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Abstract: In this work, we study the diagnostics of parametric regression models

when both the response variable and the covariates are distorted by errors. We em-

ploy a projected empirical process to develop Cramér–von Mises and Kolmogorov–

Smirnov tests with dimension-reduction effects. We apply random approximation

to enable an expedient calculation of the Kolmogorov–Smirnov test for checking the

suitability of regression models. The proposed tests are shown to be consistent and

can detect an alternative hypothesis close to the null hypothesis at the root-n rate.

Simulation studies show that the proposed tests outperform existing methods. A

real data set is analyzed for illustration.
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1. Introduction

Data distortion is a common problem in the biomedical, public health, and

economics fields. Kaysen et al. (2002) presented a typical example in which the

fibrinogen level and the serum transferrin level are observed with distortion ow-

ing to the existence of the body mass index (BMI) as a confounding variable.

Şentürk and Müller (2005) showed that distortion fundamentally changes the re-

lationship between the response and the predictor variables, and were the first to

introduce a linear covariate-adjustment model. They established an estimation

procedure by connecting this model with a varying-coefficient model. Since this

pioneering work, a large body of literature has developed attempting to elimi-

nate the adverse effects of distortion measurement errors. However, most studies

on the subject have been restricted to the estimation of regression models; see

Şentürk and Müller (2006, 2009), Nguyen and Şentürk (2008), Cui et al. (2009),
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Zhang, Zhu and Liang (2012), Delaigle, Hall and Zhou (2016), and Deng and

Zhao (2019), among others.

The correct specification of a regression model suffering from data distortion

is undoubtedly important to avoid misleading results in statistical analyses. In

this work, we study the diagnostics of parametric models when both the response

variable and the covariates are measured with distortion. The models are of the

following form: 
Y = g(X,Z, β) + ε,

Ỹ = ψ(U)Y,

X̃ = γ(U)X,

where Y is the response variable, X and Z are p- and q-dimensional covariates,

respectively, U is a scalar confounding variable independent of (Y,X>,Z>)>, β is

the unknown parameter vector, and g is a known function. The variables Y and

X are unavailable owing to the measurement error caused by the confounding

variable U . Instead of Y and X, the distorted variables Ỹ and X̃ are observed.

Here, the function ψ is unknown, and γ is a p × p diagonal matrix with non-

parametric diagonal element functions γ1, . . . , γp. To ensure identifiability, let

E{ψ(U)} = 1 and E{γr(U)} = 1 for r = 1, . . . , p.

We write ε(Y,X,Z) = Y − g(X,Z, β) and aim to test

H0 : Pr {E{ε(Y,X,Z)|X,Z} = 0} = 1, for some β, (1.1)

against the alternative hypothesis that H0 does not hold. Zhang, Li and Feng

(2015) proposed a residual-based empirical process test for problem (1.1). The

test has the desired merit of dimension reduction, and is made highly suitable for

a directional test by choosing the deviation function as the weighting function to

maximize the power. However, the test is solely directional and depends on the

prespecified weighting function. Recently, Zhao and Xie (2018) developed a local

test that is consistent, but suffers from the dimension problem.

We propose omnibus tests rather than directional tests. Our goal is to pro-

pose tests that are free of the dimension problem, are easy to calculate, and

perform well in terms of test power. We consider empirical process tests with the

linear indicator weighting function 1(ν>θ ≤ t), where ν = (X>,Z>)>, for any

vector θ ∈ Rp+q and any real number t ∈ R.

The empirical-process-based test was first introduced by Stute (1997), and

has been studied extensively in the field of regression model checking. In recent

years, empirical process tests that consider a linear indicator weighting function
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and offer the advantage of dimensionality reduction have attracted considerable

attention (Escanciano (2006); Conde-Amboage, Sánchez-Sellero and González-

Manteiga (2015); Colling and Van Keilegom (2017)). Additional efforts have been

made to eliminate the “curse of dimensionality” in the test methods. For exam-

ple, Ma et al. (2014) proposed a variant of the integrated conditional moment

test based on the linear projection approach, where the projection direction was

chosen by fitting a single-index model. Furthermore, Guo, Wang and Zhu (2016)

and Tan, Zhu and Zhu (2018) developed dimension-reduction model-adaptive

approaches to avoid the problems with dimensionality.

The empirical process tests with a linear indicator weighting function involve

a nuisance parameter θ, also called a projection direction parameter. To ensure

the feasibility of the calculation and the consistency of the tests, the nuisance

parameter is assumed to be a random vector following a uniform distribution on

the unit sphere. The resultant tests in the literature are of the Cramér–von Mises

(CvM) type, which can be transformed into a simple summation by applying a

critical transformation formula provided by Escanciano (2006).

One may naturally wonder about the feasibility and effectiveness of different

nuisance parameter choices. Furthermore, in addition to the CvM-type tests, is

it possible to construct other tests, such as the Kolmogorov–Smirnov (KS) test?

We investigate this possibility by applying random approximation to make the

estimated empirical process with the linear indicator weighting function com-

putationally convenient, and thus avoid applying the transformation formula in

Escanciano (2006). Moreover, even if the nuisance parameter follows distributions

other than the uniform distribution on the unit sphere, the tests are realizable.

The remainder of this paper is organized as follows. In Section 2, a CvM

test is built based on an empirical process with a linear indicator weighting func-

tion. In Section 3, motivated by a random approximation algorithm, a KS test

is established. The asymptotic properties of the proposed tests and the determi-

nation of the critical values are presented in Section 4. Simulation studies and a

real-data analysis are conducted in Section 5. In the Appendices, we provide the

conditions needed in the proofs. The proofs of the main results are presented in

the online Supplementary Material.

2. CvM Test

2.1. Estimation of the null hypothesis model

Assume that an independent and identically distributed (i.i.d.) sample {(Ỹi,
X̃i,Zi), i = 1, . . . , n} is obtained from (Ỹ , X̃,Z). Because the true variables Y
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and X are unavailable, by calibrating the measurement errors, we obtain their

estimators: Ŷi = ỸiỸm,n/ψ̂n(Ui), X̂ri = X̃riX̃m,nr/γ̂nr(Ui), for i = 1, . . . , n;

r = 1, . . . , p, with Ỹm,n, X̃m,nr, ψ̂n(u) and γ̂nr(u) defined in Appendix A. The

calibrated method can also refer to that of Zhang, Li and Feng (2015). Here, we

apply the local linear method to estimate ψ(u) and γ(u).

Based on the calibrated sample {(Ŷi, X̂i,Zi), i = 1, . . . , n} with X̂i = (X̂1i,

. . . , X̂pi)
>, an estimator of β, denoted by β̂n, is defined as the minimizer of the

least squares objective function:

n∑
i=1

{
Ŷi − g(X̂i,Zi, β)

}2
. (2.1)

The asymptotic normality of β̂n is presented in Lemma 3 in the online Supple-

mentary Material. It can be concluded that under the null hypothesis model in

(1.1), β̂n is
√
n-consistent.

2.2. CvM test statistic

A direct test of the conditional expectation in (1.1) involves a nonparametric

estimation of E{ε(Y,X,Z)|X,Z}, which would cause the “curse of dimensional-

ity.” Therefore, we examine an equivalent form of the null hypothetical condition

by transforming it into infinite equations of the unconditional expectations.

Proposition 1. The following statements are equivalent: (i) H0 in (1.1) is true;

(ii) E{ε(Y,X,Z)1(ν>θ ≤ t)} = 0, for any vector θ ∈ Rp+q and any real number

t ∈ R; (iii) E{ε(Y,X,Z)1(ν>θ ≤ t)} = 0, for any vector θ ∈ Rp+q with ‖θ‖ = 1

and any real number t ∈ R.

The proof of the equivalence of (i) and (ii) is similar to that of Lemma 2.1 in

Lavergne and Patilea (2008). The equivalence of (ii) and (iii) can be obtained by

the fact that for any θ 6= 0, the σ-field generated by ν>θ is the same as the σ-field

generated by ν>θ/‖θ‖. This fact was also mentioned by Lavergne and Patilea

(2008).

Denote the estimated model error Ŷi − g(X̂i,Zi, β̂n) by ε̂n(Yi,Xi,Zi), for

i = 1, . . . , n. Based on E{ε(Y,X,Z)1(ν>θ ≤ t)}, we construct an estimated

empirical process: Mn,pro(t) = n−1/2
∑n

i=1 ε̂n(Yi,Xi,Zi)1(V>i θ ≤ t), where Vi =

(X̂>i ,Z
>
i )>, for i = 1, . . . , n. Then, the CvM test is defined as

Tn,CvM =

∫ ∫
{Mn,pro(t)}2f(θ)Fnθ(dt)dθ, (2.2)

where f(θ) is the density function of θ, and Fnθ(t) = n−1
∑n

i=1 1(V>i θ ≤ t).
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Under the null hypothesis in (1.1), the test statistic Tn,CvM tends to zero and

becomes larger under alternative hypotheses. Therefore, the null hypothesis is

rejected for a sufficiently large value of Tn,CvM .

Note that the test statistic Tn,CvM is equal to the following summation:

Tn,CvM =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂n(Yi,Xi,Zi)ε̂n(Yj ,Xj ,Zj)Aijl, (2.3)

where Aijl =
∫
1(V>i θ ≤ V>l θ)1(V>j θ ≤ V>l θ)f(θ)dθ. In general, θ is assumed to

follow a uniform distribution on the unit sphere. As shown in Escanciano (2006),

Aijl =
π(p+q)/2−1

Γ(p+q2 + 1)

∣∣∣∣π − arccos

{
(Vi −Vl)

>(Vj −Vl)

‖Vi −Vl‖‖Vj −Vl‖

}∣∣∣∣ , (2.4)

where Γ(·) is the gamma function. The proposed test Tn,CvM has the merit of

computational expedience because only simple algebraic operations are involved.

2.3. A new random approximation computation procedure

Although the uniform distribution assumption of the projection parameter θ

is generally accepted (Escanciano (2006); Conde-Amboage, Sánchez-Sellero and

González-Manteiga (2015)), it is interesting to investigate the effect of other dis-

tributions. Under these circumstances, Aijl cannot be calculated using formula

(2.4). However, it is unclear whether an alternative expression for Aijl is available.

Therefore, we develop a new procedure to compute Aijl by employing random

approximation.

Note that Aijl =
∫
1(V>i θ ≤ V>l θ)1(V>j θ ≤ V>l θ)f(θ)dθ= Eθ{1(V>i θ ≤

V>l θ)1(V>j θ ≤ V>l θ)|Vi,Vj ,Vl}, for i, j, l = 1, . . . , n, which means that Aijl
is represented as the conditional expectation of a function of θ. Generate an

i.i.d. random sequence {θ1, . . . , θm} from the density function f(θ), and define

Âijl = m−1
∑m

k=1 1(V>i θk ≤ V>l θk)1(V>j θk ≤ V>l θk). Then, we obtain an ap-

proximation of the test statistic Tn,CvM by calculating

T̂n,CvM =:
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂n(Yi,Xi,Zi)ε̂n(Yj ,Xj ,Zj)Âijl. (2.5)

Remark 1. The above random approximation method is very similar to the

number theoretic method in Zhu, Fang and Bhatti (1997). Comparatively, the

random approximation method is easier to implement, and the resulting test

maintains good theoretical properties by the law of large numbers.
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Remark 2. Formula (2.5) shows that even if θ follows distributions other than

the uniform distribution, the tests can be realized based on the random sequence

generated from f(θ). In many cases, however, it is difficult to generate a ran-

dom sequence from a known density function. This difficulty can be overcome

with the aid of uniform random numbers. Note too that Aijl = Eη{1(V>i η ≤
V>l η)1(V>j η ≤ V>l η)f(η)|Vi,Vj ,Vl}Cp+q, for i, j, l = 1, . . . , n, where η is a uni-

formly distributed random vector on the unit sphere, and Cp+q denotes the vol-

ume of the unit sphere in Rp+q. Generate an i.i.d. random sequence {η1, . . . , ηm}
of η, and let Ãijl = m−1

∑m
k=1 1(V>i ηk ≤ V>l ηk)1(V>j ηk ≤ V>l ηk)f(ηk)Cp+q. For

some large m, Ãijl can approximate Aijl well. Then, we obtain the value of the

test statistic Tn,CvM by calculating T̃n,CvM =: n−2
∑n

i=1

∑n
j=1

∑n
l=1 ε̂n(Yi,Xi,Zi)

ε̂n(Yj , Xj ,Zj)Ãijl.

3. KS Test Statistic

The KS test is another popular option for checking the adequacy of regression

models. As for problem (1.1), together with the CvM test in (2.2), the KS test

statistic should be built as

Tn,KS = sup
t

∫
|Mn,pro(t)| f(θ)dθ =: sup

t
Bn(t).

Though the linear indicator weighting function is widely used to construct

CvM-type tests with dimension-reduction effects (Escanciano (2006); Conde-

Amboage, Sánchez-Sellero and González-Manteiga (2015); Colling and Van Kei-

legom (2017)), the main reason that there is no KS-type test with the linear

indicator weighting function is that its calculation is challenging and cannot be

achieved analogously to Tn,CvM with the help of (2.4). We fill this gap and pro-

pose a strategy for calculating Tn,KS that employs a random approximation to

avoid a direct application of (2.4). The strategy is stated as follows.

First, generate an i.i.d. random sequence {θ1, . . . , θm} from the density func-

tion f(θ). Then, for given t, define B̂n(t) = m−1n−1/2
∑m

k=1

∣∣∑n
i=1 ε̂n(Yi, Xi,Zi)

1(V>i θk ≤ t)
∣∣. By the law of large numbers, it is clear that B̂n(t) is an appropriate

approximation of Bn(t). Thus, Tn,KS can be estimated by

T̂n,KS =: sup
t

{
1

m
√
n

m∑
k=1

∣∣∣∣∣
n∑
i=1

ε̂n(Yi,Xi,Zi)1(V>i θk ≤ t)

∣∣∣∣∣
}
. (3.1)

Remark 3. Similarly to the discussion in Remark 2, an alternative method

to computing Bn(t) is to compute B̃n(t) =: m−1n−1/2
∑m

k=1 |
∑n

i=1 ε̂n(Yi,Xi,
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Zi)1(V>i ηk ≤ t)|f(ηk)Cp+q, where the i.i.d. random sequence {η1, . . . , ηm} fol-

lows a uniform distribution on the unit sphere, and Cp+q denotes the volume of

the unit sphere in Rp+q.

4. Asymptotic Distributions and Determining Critical Values

4.1. Asymptotic distributions under the null hypothesis

In this subsection, we investigate the asymptotic properties of the tests under

the null hypothesis in (1.1).

Theorem 1. Suppose that Conditions (C1)–(C8) in Appendix B hold. Under the

null hypothesis in (1.1), Mn,pro(t) converges in distribution to Mpro(t), where

Mpro(t) is a centered Gaussian process with covariance function Cov{Mpro(t1),

Mpro(t2)} = Cov{IF (t1,θ)(Y,X,Z, ν, U), IF (t2,θ)(Y,X,Z, ν, U)}. Here, IF (t,θ)(

Y,X,Z, ν, U) is defined in Appendix A. Furthermore, we have

Tn,CvM
L−→
∫ ∫

{Mpro(t)}2f(θ)Fθ(dt)dθ,

Tn,KS
L−→ sup

t

∫
|Mpro(t)|f(θ)dθ,

where Fθ(t) is the conditional distribution of ν>θ given θ.

Theorem 1 indicates that the asymptotic distributions of the test statis-

tics Tn,CvM and Tn,KS are the distributions of
∫ ∫
{Mpro(t)}2f(θ)Fθ(dt)dθ and

supt
∫
|Mpro(t)|f(θ)dθ, respectively.

Let Fm(θ) be the empirical distribution function based on {θ1, . . . , θm}.
Then, T̂n,CvM and T̂n,KS can be written as T̂n,CvM =

∫ ∫
{Mn,pro(t)}2Fnθ(dt)

Fm(dθ) and T̂n,KS = supt
∫
|Mn,pro(t)|Fm(dθ), respectively. From the results of

Theorem 1, the following conclusion holds.

Corollary 1. Suppose that Conditions (C1)–(C8) in Appendix B hold. Under

the null hypothesis in (1.1), we have T̂n,CvM
L−→
∫ ∫
{Mpro(t)}2f(θ) Fθ(dt)dθ

and T̂n,KS
L−→ supt

∫
|Mpro(t)|f(θ)dθ.

4.2. Determination of the critical values

The distributions of
∫ ∫
{Mpro(t)}2f(θ)Fθ(dt)dθ and supt

∫
|Mpro(t)|f(θ)dθ

are very complex. Thus, their upper quantiles and, in turn, the critical values

of the proposed tests cannot be obtained directly. In assessing the adequacy

of general parametric models, Stute (1997) approximates the critical values of

CvM tests using a principal component decomposition of the covariance operator.



1668 SUN, CHEN AND LIANG

We apply a data-driven bootstrap method to determine the critical values that

perform well for both the CvM and the KS tests. The rationale for the bootstrap

method can be found in Stute, González Manteiga and Presedo Quindimil (1998).

Our implementation is described as follows.

Step 1: Generate an i.i.d. random variable sequence {e1, . . . , en} with mean zero,

variance one and a finite third moment. Let Ỹ ∗i = g(X̂i,Zi, β̂n) + {Ŷi −
g(X̂i,Zi, β̂n)}ei, for i = 1, . . . , n.

Step 2: Calculate the statistics Tn,CvM and Tn,KS .

Step 3: Based on the bootstrap sample {(Ỹ ∗i , X̂i,Zi), i = 1, . . . , n}, calculate the

statistics Tn,CvM and Tn,KS , denoted by T ∗n,CvM and T ∗n,KS , respectively.

Step 4: Repeat Step 3 ρ times and obtain {T ∗n1,CvM , . . . , T ∗nρ,CvM} and {T ∗n1,KS ,
. . . , T ∗nρ,KS}. Calculate the 1−α empirical quantiles based on {T ∗n1,CvM ,
. . . , T ∗nρ,CvM} and {T ∗n1,KS , . . . , T ∗nρ,KS}, which are taken as the α-level

critical values.

The above scheme is easy to implement without estimating other quantities,

such as the complicated influence function IF (t,θ)(Y,X,Z, ν, U) in (A.1). In

addition, it is acceptable to take the number of repetitions ρ to be 300, 500, or

1000, in general.

4.3. Asymptotic distributions under alternative hypotheses

In this subsection, the asymptotic distributions of the test statistics Tn,CvM
and Tn,KS are established under the alternative hypothetical models:

H1,local : Y = g(X,Z, β) + CnS(X,Z) + ε, (4.1)

where E(ε|X,Z) = 0 and S(·, ·) is a measurable function that satisfies 0 <

E{S2(X,Z)} <∞ and cannot take the form of g(X,Z, β).

Theorem 2. Suppose that Conditions (C1)–(C8) in Appendix B hold.

( 1) Under the local alternative hypothetical models (4.1) with Cn = n−1/2,

Tn,CvM
L−→
∫ ∫

{Mpro(t) +DRt}2f(θ)Fθ(dt)dθ,

Tn,KS
L−→ sup

t

∫
|Mpro(t) +DRt|f(θ)dθ,

with DRt defined in Appendix A.
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( 2) Under the local alternative hypothetical models (4.1) with Cnn
1/2 → ∞, we

have Tn,CvM →∞ and Tn,KS →∞.

Remark 4. Similarly to the arguments of Corollary 1, we can conclude that

T̂n,CvM (T̂n,KS) has the same asymptotic property as Tn,CvM (Tn,KS) under the

alternative hypotheses (4.1).

Remark 5. Let H1n : Y = g(X,Z, β)+n−1/2S(X,Z)+ε, H2n : Y = g(X,Z, β)+

S(X,Z) + ε, and H3n : Y = g(X,Z, β) + CnS(X,Z) + ε, with Cnn
1/2 → ∞.

For both Tn,CvM and Tn,KS , the powers Pr{Reject H0|H1n} are larger than the

test level α. Therefore, the proposed tests can detect the Pitman alternative

hypothesis models converging to the null hypothesis model at a rate of n−1/2.

UnderH2n andH3n, the tests Tn,CvM and Tn,KS converge to infinity, and therefore

have asymptotic power one.

Remark 6. Zhang, Li and Feng (2015) also investigated the model checking

problem (1.1). For the alternative hypothesis models (4.1) with Cn = n−1/2,

the asymptotic expansion for the test statistic in Zhang, Li and Feng (2015)

also includes a drift function Cov{l(X), S(X,Z)}F ′ε, where l(X) is a weighting

function and F ′ε is the derivative of the distribution of the model error ε. If l(X)

is orthogonal to the deviation function S(X,Z), the test of Zhang, Li and Feng

(2015) loses effect. Therefore, the choice of the weighting function is critical. For

the proposed tests, the drift function DRt is nonzero, and the deficit is effectively

avoided.

Remark 7. Assume that the null hypothesis is not true and the data are gener-

ated fromH4n : Y = G(X,Z)+ε, where the nonzero measurable function G(X,Z)

cannot take the form of g(X,Z, β). Let Y = g(X,Z, β)+{G(X,Z)−g(X,Z, β)}+
ε =: g(X,Z, β) + S∗(X,Z) + ε. The results that Tn,CvM → ∞ and Tn,KS → ∞
under the alternative hypothesis models in H4n can be proved from the results of

Theorem 2. The tests Tn,CvM and Tn,KS have asymptotic power one for any al-

ternative model in H4n, and are consistent in terms of Pr{Reject H0|H0 is false}
→ 1 as n→∞.

5. Numerical Studies

5.1. Simulation studies

In this subsection, simulation studies are carried out to evaluate the perfor-

mance of the proposed tests. The following three settings are considered.
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Setting 1. We first consider two-dimensional models of the following forms:

Y = β1X1 + β2X2 + C exp(0.5X2) + ε, (5.1)

Y = β1 +X1(1 +X2)
β2 + C exp(0.5X2) + ε, (5.2)

where X ∼ U2[1, 2]. These models are also considered by Zhang, Li and

Feng (2015). Set (β1, β2) = (2, 3), C = 0.0, 0.2, 0.4, 0.6, 0.8 and (β1, β2) =

(1, 2), C = 0.0, 0.1, 0.2, 0.3, 0.4 for models (5.1) and (5.2), respectively. We

further let the distorting functions related to X be γ1(U) = 1+0.3 cos(2πU)

and γ2(U) = 1 + 0.2(U2 − 1/3).

Setting 2. Consider the following five-dimensional linear candidate models:

Y = β>X + 2C exp(0.5X2) + ε, (5.3)

where X ∼ U5[1, 2], β = (1, 1, 1, 1, 1)>. The distorting functions related to

X are chosen to be γ1(U) = 1 + 0.3 cos(2πU), γ2(U) = 1 + 0.2(U2 − 1/3),

γ3(U) = U + 1/2, γ4(U) = 1 + 0.2(U2 − 1/3), and γ5(U) = U2 + 2/3. The

constant C is equal to 0.0, 0.1, 0.2, 0.3, 0.4.

Setting 3. Consider the following 10-dimensional linear candidate models:

Y = β>1 X + β>2 Z + 0.1C exp(β>3 X) + ε, (5.4)

where X ∼ U6[1, 2], Z ∼ U4[1, 2], β1 = (1, 1, 1, 1,−1,−1)>, β2 = (−1,−1,

−1,−1)>, and β3 = (1, 1, 0, 0, 0, 0)>. The distorting functions follow the

forms of γ1(U) = γ2(U) = γ3(U) = 1 + 0.3 cos(2πU) and γ4(U) = γ5(U) =

γ6(U) = 1 + 0.2(U2− 1/3). The constant C is set to be 0.0, 0.1, 0.2, 0.3, 0.4.

In Settings 1–3, the distorting function related to the response variable Y is

set to be ψ(U) = 1 + 0.2 cos(2πU), with the confounding variable U ∼ U [0, 1],

and the model error ε is generated from a normal distribution with mean zero

and standard deviation 0.15. The null hypothesis holds if and only if C = 0.

Moreover, X and ε are independent. To obtain ψ̂n(u) and γ̂nr(u) for r = 1, . . . , p,

the Epanechnikov kernel function is employed. A significance level of 0.05 and

sample sizes of n = 100, 200, 300 are considered. In the bootstrap operation,

the number of replications ρ is set to 1,000. The empirical sizes and powers are

computed based on 500 repetitions.

The following five test methods are considered: the CvM test Tn,CvM in

(2.3) with Aijl computed from (2.4), and the proposed CvM and KS tests with

θ following the uniform distribution, denoted by (T Un,CvM , T Un,KS), and with θ
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following the standard normal distribution, denoted by (T Nn,CvM , T Nn,KS). The

approximate formulae (2.5) and (3.1) are employed when calculating the empirical

sizes and powers of the last four tests.

Choice of bandwidth: Instead of considering all five tests, we take test Tn,CvM
as an example to examine the impact of the bandwidth. Let σ̂U be the sample de-

viation of the confounding variable U . For the Epanechnikov kernel function, the

optimal bandwidth for the local constant kernel estimation of the mean regres-

sion function is 2.34σ̂Un
−1/5, according to the rule of thumb (Silverman (1986)).

For the considered model checking problem, undersmoothing is necessary, and

2.34σ̂Un
−1/3 may be a reasonable choice.

Based on the above considerations, for the two-dimensional model (5.1), the

five-dimensional model (5.3), and the 10-dimensional model (5.4), we calculate

the empirical sizes and powers by choosing hn = Chσ̂Un
−1/3 and letting Ch be

11 grid points from 1.34 to 3.34 at equal intervals of 0.2. Figure 1 displays the

rejection frequencies of the null hypothesis for the test Tn,CvM with different

values of Ch and C. When C = 0, these rejection frequencies are empirical

sizes that approximate the type-I error of the test. When C > 0, these rejection

frequencies refer to the empirical power.

Figure 1 shows that with different values of Ch, the empirical type-I error of

the test can be controlled well and the empirical power remains almost unchanged

for low-dimensional models (5.1) and (5.3). For the 10-dimensional model (5.4),

the choice of Ch does affect the empirical size and power, although this effect

weakens gradually as C and n increase. The same phenomenon was also reported

in Wang et al. (2020).

As shown in Zhu, Guo and Zhu (2017) and Wang et al. (2020), the optimal

bandwidth choice in studies on model adequacy tests remains an open problem

that requires further research. We employ a bandwidth of 2.34σ̂Un
−1/3 in the

following simulation studies for all settings.

Choice of m in random approximation procedures: Random approxi-

mation procedures are employed to calculate the empirical sizes and powers of

the tests T Un,CvM , T Nn,CvM , T Un,KS , and T Nn,KS . We consider the two-dimensional

model (5.1) and the 10-dimensional model (5.4) as examples to illustrate the im-

pact of m. Specifically, m is taken as evenly spaced points in the interval [25, 300]

with a spacing of 25.

Figures 2 and 3 show the empirical sizes and powers of the tests T Un,CvM ,

T Nn,CvM , T Un,KS , and T Nn,KS against different values of m and C at the 5% sig-

nificance level with sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3 for
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Model(5.1): 𝑛𝑛 = 100 Model(5.1): 𝑛𝑛 = 300

Model(5.3): 𝑛𝑛 = 100 Model(5.3): 𝑛𝑛 = 300

Model(5.4): 𝑛𝑛 = 100 Model(5.4): 𝑛𝑛 = 300
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Figure 1. Rejection frequencies of the null hypothesis for the test Tn,CvM against different
values of C and Ch at the 5% significance level, with sample sizes 100 (left panel) and
300 (right panel) for models (5.1) (upper row), (5.3) (middle row), and (5.4) (lower row).
The horizontal plane corresponds to the 5% significance level.

models (5.1) and (5.4). All four tests are not sensitive to the choice of m. We set

m = 50, for the sake of simplicity.

We calculate the empirical sizes and powers for models (5.1)–(5.4) and present

the results in Tables 1 and 2. For comparison purposes, the tests in Zhang, Li and

Feng (2015) and Zhao and Xie (2018) are also considered, which are called T ZLFn

and T ZXn , respectively. For the test of Zhang, Li and Feng (2015), the weighting

function is set to l(X) = exp(0.5X2). The Epanechnikov kernel function and a

bandwidth of σ̂Un
−1/3 were used. These choices are the same as those in Zhang,

Li and Feng (2015). The results are also listed in Tables 1 and 2. The naive
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Figure 2. Rejection frequencies of the null hypothesis for the tests T U
n,CvM , T N

n,CvM ,

T U
n,KS , and T N

n,KS against different values of m and C at the 5% significance level with

sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3 for model (5.1). The horizontal

plane corresponds to the 5% significance level.

method, which ignores the measurement error, is not considered here, because

Zhao and Xie (2018) showed that it performs poorly.

From Tables 1 and 2, we observe that the empirical sizes of the five proposed

tests are close to the nominal levels in all settings, whereas tests T ZLFn and

T ZXn tend to yield lower empirical sizes, especially for settings 2 and 3, that is,

the five-dimensional and 10-dimensional models. Second, with increases in the

sample size and the value of C, the empirical power of all seven tests increases,

and the five proposed tests perform better than the tests T ZLFn and T ZXn in

terms of empirical power. Moreover, the proposed tests are barely affected by

the dimensions of the covariates, whereas the local smoothing test T ZXn performs

poorly for the five-dimensional and 10-dimensional models. It can be concluded

that the proposed methods have advantages in terms of power performance and
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Figure 3. Rejection frequencies of the null hypothesis for the tests T U
n,CvM , T N

n,CvM ,

T U
n,KS , and T N

n,KS against different values of m and C at the 5% significance level with

sample size n = 100 and bandwidth h = 2.34σ̂Un
−1/3 for model (5.4). The horizontal

plane corresponds to the 5% significance level.

dealing with the “curse of dimensionality.”

As mentioned above, this study is the first to apply the KS test with the

dimension-reduction effect to check the adequacy of regression models. The sim-

ulation results show that the proposed KS tests can control the type-I error and

yield satisfactory empirical power. As a useful test type, it is worthwhile inves-

tigating the performance of KS tests with the dimension-reduction effect when

checking other regression models.

Another issue is the effect of the projection parameter selection. The simula-

tion results show that the tests Tn,CvM and T Un,CvM yield almost the same results.

Note that the tests Tn,CvM and T Un,CvM are based on the formula of Escanciano

(2006) and on the random approximation to compute Aijl for i, j, l = 1, . . . , n,

respectively. Furthermore, the empirical sizes and powers are very similar for the
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Table 1. Results for Setting 1. Empirical sizes and powers of Tn,CvM , T U
n,CvM , T N

n,CvM ,

T U
n,KS , T N

n,KS , T ZLF
n , and T ZX

n at the 5% significance level for the two-dimensional
models (5.1) and (5.2).

Model n C Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

(5.1) 100 0.0 0.058 0.058 0.058 0.058 0.056 0.028 0.004

0.2 0.146 0.148 0.146 0.148 0.150 0.064 0.006

0.4 0.420 0.420 0.418 0.430 0.426 0.214 0.048

0.6 0.728 0.726 0.728 0.742 0.742 0.476 0.222

0.8 0.950 0.948 0.946 0.956 0.954 0.732 0.428

200 0.0 0.046 0.044 0.046 0.058 0.052 0.032 0.004

0.2 0.272 0.268 0.262 0.288 0.278 0.128 0.040

0.4 0.756 0.752 0.748 0.768 0.760 0.488 0.220

0.6 0.970 0.970 0.970 0.976 0.974 0.822 0.682

0.8 0.996 0.996 0.996 0.996 0.996 0.962 0.952

300 0.0 0.048 0.050 0.050 0.052 0.058 0.030 0.006

0.2 0.410 0.404 0.400 0.406 0.416 0.206 0.074

0.4 0.902 0.902 0.902 0.912 0.916 0.620 0.460

0.6 0.996 0.996 0.996 0.996 0.996 0.976 0.922

0.8 1 1 1 1 1 1 1

(5.2) 100 0.0 0.054 0.056 0.058 0.052 0.058 0.040 0.002

0.1 0.132 0.142 0.136 0.138 0.152 0.102 0.006

0.2 0.418 0.420 0.426 0.422 0.408 0.224 0.014

0.3 0.730 0.726 0.722 0.718 0.722 0.422 0.062

0.4 0.904 0.904 0.904 0.876 0.914 0.630 0.090

200 0.0 0.054 0.056 0.054 0.044 0.044 0.040 0.002

0.1 0.308 0.304 0.302 0.268 0.286 0.182 0.012

0.2 0.716 0.712 0.708 0.712 0.720 0.448 0.078

0.3 0.964 0.964 0.964 0.956 0.962 0.728 0.226

0.4 0.994 0.994 0.994 0.996 0.996 0.934 0.572

300 0.0 0.052 0.052 0.054 0.056 0.048 0.056 0.010

0.1 0.418 0.414 0.426 0.390 0.402 0.232 0.032

0.2 0.896 0.904 0.892 0.894 0.888 0.642 0.160

0.3 0.994 0.994 0.994 0.994 0.994 0.920 0.590

0.4 1 1 1 1 1 0.998 0.916

CvM test and the KS test, regardless of whether the projection parameter follows

the uniform or the normal distribution. Therefore, the random approximation

method is a feasible way of eliminating the calculation difficulties caused by the

unknown nuisance parameter θ.
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Table 2. Results for Settings 2 and 3. Empirical sizes and powers of Tn,CvM , T U
n,CvM ,

T N
n,CvM , T U

n,KS , T N
n,KS , T ZLF

n , and T ZX
n at the 5% significance level for the five-

dimensional model (5.3) and 10-dimensional model (5.4).

Model n C Tn,CvM T U
n,CvM T N

n,CvM T U
n,KS T N

n,KS T ZLF
n T ZX

n

(5.3) 100 0.0 0.054 0.058 0.052 0.056 0.060 0.020 0

0.1 0.062 0.060 0.068 0.088 0.086 0.036 0.002

0.2 0.202 0.194 0.208 0.188 0.208 0.060 0.004

0.3 0.302 0.294 0.308 0.312 0.326 0.092 0

0.4 0.564 0.558 0.570 0.578 0.582 0.158 0

200 0.0 0.042 0.052 0.042 0.048 0.048 0.022 0.002

0.1 0.136 0.134 0.136 0.140 0.132 0.046 0

0.2 0.378 0.376 0.384 0.384 0.394 0.104 0

0.3 0.698 0.682 0.700 0.726 0.728 0.218 0.002

0.4 0.888 0.886 0.886 0.892 0.888 0.376 0.002

300 0.0 0.052 0.048 0.048 0.054 0.044 0.026 0

0.1 0.212 0.204 0.212 0.206 0.206 0.048 0.004

0.2 0.548 0.546 0.558 0.566 0.564 0.144 0

0.3 0.888 0.888 0.892 0.886 0.894 0.350 0

0.4 0.984 0.980 0.982 0.982 0.984 0.580 0

(5.4) 100 0.0 0.062 0.054 0.052 0.058 0.058 0.026 0

0.1 0.296 0.286 0.290 0.310 0.320 0.080 0

0.2 0.658 0.622 0.656 0.668 0.672 0.108 0

0.3 0.874 0.862 0.840 0.890 0.878 0.164 0

0.4 0.936 0.930 0.926 0.958 0.958 0.188 0.006

200 0.0 0.058 0.052 0.056 0.048 0.058 0.024 0

0.1 0.684 0.654 0.668 0.692 0.694 0.112 0

0.2 0.984 0.978 0.980 0.986 0.978 0.250 0.004

0.3 0.996 0.998 0.996 0.998 0.996 0.448 0.020

0.4 0.998 0.998 0.998 1 1 0.480 0.056

300 0.0 0.052 0.056 0.052 0.042 0.056 0.028 0

0.1 0.848 0.818 0.826 0.840 0.834 0.168 0.006

0.2 1 0.998 1 1 1 0.436 0.014

0.3 1 1 1 1 1 0.720 0.088

0.4 1 1 1 1 1 0.768 0.228

5.2. Analyses of diabetes data

In this subsection, we conduct a real-data analysis of a diabetes data set

(Schorling et al. (1997); Willems et al. (1997))(https://hbiostat.org/data).

This data set has also been analyzed by Şentürk and Nguyen (2006) and De-

laigle, Hall and Zhou (2016), where covariate-adjusted linear and nonparametric

regression models, respectively, were employed. Our aim is to check whether the

https://hbiostat.org/data
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Figure 4. Scatter plots of calibrated GlyHb (a) and the estimated residuals (b) versus
the estimated regression function, along with estimated linear (thick lines) and nonpara-
metric (solid lines) regression curves with 95% confidence bands (dotted lines).

following linear model is suitable for these data on 380 individuals:

Y = β0 + β1X1 + β2X2 + β3Z + ε, (5.5)

where Y is the glycosolated haemoglobin level (GlyHb), and X1, X2, and Z are

the systolic blood pressure (SBP), diastolic blood pressure (DBP), and gender

indicator (0, male; 1, female), respectively.

As in Şentürk and Nguyen (2006) and Delaigle, Hall and Zhou (2016), the

variables GlyHb, SBP, and DBP are believed to be distorted by the BMI. The

settings of the proposed methods are the same as those in the simulation studies.

The p-values of the tests Tn,CvM , T Un,CvM , T Nn,CvM , T Un,KS , and T Nn,KS are calculated

and shown to be 0.005, 0.008, 0.003, 0.007, and 0.002, respectively. The method

of Zhang, Li and Feng (2015) was also applied to analyze this data set, yielding

p-values of 0.830, 0.265, and 0.599 for different choices of weighting functions

sin(X), exp(X), and cos(X). The p-value of the method of Zhao and Xie (2018)

was computed to be 0.425. Therefore, the proposed tests suggest rejecting the

null hypothesis linear model (5.5), whereas the tests of Zhang, Li and Feng (2015)

and Zhao and Xie (2018) cannot reject the null hypothesis. We show scatter

plots of the calibrated variable GlyHb and the estimated residuals versus the

estimated regression function in Figure 4. The estimated residual curve deviates

significantly from a horizontal line, which indicates that the linear model (5.5) is

inadequate for this data set.
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Supplementary Material

The online Supplementary Material includes the preliminary lemmas, proofs

of Theorems 1 and 2, additional simulation studies, and real data analyses.
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Appendices

A. Notations

(I) Define Ỹm,n = n−1
∑n

i=1 Ỹi, X̃m,nr = n−1
∑n

i=1 X̃ri, r = 1, . . . , p, and Sl(u,

hn) = n−1
∑n

j=1(Uj − u)lKhn
(u − Uj), l = 0, 1, 2, where K(·) is a kernel

function, hn is a bandwidth sequence and Khn
(u) = h−1n Kh(u/hn).

(II) Denote the derivative of g related to β by ġβ. Furthermore, g̈β,x, g̈x,β and

g
(3)
β,x,β can be defined similarly.

(III) Define

ψ̂n(u) = n−1
n∑
j=1

{S2(u, hn)− S1(u, hn)(Uj − u)}Khn
(u− Uj)Ỹj

S0(u, hn)S2(u, hn)− S2
1(u, hn)

,

γ̂n(u) = n−1
n∑
j=1

{S2(u, hn)− S1(u, hn)(Uj − u)}Khn
(u− Uj)X̃j

S0(u, hn)S2(u, hn)− S2
1(u, hn)

,

Γ1(t) = E{ġβ(X,Z, β)>1(ν>θ ≤ t)}, Σ = E{ġβ(X,Z, β)ġβ(X,Z, β)>},
DRt = E{S(X,Z)1(ν>θ ≤ t)} − Γ1(t)Σ

−1E{ġβ(X,Z, β)S(X,Z)}, Ω =

(X1ġx1
(X,Z, β)/E(X1), . . . , Xpġxp

(X,Z, β)/E(Xp))
>,

Σx = E{ġβ(X,Z, β)Ω>}.

(IV) Let the symbols ⊗ and � indicate multiplying and dividing componentwise,

respectively. Denote

IF (t,θ)(Y,X,Z, ν, U)

= {1(ν>θ ≤ t)− Γ1(t)Σ
−1ġβ(X,Z, β)}ε

+
{

E{Y 1(ν>θ ≤ t)|U} − Γ1(t)Σ
−1E{Y ġβ(X,Z, β)}

} Ỹ − Y
E(Y )
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+
{

E
{

(X⊗ ġx(X,Z, β)� E(X))> 1(ν>θ ≤ t)|Uj
}

− Γ1(t)Σ
−1Σx

}(
X̃−X

)
. (A.1)

(V) Let ∆ni = (∆n1i, . . . ,∆npi)
> with ∆nri = Xri{γr(Ui)X̃m,nr − γ̂nr(Ui)}/γ̂nr(

Ui) for i = 1, . . . , n and r = 1, . . . , p. Define ∆̃ij = (∆̃1ij , . . . , ∆̃pij)
> with

∆̃rij = Xri{γr(Uj)E(Xr) −Xrj}/E(X̃r|U = Ui) for i, j = 1, . . . , n and r =

1, . . . , p.

B. Conditions

(C1) The density function of U , fu(u), is bounded away from zero and satisfies

Lipschitz condition of order 1 on the support of U .

(C2) (i) The functions ψ(u) and γr(u), r = 1, . . . , p, have bounded and continu-

ous derivatives. (ii) The functions ψ(u) and γr(u), r = 1, . . . , p, are non-zero

on the support set of U .

(C3) E(Y ) and E(Xr), r = 1, . . . , p, are bounded away from zero. E(|Y |3) < ∞
and E(|Xr|3) <∞, r = 1, . . . , p.

(C4) The matrix Σ = E{ġβ(X,Z, β)ġβ(X,Z, β)>} is positive finite.

(C5) The partial derivatives of g(X,Z, β) with respect to x and β exist and are

continuous; the second-order and third-order partial derivatives of g(X,Z, β)

with respect to x and β exist and are bounded.

(C6) The objective function (2.1) has a unique minimizer.

(C7) (i) The kernel function K(u) is a bounded univariate kernel function of

order 2 with a bounded support. (ii) The second derivative of K(u) is

bounded and satisfies Lipschitz condition.

(C8) The bandwidth hn satisfies the following conditions: hn → 0, nh4n → 0 and

lnn/(nhn)→ 0 as n→∞.

Remark 8. Conditions (C1)-(C3) are also employed in Şentürk and Müller

(2006) and Zhang, Li and Feng (2015) aiming for avoiding the case where the

denominator is zero. Conditions (C4)-(C6) are necessary for the asymptotic nor-

mality of the nonlinear least squares estimator. Conditions (C7) and (C8) are

common for the nonparametric kernel method.
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