(Yi,Xi) : i = 1, . . . , n} be a random sample of (Y,X). To estimate

SY |X, we first estimate the dimension of the central subspace, denoted by d0, and

then estimate a p× d0 basis matrix, denoted by B0. In this subsection, we focus

on inverse regression methods, which reverse the relation between the response

and the covariates. Because the response variable of interest is univariate, we can

estimate the conditional moments and distributions of X given Y = y using stan-

dard nonparametric methods that are less affected by the curse of dimensionality.

The most widely used method in this group is the SIR of Li (1991), who shows

that

E(X |Y ) ∈ SY |X

under a linearity condition that E(X |BTX) is linear in BTX, and applies a

principal component analysis on the random vector E(X |Y ) to recover SY |X.

Equivalently, we can derive a basis of SY |X from the solution of

argmax
ΓTΓ=Id0

tr(ΓTKsirΓ), (2.1)

where Ksir is the SIR kernel matrix var{E(X |Y )} and Γ is a p× d0 matrix. In

practice, the solution is formed by the d0 leading eigenvectors of Ksir.

Observing that an SIR may fail when E(X |Y ) ≡ 0 for symmetrically dis-

tributed covariates, Cook and Weisberg proposed the sliced average variance

estimation (SAVE), which uses the second-moment-based kernel matrix Ksave =

E[{Ip − var(X |Y )}2] to replace Ksir in (2.1). In addition, Li and Wang (2007)

proposed the directional regression (DR) by using the kernel matrix Kdr =

E([2Ip−E{(X− X̃)⊗2 |Y, Ỹ }]2), where (X̃, Ỹ ) is an independent copy of (X, Y ).

Under an additional constant variance assumption, it is shown that the column
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spaces of Ksave and Kdr are contained in SY |X. Thus, SAVE and DR can suc-

cessfully recover SY |X.

In practice, these methods require estimating the conditional moments of X

given Y, and usually involve a slice/bandwidth selection problem. To avoid using

these tuning parameters and to improve the estimation accuracy, Zhu et al. (2010)

introduced the discretization–expectation method and Zhu, Zhu and Feng (2010)

proposed a class of cumulative slicing estimations similar to the SIR, SAVE,

and DR. To determine d0, Li (1991) showed that the nonzero eigenvalues of the

estimated kernel matrix for Ksir follow a χ2 distribution, and hence proposed

a sequential χ2 test. Overall, the inverse regression-type methods are easily

implemented and have solid theoretical theory. In addition, Chen and Li (1998)

showed that the standard errors are available for the estimated central subspace,

and provide graphical and diagnostic tools to enhance the analysis.

Several extensions of the SIR have been proposed to address different statis-

tical problems. For measurement error regression, Carroll and Li (1992) showed

that if one proceeds with the usual analysis, ignoring measurement error, then

the SIR yields estimates that consistently estimate the true regression param-

eter, up to a constant of proportionality. For discriminant analysis, Chen and

Li (2001) connected the SIR to Fisher’s canonical variates, showing several ways

of generalizing Fisher’s linear discriminant analysis for better exploration and

exploitation of nonlinear data patterns. Lastly, Li et al. (2003) and Lue (2009)

extended the SIR for multivariate response regression.

2.2. Gradient-based methods

The inverse regression methods are elegant and relatively simple to imple-

ment, but are restricted by additional assumptions on the covariates, such as

the linearity condition and the constant variance assumption. A simple way to

relax these assumptions is to use the higher-order derivatives of the regression

function. Let H(x) be the Hessian matrix of the regression function m(x) =

E(Y |X = x) at x, and define the principal Hessian directions (pHd’s) β1, . . . , βp
as the eigenvectors of the matrix H(x)var(X). Li (1992) showed that the pHd’s

with nonzero eigenvalues are in the central subspace SY |X. Under a normal dis-

tribution assumption on X, the average Hessian matrix E{H(X)} is equivalent

to the weighted covariance E[{Y −E(Y )}{X−E(X)}{X−E(X)}T ] from Stein’s

lemma. Suppose the weighted covariance is estimated by K̂pHd. Then, the eigen-

vectors of K̂pHd with nonzero eigenvalues can be used to recover SY |X. Li, Lue

and Chen (2000) provide an extension to tree-structured regression.
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Instead of imposing normal distribution assumptions, Xia et al. (2002) pro-

posed the minimum average variance estimation (MAVE) by observing that (1.2)

implies m(x) = E(Y | B̃T
0 X = B̃T

0 x), for some span(B̃0) ⊂ span(B0), and

dE(Y |X = x)

dx
= B̃T

0

∂E(Y | B̃T
0 X = B̃T

0 x)

∂(B̃T
0 x)

∈ span(B̃0),

for all x ∈ Rp. In fact, span(B̃0) is the smallest linear subspace that satis-

fies Y E(Y |X) | B̃T

0X, and is called the central mean subspace and is de-

noted by SE(Y |X). By using a local linear regression to estimate the gradients

dE(Y |X = x)/dx, the MAVE estimates B̃0 by solving

min
a,b,B̃

n∑
i=1

n∑
j=1

{Yi − aj − bT

j B̃
T(Xi −Xj)}2Kh(B̃TXi − B̃TXj),

where a = (a1, . . . , an), b = (b1, . . . ,bn), Kh(·) = K(·/h)/h, K is a kernel

function, and h is a bandwidth. To recover SY |X, Zhu and Zeng (2006) showed

that SY |X =
∑

g SE{g(Y ) |X}, and used Fourier transforms to aggregate suffi-

cient central mean subspaces. Xia (2007) adapted the idea of the MAVE by

using Kh∗(Y − y) as an induced response and proposed the density based MAVE

(dMAVE) by aggregating the MAVE criteria over different values of y. To further

avoid the smoother in the induced response, Wang and Xia (2008) used I(Y ≤ y)

as another induced response, proposing the sliced regression (SR). These esti-

mators are further unified by an ensemble of MAVEs introduced by Yin and Li

(2011).

To estimate d0 using these nonparametric gradient-based methods, researchers

often use information criterion-based methods (Zhu, Miao and Peng (2006); Ma

and Zhang (2015)), which view SDR as a problem of selecting a model from a

series of nested semiparametric models. In a similar spirit, Wang and Xia (2008)

used the cross-validation for the unknown link function to select d0. In contrast

to inverse regression-type methods, gradient-based methods require neither the

linearity condition nor the constant variance assumption. However, they usually

involve at least d0-dimensional nonparametric smoothing estimators, and are not

straightforward to implement in practice.

2.3. Semiparametric methods

The semiparametric methods view (1.2) as a semiparametric distribution

regression model under a given d0. The parameter matrix B0 is the finite-

dimensional major parameter, and the link function F (u) = P(Y ≤ y |BT

0X = u)
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is an infinite-dimensional nuisance parameter. Applying the geometric tools of

Bickel et al. (1998) and Tsiatis (2006), Ma and Zhu (2012) derived the complete

family of influence functions, and subsequently obtained the complete class of

regular n1/2-consistent estimators (van der Vaart (1998)). More precisely, the

class of unnormalized influence functions is

{g(Y,X)− E{g(Y,X) |Y,BT

0X} : E{g(Y,X) |X} = E{g(Y,X) |BT

0X}}. (2.2)

The form of these influence functions offers many ways to construct consistent

estimating equations. For example, for any functions f(y,u) and α(x), the func-

tion

g(Y,X) = [f(Y,BT
0 X)− E{f(Y,BT

0 X) |BT
0 X}][α(X)− E{α(X) |BT

0 X}]

satisfies E{g(Y,X) |BT
0 X} = 0. Thus, a regular estimator can be obtained by

solving the sample version of the estimating equation

n∑
i=1

[f(Yi,B
T
0 Xi)− E{f(Yi,B

T
0 Xi) |BT

0 Xi}][α(Xi)− E{α(Xi) |BT
0 Xi}] = 0.

(2.3)

The estimating equation (2.3) has a double-robustness property, allowing

a misspecification of either E{f(Yi,B
T
0 Xi) |BT

0 Xi} or E{α(Xi) |BT
0 Xi}. More

precisely, for any function h(BT
0 x), the estimation equations

n∑
i=1

[f(Yi,B
T
0 Xi)− h(BT

0 Xi)][α(Xi)− E{α(Xi) |BT
0 Xi}] = 0 (2.4)

and

n∑
i=1

[f(Yi,B
T
0 Xi)− E{f(Yi,B

T
0 Xi) |BT

0 Xi}][α(Xi)− h(BT
0 Xi)] = 0 (2.5)

both yield consistent estimators. From (2.4)–(2.5), several popular existing SDR

methods can be shown to be special cases of the semiparametric estimation

family. For example, to obtain the SIR as a semiparametric estimator, we

choose f(y,BT
0 x) = E(X |Y = y) and α(x) = xT . The linearity condition

promises a parametric form E{α(X) |BT
0 X} = XTP, for some parameter ma-

trix P. By further choosing h(BT
0 x) = 0, the population version of (2.4) yields

E{E(X |Y )XT }(Ip − P) = 0, or equivalently, Ksirvar(X |BT
0 X) = 0. The solu-

tion coincides with the maximizer of (2.1).
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From the form of the influence functions in (2.2), Ma and Zhu (2013) derived

the efficient score from (2.2), given by

Seff(Y,X; B0) = vec

[
{X− E(X |BT

0X)}∂ log f(Y |BT

0X)

∂(BT

0X)

]
,

where f(y |u) is the conditional density of Y given BT

0X = u. The corresponding

semiparametric efficient estimator for B0 can be obtained by solving the estimat-

ing equation
n∑

i=1

Seff(Yi,Xi; B) = 0,

with respect to B. That is, the resulting estimator has the smallest asymptotic

variance-covariance matrix among all regular n1/2-consistent estimators.

3. Extensions to High-Dimensional Data

3.1. Sufficient variable selection

Variable selection is a common procedure when analyzing high-dimensional

data sets that screens out irrelevant variables, allowing the subsequent analysis

to be based on a small subset of X. Variable selection shares the spirit of SDR,

but specifically targets on the subset of X that preserves the information about

the association between (X,Y ). This motivates the idea of sufficient variable

selection (SVS), which aims to identify a matrix V such that

Y |X d
= Y |VTX, (3.1)

where VT = [Ir,0r×(p−r)]Π, for some column permutation matrix Π when multi-

plying on the right side of a matrix. The intersection of the span of all such V,

denoted by SVY |X, is called the central variable selection space, and is the target

of SVS. It is obvious that SY |X ⊆ SVY |X, owing to the specific structure of V

required in SVS. Moreover, it can be shown that SVY |X exists and is unique if

SY |X exists.

The close connection between SY |X and SVY |X suggests that SDR methods

do provide information about regarding SVY |X. In particular, extensions of SDR

methods to achieve SVS are generally based on the fact that

ej /∈ SVY |X ⇐⇒ V(j) = 0, j = 1, . . . , p, (3.2)

where ej has a one in the jth element, and zero elsewhere, V(j) is the jth row of
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V, and V is a basis of SVY |X. This implies that we can use an estimate of SY |X
with row-sparsity to estimate SVY |X. To implement this idea, Chen, Zou and Cook

(2010) proposed the coordinate-independent sparse sufficient dimension reduction

estimator (CISE). The population version of the CISE is defined as the solution

of

max
V:VTΣV=I

tr(VTMV)−
p∑

j=1

λj‖V(j)‖2, (3.3)

where M is a method-specific kernel matrix satisfying span(M)=ΣSY |X, and λj
> 0 is a penalty parameter. Note that the maximization problem maxV:VTΣV=I

tr(VTMV) is equivalent to the generalized eigenvalue problem commonly used in

SDR methods. The group-lasso-type penalty ‖V(j)‖2 forces the solution of (3.3)

to yield V(j) = 0, for some j. Let V̂ be the sample version of the solution of

(3.3). Then, we can estimate SVY |X by

{ej : V̂(j) 6= 0, j = 1, . . . , p}. (3.4)

In contrast to the CISE, which uses a penalized estimation criterion, Yu,

Dong and Shao (2016) extend the SDR methods to rank the importance of vari-

ables, and thus achieve SVS. For a given method-specific kernel matrix M, let

sj = eT

j Σ−1MΣ−1ej , for j = 1, . . . , p. Yu, Dong and Shao (2016) show that

ej ∈ SVY |X ⇐⇒ sj > 0, j = 1, . . . , p. (3.5)

Thus, sj provides information about the importance of Xj in the association be-

tween (Y,X). Let ŝj be the sample version of sj . The authors propose estimating

SVY |X by

{ej : ŝj > δ, j = 1, . . . , p}, (3.6)

where δ is a predetermined positive critical value.

We conclude this section by explaining the difference between SVS and con-

ventional variable selection. In general, variable selection methods (such as the

sure independence screening (SIS) of Fan and Lv (2008) or the distance corre-

lation (DC) of Székely, Rizzo and Bakirov (2007)) can only guarantee screening

consistency, that is, a relevant variable is identified with probability tending to

one, but irrelevant variables may also be falsely identified with positive probabil-

ity. On the other hand, owing to the definition of SVY |X, SVS can achieve selection

consistency, that is, relevant variables and only relevant variables are identified

with probability tending to one, provided that span(M) = ΣSY |X. Thus, with

the assistance of SDR, one can expect SVS to be more accurate than conven-
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tional variable selection methods, especially in the sense of excluding irrelevant

variables.

3.2. SDR under the high-dimensional setting

High-dimensional data sets with p� n are frequently encountered in modern

statistical applications. While there appears to be more regression information

available to explore the increased complexity of differentiating the information

from the noisy regressors, such data sets have impleded finding answers to scien-

tific questions. Although SDR reduces the dimension of the covariates without

losing information, most SDR methods cannot be applied directly when p � n.

For example, inverse regression-based SDR methods can be formulated as a gen-

eralized eigenvalue problem:

Kβj = λjβj with K = Σ−1M, j = 1 . . . , p, (3.7)

where Σ is the p × p covariance matrix of X, and M is a p × p method-specific

symmetric kernel matrix satisfying the property span(M) = ΣSY |X. It can be

shown that the leading d eigenvectors β = [β1, . . . , βd] provide an estimate of

a basis of SY |X. For the choice of M, SIR uses MSIR = cov{E(X|Y )}, SAVE

uses MSAVE = Σ1/2E[{I − Σ−1/2cov(X|Y )Σ−1/2}2]Σ1/2, and DR uses MDR =

Σ1/2E[{2I − Σ−1/2cov(X −X′|Y, Y ′)Σ−1/2}2]Σ1/2, with (X′, Y ′) a random copy

of (X, Y ). Because (3.7) involves the inverse of Σ and the sample covariance

matrix X̂ is singular for p ≥ n, conventional SDR methods cannot be applied

directly to estimate SY |X.

One group of high-dimensional SDR methods assumes knowledge of an or-

thonormal Ep×r with r � p, such that B = EΓ, for some Γr×d, with d < r. That

is, span(B) ⊆ span(E) and, hence, SY |X = ESY |ETX. To estimate SY |X, it suffices

to estimate Γ based on (Y, ETX) which bypasses the large-p-small-n problem. For

example, a common strategy is to reduce the dimension of X using PCA, which

implicitly assumes that E is a basis of the span of the leading eigenvectors of Σ.

Note that the PCA-based E depends on the information of X only. To use both

the information of (X, Y ), Li, Cook and Tsai (2007) borrow the idea of a partial

least square to modify the SIR, proposing the partial inverse regression (PIR),

which estimates SY |X by

B̂PIR = EΓ̂SIR, (3.8)

where Γ̂SIR is the SIR estimator of SY |ETX based on (Y, ETX), E is chosen as

the Krylov sequence [ν,Σν, . . . ,Σq−1ν], for some q > 0, and ν is the eigenvector
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of MSIR. Later, Cook, Li and Chiaromonte (2007) extended the PIR to general

SDR methods, also investigating how to determine q theoretically.

In contrast to the above-mentioned methods, in which E is estimated from

the data, another group of methods overcome the large-p-small-n problem by

implementing conventional SDR methods on subsets of X (with size r), that is,

ET = [Ir,0r×(p−r)]Π, for some column permutation matrix Π when multiplying

on the right side of a matrix. Yin and Hilafu (2015) propose the sequential SDR

(seq-SDR). Let X be partitioned into two disjoint sets X(1) and X(2). The main

idea of the seq-SDR is based on the following two statements:

(i) X(1) ⊥ (X(2), Y )|BT

(1)X(1)

(ii) X(1) ⊥ X(2)|(BT

(1)X(1), Y ) and X(1) ⊥ Y |BT

(1)X(1),

which imply that

X(1) ⊥ Y |(BT

(1)X(1),X(2)). (3.9)

Once we have (3.9), we can replace X with the lower-dimensional (BT

(1)X(1),X(2))

without losing information. Note that both (i) and (ii) involve the SDR problem

with multivariate responses, and the projective resampling SDR method of Li,

Wen and Zhu (2008) can be applied to estimate B(1), provided that the dimension

of X(1) is smaller than n. The implementation procedure for the seq-SDR is as

follows:

1. Divide X into (X(1),X(2)), and implement conventional SDR methods to

estimate B(1) based on either (i) or (ii).

2. Replace X with (BT

(1)X(1),X(2)) and repeat step 1 until the dimension of X

cannot be reduced further.

Hilafu and Yin (2017) proposed seq-PIR, which incorporates the idea of PIR into

the seq-SDR in order to tackle the problem of highly correlated X.

An important issue when implementing seq-SDR and seq-PIR is the choice

of the partitioning of X into (X(1),X(2)), which affects the analysis results. As

an alternative, Hilafu (2017) proposes the random SIR (rSIR), which does not

require that we partition X. The implementation procedure for the rSIR is as

follows:

1. For each randomly generated E`, for ` = 1, · · · , N , implement SIR based on

(Y, ET

` X) to obtain Γ̃`, and transform back to B̃` = E`Γ̃` as an estimate of

SY |X.
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2. The final estimate of SY |X is B̂rSIR, with the jth element being

B̂rSIR,j =
1

Nj

N∑
j=1

B̂`,j , j = 1 . . . , p, (3.10)

where B̂`,j is the j-th element of B̂`, and Nj is the number of times that

Xj is selected by {E`}N`=1.

A similar idea is adopted by Hung and Huang (2019), who proposed the integrated

random partition SDR (iRP-SDR):

1. Randomly divide X into disjoint subsets. Calculate the DC between each

subset and Y , and identify those subsets with leading DC values to form

X(`) (which corresponds to a certain choice of E` such that X(`) = ET

` X),

with dimension r < n.

2. Based on (Y,X(`)), implement a conventional SDR method (e.g., SIR) to

obtain Γ̂` and the associated eigenvalue matrix Λ̂`, and transform back to

B̂` = E`Γ̂` as an estimate of SY |X.

3. The final estimate of SY |X is obtained as the leading eigenvectors of the

integrated kernel matrix K̂ = (1/N)
∑N

`=1 B̂`Λ̂`B̂
T

` Ŝ.

Neither rSIR nor iRP-SDR depend on a subset partition, but at the cost of

requiring greater computational time due to multiple replicates. In addition, the

integration method used to form the final estimate of SY |X is not unique, which

may affect the performance of the method.

3.3. Functional data

When the covariates are collected following time or other continuous indices,

they can be treated as functional data with an infinite dimension. To illustrate

this idea, let T be a compact interval, and let the covariate X be a random

function from the real separable Hilbert space H = L2(T ), endowed with inner

product 〈f, g〉 =
∫
T f(t)g(t)dt and norm ‖f‖ = 〈f, f〉1/2. The SDR extended for

functional covariates assumes that

Y X | (〈β1, X〉, . . . , 〈βd, X〉), (3.11)

where β1, . . . , βd ∈ H are linearly independent index functions. Because the

dimension of L2(T ) is infinite, the definition of a central subspace for the func-

tional covariates requires additional assumptions, and SDR methods developed
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for multivariate covariates cannot be applied directly to functional covariates. In

particular, because 〈β + g,X〉 = 〈β,X〉 for all g ∈ kerX = {f ∈ H : 〈f, x〉 =

0 for all trajectories x of X}, we can only identify the elements in the quotient

space H/kerX, instead of β ∈ H. Here, for simplicity, we assume that either

kerX = 0 or {β1, . . . , βd} is contained in the subspace spanned by all trajectories

of X, to ensure that the SDR subspace is identifiable.

Ferré and Yao (2005) propose the functional SIR (fSIR), which extends the

SDR for functional covariates, and discuss the identifiability of the SDR sub-

space. When X has mean zero and satisfies a linearity condition, they showed

that E(X |Y ) belongs to the subspace spanned by Γβ1, . . . ,Γβd, where Γ is the

covariance operator of X. Thus, the SDR subspace can be recovered using the

eigenspace of Γ−1Γe, where Γe is the covariance operator of E(X |Y ). However,

Γ−1 is, in general, unbounded. To overcome these difficulties, additional restric-

tions are imposed by Forzani and Cook (2007) and Ferré and Yao (2007). To allow

for more general types of covariates, Hsing and Ren (2009) introduced another

formulation of the functional inverse regression method when the trajectories of

X are in a reproducing kernel Hilbert space. For these inverse-regression-type

methods, Li and Hsing (2010) developed sequential χ2 tests to determine the

number d of linear projections in (1.1).

In many applications in which the functional covariates are measured only

intermittently and sparsely, they become longitudinal covariates. In such cases,

Xi(t) can only be observed at t = Ti1, . . . , TiNi
for the ith subject, and the col-

lected data are {(Yi, Xi1, . . . , XiNi
) : i = 1, . . . , n}, where Xij is the measurement

of Xi at time Tij . Jiang, Yu and Wang (2014) proposed an fSIR method by

estimating E(X |Y ) using two-dimensional kernel smoothing. More precisely, for

given (t, y), consider the weighted sum of squares

n∑
i=1

Ni∑
j=1

{Xij − α0 − α1(t− Tij)− α2(y − Yi)}2Kh1
(Tij − t)Kh2

(Yi − y), (3.12)

where Kh(u) = K(u/h)/h for generic h, K is a kernel weight function, and h1 and

h2 are bandwidths. Then, E{X(t) |Y = y} is estimated by â0, where (â0, â1, α̂2)

is the minimizer of (3.12). To obtain an estimator with a better convergence rate

and to avoid selecting two different bandwidths, Yao, Lei and Wu (2015) showed

that E(X |Y ≤ y) belongs to the subspace spanned by Γβ1, . . . ,Γβd, for all y.

Then, E(X |Y ≤ y) can be estimated by minimizing
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n∑
i=1

Ni∑
j=1

{XijI(Yi ≤ y)− α0 − α1(t− Tij)}2Kh(Tij − t).

The validity of these inverse-regression-type approaches relies on a linearity

condition of the covariates. This condition is satisfied when the distribution of the

covariates is elliptically contoured. Although elliptically contoured distributions

are more general than Gaussian processes (Cambanis, Huang and Simons (1981)),

we still require methodologies that can deal with asymmetric distributions.

4. Applications to Incomplete Data

4.1. Survival analysis

In a survival analysis, the response variable Y ∈ R+ is the survival time, and

is usually subject to right-censoring. Let C be a censoring time, Z = min(Y,C)

be the last follow-up time, and D = I(Y ≤ C) be the indicator of the non-

censoring. In addition, SZ(t |x), SY (t |x), and SC(t |x) denote the conditional

survival functions of Z, Y , and C, respectively, given X = x. Under the in-

dependent censoring assumption Y C |X, it can be shown that SZ(t |x) =

SY (t |x)SC(t |x) and P(D = 1 |X = x) =
∫∞

0 SC(t− |x)dt{1 − SY (t |x)}. It

follows that SZ|X ⊂ S(Z,D)|X ⊂ SY |X + SC|X. Although existing SDR methods

can be applied directly to estimate SZ|X and S(Z,D)|X, they do not always recover

SY |X successfully.

To estimate the inverse mean E(X |Y = y) from right-censored survival data,

Li, Wang and Chen (1999) first note that

E{X |Y ∈ [y, y + δ)} =
E{XI(Y ≥ y)} − E{XI(Y ≥ y + δ)}

E{I(Y ≥ y)} − E{I(Y ≥ y + δ)}
,

for all δ > 0, and

E{XI(Y ≥ y)} = E{XI(Z ≥ y)}+ E

{
XI(Z < y,D = 0)

SY (Z |X)

SY (y |X)

}
,

for all y. By plugging-in a suitable initial estimator for SY (t |x), one can easily

obtain a sample analogue of E(X |Y = y). Then, we can apply the standard

SIR procedure to recover SY |X. The only problem is that the estimation for

SY (t |x) usually involves multi-dimensional nonparametric smoothing, which is

the original reason for considering dimension reduction. Thus, they suggest using

S(Z,D)|X to obtain an initial estimator for SY (t |x) in a possibly lower dimension

of the envelope subspace.
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Another method used to adjust for incomplete responses is the inverse censor-

ing probability weighting (ICPW) introduced by Lu and Li (2011). They showed

that

E

{
Dg(Z)

SC(Z |X)
|X
}

= E{g(Y ) |X},

for all measurable transformations g. Based on this equation, all existing SDR

methods developed for complete data can be applied directly to right-censored

survival data, with the response variable inverse-weighted by SC(Z |X). In a sim-

ilar spirit, Nadkarni, Zhao and Kosorok (2011) proposed a minimum discrepancy

approach, coupled with the ICPW technique, to build a more efficient inverse

regression estimator. However, these approaches require additional modeling on

the censoring distribution, which may not be desirable in practice.

To relax the linearity condition imposed for the inverse regression methods,

Xia, Zhang and Xu (2010) proposed using inverse survival weighting and dou-

ble kernel smoothing techniques in their hazard-based MAVE (hMAVE) method.

However, this also requires an initial estimator for the conditional survival func-

tion, as in Li, Wang and Chen (1999). Another problem with the inverse-

weighting techniques is that they often lead to unstable estimators in finite sam-

ples, especially when the values of the weights are close to zero. To overcome this

difficulty, Huang and Chan (2020) proposed a least squares criterion by noting

that

E{I(Z ≤ y,D = 1) |X} =

∫ y

0
SZ(t |X)dtΛ(t |BT

0X),

where Λ(t |BT

0x) is the conditional cumulative hazard function of Y given BT

0X =

BT

0x. The major advantage of this approach is that the induced response is not

inverse-weighted by the weight function SZ(t |X). Thus, it provides a more stable

estimator in finite samples.

4.2. Causal inference

A central topic in causal inference is the estimation of the causal effects of

the treatments. Let T ∈ {0, 1} be a treatment variable, Y (1) be the response

after receiving the treatment, and Y (0) be the response without receiving the

treatment. The individual causal effect is often defined as Y (1)−Y (0). However,

because only one of Y (1) and Y (0) can be observed for each individual, the

individual causal effect can be viewed as an incomplete variable. In such cases,

practitioners often focus on the average treatment effect τ = E{Y (1) − Y (0)},
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which can be estimated consistently using standard randomized controlled trials

(RCTs). When only observational data are available, Rosenbaum and Rubin

(1983) introduced the unconfoundedness assumption

{Y (0), Y (1)} T |X, (4.1)

for some covariates/confounders X. Under (4.1), the average treatment effect

can be identified nonparametrically as

τ = E{E(Y |T = 1,X)− E(Y |T = 0,X)},

where Y = TY (1) + (1− T )Y (0) is the observed response. Thus, we can obtain

consistent estimators for τ if we can estimate the conditional treatment effect

E(Y |T = 1,X)− E(Y |T = 0,X) successfully.

Without parametric or semiparametric modeling assumptions, the estimation

for E(Y |T = t,X = x) (t = 0, 1) usually involves nonparametric smoothing, and

thus suffers from the curse of dimensionality when the dimension of X is large. To

overcome this difficulty, the propensity score π(X) = P(T = 1 |X) is commonly

used to estimate τ , because it satisfies

τ = E[E{Y |T = 1, π(X)} − E{Y |T = 0, π(X)}].

Note that π(X) ∈ R. Thus, if π(X) is known, E{Y |T = t, π(X)} (t = 0, 1) can be

easily estimated using one-dimensional smoothing estimators. However, in many

applications, π(X) is unknown and requires additional modeling or estimation.

The effective balancing scores introduced by Hu, Follmann and Wang (2014) can

be applied to reduce the curse of dimensionality in the nonparametric estimation

for τ . They showed that

τ = E{E(Y |T = 1,BTX)− E(Y |T = 0,BTX)},

for any basis matrix B of the central subspace ST |X, SY |X, or S(T,Y )|X. Thus,

existing SDR methods can be applied directly to obtain suitable estimators for

B, and hence consistently estimate τ .

The remaining issue is the estimation efficiency. Hahn (1998) showed that

the projection of the log-likelihood score onto the true propensity score can be

inefficient. In general, using the balancing scores obtained from ST |X, SY |X, or

S(T,Y )|X may not achieve the semiparametric efficiency bound of estimating τ . To

solve this problem, Huang and Chan (2017) introduced a joint central subspace
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with a basis matrix B that satisfies

T X |BTX, Y (0) X |BTX, Y (1) X |BTX.

They showed that BTX is still an effective balancing score, and that the estima-

tion for τ based on BTX can achieve the semiparametric efficiency bound.
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