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ESTIMATION FOR NONIGNORABLE MISSING

RESPONSE OR COVARIATE USING SEMI-PARAMETRIC

QUANTILE REGRESSION IMPUTATION AND

A PARAMETRIC RESPONSE PROBABILITY MODEL

Emily Berg and Cindy Yu

Iowa State University

Abstract: We address the problem of imputation when a response or covariate may

be subject to a nonignorable (or, equivalently, missing not at random) nonresponse,

meaning the response probability may depend on a variable that is not always

observed. We discuss model identification and develop a novel estimator of the

parameters of the response probability. We use a propensity score adjustment to

incorporate a subset for which both the response and the covariate are missing. We

derive an approximation for the large-sample variance and assess the finite-sample

properties of the variance estimator using simulations. The simulation results also

show that a quantile regression offers a compromise between fully parametric and

nonparametric alternatives. In an application to data from a 2011 survey of pet

owners, a quantile regression allows us to model complex relations between two types

of veterinary expenditures, where we find evidence of a nonignorable nonresponse.
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1. Introduction

A widely adopted remedy for missing data is to replace each missing value

with one or more imputed values (Kim and Shao (2014); Rubin (1987)). An im-

putation model defines (1) a relationship between a response (y) and a covariate

(x), and (2) the nature of the dependence between the event of responding and

(x, y). A common simplifying assumption is that the data are missing at ran-

dom (MAR), meaning that the probability of responding is independent of the

missing variable, after conditioning on the fully observed variables. Under the

MAR assumption, Kim and Yu (2011) and Wang and Chen (2009) develop fully

parametric and nonparametric imputation procedures, respectively. Chen and Yu

(2016) and Berg and Yu (2019) construct imputed values under the assumptions

of a semiparametric quantile regression model, assuming an MAR nonresponse.
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When the event of responding is not independent of missing values, given ob-

served values, the response mechanism is called missing not at random (MNAR)

or nonignorable. (Hereafter, we use MNAR and nonignorable interchangeably.)

We extend Chen and Yu (2016) to a nonignorable nonresponse for a data struc-

ture in which neither the response nor the covariate is fully observed.

A condition for model identification in the presence of an MNAR nonre-

sponse is the existence of a nonresponse instrument, a variable that is correlated

with the response y, but conditionally independent of the event of responding

given y (Wang, Shao and Kim (2014)). Tang, Little and Raghunathan (2003)

estimates a fully parametric model for y given x, using x as an instrument, with-

out requiring a specific form for the response probability. Zhao (2015) extends

the framework of Tang, Little and Raghunathan (2003) to include an additional

instrument. Other approaches, such as those of Wang, Shao and Kim (2014) and

Chang and Kott (2008), use an instrumental variable to estimate a parametrized

propensity score model that depends on y, but not on the instrument. Shao

and Wang (2016) generalize the propensity score model of Wang, Shao and Kim

(2014) to include a nonparametric component. Riddles, Kim and Im (2016) use

likelihood-based methods to improve upon the efficiency of the calibration esti-

mation. Zhao and Ma (2019) use an instrumental variable, but avoid estimating

the response probability directly. Miao and Tchetgen Tchetgen (2016) develops

a doubly robust estimator under the assumption that an instrumental variable

(called a “shadow variable” in their work) exists. Fang, Zhao and Shao (2018)

uses an instrumental variable assumption to estimate the coefficient associated

with a missing covariate when the response probability depends on the covariate.

However, it is well known that identifying an instrumental variable in a given data

set is nontrivial. Morikawa and Kim (2017) generalize the instrumental variable

condition of Wang, Shao and Kim (2014) by deriving a necessary and sufficient

condition for model identification under an MNAR nonresponse. They develop

an efficient propensity score estimator, assuming a univariate response variable is

missing and a univariate covariate is fully observed. We extend the identification

condition of Morikawa and Kim (2017) to accommodate missing covariates and

construct a completed data set through imputation.

We propose generating imputed values from a semiparametric quantile regres-

sion model, and then using estimates of the response probabilities to approximate

the required expectations for nonrespondents. We augment the imputation pro-

cedure with a propensity score adjustment to incorporate a subset for which both

the response and the covariate are missing. In our application, x and y represent

two types of veterinary expenditures, neither of which is fully observed, and ei-
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Table 1. Structure of Missing Data.

Covariate x Response y Response Indicator δ
X X 1
X ? 2
? X 3

ther of which may influence the probability of responding. The semiparametric

quantile regression provides the flexibility needed to model the nonlinear associ-

ations between the two types of veterinary expenditures. We define parametric

and nonparametric alternatives for the purpose of comparison in the simulation

study. Because our data set has a univariate covariate, we focus on that case,

and briefly discuss an extension to multivariate covariates in Section 6.

We validate our proposed procedure by means of theory and simulation, and

then apply the method to data from a survey of pet owners. In Section 2, we define

the model assumptions and imputation and estimation procedures. In Section 3,

we define a variance estimator based on a linear approximation. In Section 4, we

conduct simulation studies to compare alternative imputation models and assess

the finite-sample properties of the variance estimator. We apply the method to

impute veterinary expenditures in Section 5. We summarize and discuss future

work in Section 6.

2. Model Assumptions and Imputation and Estimation Procedures

Let xi and yi denote a continuous covariate and a continuous response vari-

able, respectively, with a compact support on the box [M1x,M2x] × [M1y,M2y],

where i = 1, . . . , n. Let δi denote a response indicator variable such that δi = 1 if

both xi and yi are observed, δi = 2 if xi is observed and yi is missing, and δi = 3

if yi is observed and xi is missing. We also use δki = I[δi = k], for k = 1, 2, 3.

Table 1 shows the data structure.

Assume that (xi, yi, δi), for i = 1, . . . , n, are independent and identically dis-

tributed (iid) realizations of the random variable (X,Y,∆) with joint cumulative

distribution function (CDF) F (x, y, δ). Further, assume X and Y are absolutely

continuous, and denote their corresponding conditional probability density func-

tions by f(y|x, δ) and f(x|y, δ), respectively. Assume ∆ has parametric condi-

tional probability mass function given by

P (∆ = k | X = x, Y = y) =
exp(φk0 + φk1x+ φk2y)∑3
k=1 exp(φk0 + φk1x+ φk2y)

, (2.1)
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for k = 1, 2, 3, where (φ10, φ11, φ12) = (0, 0, 0).

To identify the parameters of (2.1), we require an additional assumption.

By a direct extension of Theorem 3.1 of Morikawa and Kim (2017) to missing

covariates, the additional assumption is that F (x, y, δ) is a joint CDF such that

the condition

E[exp(−φ20 − φ21xi − φ22Y ) | xi, δi = 1]

= E[exp(−φ′20 − φ′21xi − φ′22Y ) | xi, δi = 1] (2.2)

almost everywhere implies (φ20, φ21, φ22) = (φ′20, φ
′
21, φ

′
22), and the condition

E[exp(−φ30 − φ31X − φ32yi) | yi, δi = 1]

= E[exp(−φ′30 − φ′31X − φ′32yi) | yi, δi = 1] (2.3)

almost everywhere implies (φ30, φ31, φ32) = (φ′30, φ
′
31, φ

′
32). If φ31 = φ22 = 0, then

MAR holds and the model is automatically identified.

Sufficient conditions for (2.2) and (2.3) are that

hy(φ22, x) = −log(E[exp{−φ22Y } | x, δ = 1]) (2.4)

is not in the column space of x, and that

hx(φ31, y) = −log(E[exp{−φ31X} | y, δ = 1]) (2.5)

is not in the column space of y. If hy(φ22, x) is in the column space of x, then

φ21 is confounded with φ22. Similarly, we require that hx(φ31, y) not be in the

column space of y to prevent φ32 from being confounded with φ31. Note that

−hy(φ22, x) is the cumulant generating function of f(y | x, δ = 1), and likewise

for −hx(φ31, y). An aspect of (2.4) and (2.5) that is of practical importance is

that one can check these conditions using {(xi, yi) : δi = 1}, as we illustrate in

the data analysis of Section 5.

Let the parameter of interest be θ0 = Eg(X,Y ) =
∑3

δ=1

∫∞
−∞

∫∞
−∞ g(x, y)

dF (x, y, δ). In the absence of any nonresponse, an estimator of Eg(X,Y ) is

θ̂full = n−1
∑n

i=1 g(xi, yi). The estimator θ̂full is not directly applicable because

of the nonresponse. By Cheng (1994), a consistent estimator of θ0 is

θ̃ =
1

n

n∑
i=1

{δ1ig(xi, yi)+δ2iE[g(xi, Y )|xi, δi = 2]+δ3iE[g(X, yi)|yi, δi = 3]}. (2.6)

We convert the expectations given δ = 2 or δ = 3 in (2.6) to expectations
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given δ = 1 using an “exponential tilting” relationship (Kim and Yu (2011)).

Under (2.1), it is straightforward to show that

f(y|x, δ = 2) =
f(y|x, δ = 1)exp(φ22y)

E[exp(φ22Y ) | x, δ = 1]
(2.7)

and

f(x|y, δ = 3) =
f(x|y, δ = 1)exp(φ31x)

E[exp(φ31X) | y, δ = 1]
, (2.8)

where φ22 and φ31 are the tilting parameters. The equality in (2.7) allows us to

express the conditional expectation for the group with δ = 2 in (2.6) as a function

of different expectations given δ = 1 by

E[g(x, Y )|x, δ = 2] =
E[g(x, Y )exp(φ22Y )|x, δ = 1]

E[exp(φ22Y )|x, δ = 1]
. (2.9)

Similarly, the third conditional expectation for the group with δ = 3 in (2.6)

converts to a ratio of two expectations given δ = 1 as

E[g(X, y)|y, δ = 3] =
E[g(X, y)exp(φ31X)|y, δ = 1]

E[exp(φ31X)|y, δ = 1]
. (2.10)

The expressions (2.9) and (2.10) show that we can estimate θ using (1) estimates

of f(y | x, δ = 1) and f(x | y, δ = 1), and (2) estimates of φ22 and φ31. We focus

on using a semiparametric quantile regression to estimate f(y | x, δ = 1) and

f(x | y, δ = 1). We compare the results to those from nonparametric and fully

parametric alternatives in the simulations. We first define our estimation method

for known (φ22, φ31) in Section 2.1, and then explain how to estimate unknown

(φ22, φ31) in Section 2.2.

2.1. Approximating expectations using estimated quantiles

We approximate f(y|x, δ = 1) and f(x|y, δ = 1) through their conditional

quantile regression functions, denoted by qτ (x) and qτ (y), respectively, for τ ∈
(0, 1). By definition, the quantile regression functions satisfy τ = P (Y ≤ qτ (x)|x,
δ = 1) and τ = P (X ≤ qτ (y)|y, δ = 1). Assume qτ (x) and qτ (y) are one-to-

one functions of x and y, respectively, for every τ . A well-known fact is that

qτ (x) and qτ (y) satisfy qτ (x) = argmina
∫
ρτ (y − a)f(y|x, δ = 1)dy and qτ (y) =

argmina
∫
ρτ (x − a)f(x|y, δ = 1)dx, where ρτ (u) is the “check function” defined

by ρτ (u) = u(τ − I[u < 0]) (Koenker (2005)). We approximate qτ (x) and qτ (y)

using a B-spline, allowing flexibility and computational efficiency. Let B(x) be a

B-spline of degree py|x and with Kn1,y interior knots, where n1 is the sample size



1616 BERG AND YU

for δ = 1. For any τ ∈ (0, 1), we estimate qτ (x) by q̂τ (x) = B(x)′β̂y|x(τ), where

β̂y|x(τ) = argmin
β

{
n∑
i=1

δ1iρτ (yi −B(xi)
′β) +

λn1,y

2
β′D′mDmβ

}
, (2.11)

Dm is a difference matrix of order m, and λn1,y > 0 is the smoothing parameter.

See Chen and Yu (2016) and Berg and Yu (2019) for a precise definition of the B-

spline and the difference matrix Dm. In an analogous fashion, define the estimate

of qτ (y) by q̂τ (y) = B(y)′β̂x|y(τ), where

β̂x|y(τ) = argmin
β

{
n∑
i=1

δ1iρτ (xi −B(yi)
′β) +

λn1,x

2
β′D′mDmβ

}
for a given τ.

To approximate the full distributions of f(yi | xi, δi = 1) and f(xi | yi, δi =

1), we obtain estimates β̂x|y(τ) and β̂y|x(τ) for a grid of τj defined by τj =

τ1+(j−1)/J , for j = 2, . . . , J , where τ1 ∼ Unif(0, 1/J). The resulting estimated

quantiles, defined as y∗i = {y∗ij = q̂τj (xi) : j = 1, . . . , J}, serve as imputed values

for element i with δi = 2. Likewise, x∗i = {x∗ij = q̂τj (yi) : j = 1, . . . , J} serve as

imputed values for element i with δi = 3.

The sequence of estimated quantiles permits us to approximate the expec-

tations defining θ̃. For any arbitrary function m(x, y), a variable transformation

implies

E[m(x, Y )|x, δ = 1] =

∫ 1

0
m(x, F−1y|x,δ=1(τ))

fy|x,δ=1(F
−1
y|x(τ) | x)

fy|x,δ=1(F
−1
y|x(τ) | x)

dτ

=

∫ 1

0
m(x, qτ (x))dτ.

We approximate E[m(x, Y )|x, δ = 1] by Ê[m(x, Y )|x, δ = 1] = J−1
∑J

j=1m(x,

q̂τj (x)).

We approximate the numerator and denominator of (2.9) by replacingm(x, Y )

with g(x, Y )exp(φ22Y ) and exp(φ22Y ), respectively. Specifically, Ê[g(x, Y )exp(

φ22Y )|x, δ = 1] = J−1
∑J

j=1 g(x, q̂τj (x))exp(φ22q̂τj (x)), and Ê[exp(φ22Y )|x, δ =

1] = J−1
∑J

j=1 exp(φ22q̂τj (x)). Then, an approximation for (2.9) is

Ê[g(xi, Y )|xi, δi = 2] =

J∑
j=1

w2ij(φ2,y
∗
i )g(xi, y

∗
ij), (2.12)
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where φ2 = (φ20, φ21, φ22)
′ and

w2ij(φ2,y
∗
i ) =

exp(φ22y
∗
ij)∑J

j=1 exp(φ22y∗ij)
. (2.13)

Analogously, we estimate the expectation in (2.10) as

Ê[g(X, yi)|yi, δi = 3] =

J∑
j=1

w3ij(φ3,x
∗
i )g(x∗ij , yi), (2.14)

where φ3 = (φ30, φ31, φ32)
′ and

w3ij(φ3,x
∗
i ) =

exp(φ31x
∗
ij)∑J

j=1 exp(φ31x∗ij)
. (2.15)

2.2. Estimation of response probability

The estimated expectations in (2.12) and (2.14) require estimators of φ22
and φ31, the two tilting parameters. We estimate φ = (φ′2,φ

′
3)
′ using conditional

probabilities. Define for k = 2, 3,

πk1(xi, yi,φk) := P (δi = k | xi, yi,φk, δi ∈ {1, k})

=
exp(φk0 + φk1xi + φk2yi)

1 + exp(φk0 + φk1xi + φk2yi)
,

and let π1k∞(v) := P (δ = 1|v, δ ∈ {1, k}) for v = x if k = 2, and v = y if k = 3.

Based on a result of Morikawa and Kim (2017), we can show that

π12∞(x) = E[1− π21(x, Y,φ2) | x, δ ∈ {1, 2}]

=
exp(−φ20 − φ21x+ hy(−φ22, x))

1 + exp(−φ20 − φ21x+ hy(−φ22, x))
(2.16)

and

π13∞(y) = E[1− π31(X, y,φ3) | y, δ ∈ {1, 3}]

=
exp(−φ30 + hx(−φ31, y)− φ32y)

1 + exp(−φ30 + hx(−φ31, y)− φ32y)
, (2.17)

where hy(φ22, xi) and hx(φ31, yi) are defined in (2.4) and (2.5), respectively. Note

that π12∞(x) depends only on x and π13∞(y) depends only on y. Thus, equation
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(2.16) suggests an estimator of φ2 defined as

φ̂2 = argmax
φ2

∑
i:δi=1

log

[
exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

1 + exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

]
(2.18)

+
∑
i:δi=2

log

[
1− exp(−φ20 − φ21xi + ĥy(−φ22, q̂yi))

1 + exp(−φ20 − φ21x+ ĥy(−φ22, q̂yi))

]
,

where ĥy(φ22, q̂yi) = −log(J−1
∑J

j=1 exp{−φ22y∗ij}). Likewise, we estimate φ3 as

φ̂3 = argmax
φ3

∑
i:δi=1

log

[
exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

1 + exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

]
(2.19)

+
∑
i:δi=3

log

[
1− exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

1 + exp(−φ30 + ĥx(−φ31, q̂xi)− φ32yi)

]
,

where ĥx(φ31, q̂xi) = −log(J−1
∑J

j=1 exp{−φ31x∗ij}). Note that ĥx and ĥy are

estimates of hx and hy, respectively, using the imputed values y∗ij and x∗ij . In op-

eration, we use the R function optim to find the maximum, where the initial value

for φ2 is from the logistic regression of 1−δ2i on (1, xi,B(xi)
′J−1

∑J
j=1 β̂y|x(τj))

′

for the set with δ3i = 0. We define the initial value for φ3 from the logistic

regression of 1− δ3i on (1,B(yi)
′J−1

∑J
j=1 β̂x|y(τj), yi)

′ for the set with δ2i = 0.

In summary, we define the basic steps of the estimation procedure as follows:

1. Use {(xi, yi) : δi = 1} to estimate the quantile regression model, and define

imputed values y∗ij and x∗ij , as discussed in Section 2.1.

2. Estimate φ2 and φ3, as discussed in Section 2.2.

3. Define the imputed estimator θ̂ by

θ̂ = n−1
n∑
i=1

{
δ1ig(xi, yi) + δ2i

J∑
j=1

w2ij(φ̂2,y
∗
i )g(xi, y

∗
ij)

+δ3i

J∑
j=1

w3ij(φ̂3,x
∗
i )g(x∗ij , yi)

}
. (2.20)

This completes the description of our imputation and estimation procedures.
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3. Large-Sample Theories and Variance Estimation

As a precursor to the statement of the large-sample distributions of φ̂2 and

φ̂3, we give the large-sample distributions of the the estimates of the quantile

regression coefficients as Lemma 1. We state Lemma 1 without proof because it

is essentially an application of Yoshida (2013) to the set with δi = 1. We use the

linear approximation in the lemma in the subsequent derivation of the asymptotic

properties of (φ̂′2, φ̂
′
3)
′ and θ̂.

Lemma 1 uses the following property of Barrow and Smith (1978). The

result is that the best L∞ approximation to qτ (x) (as a function of x), de-

noted B(x)′β∗y|x(τ), satisfies supx∈[M1x,M2x] | qτ (x) + baτ (x) − B(x)′β∗y|x(τ) |=

o(K
−(py|x+1)
n1,y ), where baτ (x) is the bias due to using a B-spline to approximate the

true function qτ (x), and is defined as in Yoshida (2013).

Lemma 1. Assume q
(py|x+1)
τ (x) is continuous, where q

(py|x+1)
τ (x) denotes the p+1

derivative of qτ (x) with respect to x, Kn1,y = O(n
1/(2py|x+3)
1 ), and λn1,y = O(n

νy
1 )

for νy < (py|x +m+ 1)/(2py|x + 3). Then,√
n1

Kn1,y

(
B(x)′β̂y|x(τ)− qτ (x)− baτ (x)− bλτ (x)

)
= Wn1

+ op(1),

where

Wn1
=

√
n1

Kn1,y
B(x)′H−1n1,y|x(τ)

1

n1

∑
i:δi=1

B(xi)ψτ (ey|x,i(τ)),

ψτ (u) = τ − I[u < 0], ey|x,i(τ) = yi − qτ (xi),

Hn1,y|x(τ) = Φy|x(τ) + n−11 λn1,yD
′
mDm,

bλτ (x) = −λn1,y

n1
B(x)′

(
Φy|x(τ) +

λn1,y

n1
D′mDm

)−1
D′mDmβ

∗
y|x(τ), (3.1)

and Φy|x(τ) = limn1→∞ n
−1
1

∑
i:δi=1 fy|(x,δ=1)(xi, qτ (xi))B(xi)B(xi)

′.

Lemma 1 holds for a given τ , but the order of the approximation does not

depend on τ . A result analogous to Lemma 1 holds for β̂x|y(τ). We assume that

the degree of B(y), denoted px|y, is such that px|y · p−1y|x = O(1). We also assume

that the number of interior knots used to define B(y), denoted by Kn1,x, satisfies

Kn1,y ·K−1n1,x = O(1).
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3.1. Asymptotic variance of φ̂ and θ̂

We state the large-sample distributions of φ̂2 and θ̂ as Theorems 1 and 2,

respectively. Section S1 of the Supplementary Material contains a result for φ̂3

analogous to Theorem 1, as well as proofs.

Theorem 1. In addition to the assumptions of Lemma 1, assume φ̂2 − φ2 =

op(1), J = O(n0.5+δ) for some δ > 0, and the conditions in the Supplementary

Material hold. Then, φ̂2 − φ2 = Op(n
−0.5), φ̂2 − φ2 = n−1

∑n
i=1 I

−1
φ2
Uφ2i +

op(n
−0.5), and

√
nV
−1/2
φ2

(φ̂2 − φ2)
d→ N(0, I3), where

Vφ2
= lim

n→∞
n−1I−1φ2

(
n∑
i=1

Uφ2iU
′
φ2i

)
I−1φ2

, (3.2)

Iφ2
= limn→∞ In,φ2

(qy), In,φ2
(qy) = n−1

∑
i∈A12

π12i(φ2, qyi)(1 − π12i(φ2, qyi))

z2i(φ2, qyi)z2i(φ2, qyi)
′, Uφ2i = (δ1i + δ2i)Si∞(φ2) + φ22δ1i

∫M2x

M1x
p−11 π12∞(x)(1−

π12∞(x))z2∞(x)B(x)′(
∫ 1
0 exp(φ22qτ (x))`i(τ)dτ/

∫ 1
0 exp(φ22qτ (x))dτ)dF (x | δ1 +

δ2 = 1), p1 = limn→∞ n
−1n1, Si∞(φ2) = (δ1i−π12∞(xi))z2i∞, `i(τ) = H−1n1,y|x(τ)

B(xi)ψτ (ey|x,i(τ)), z2∞(x) = (−1,−x,−E2(Y | x))′, z2i∞ = z2∞(xi), z2i(φ2, qyi)

= (−1,−xi,−E2,J(Y | xi;φ2, qyi)), qyi = {qτj (xi) : j = 1, . . . , J}, E2,J(Y |
xi;φ2, qyi) =

∑J
j=1w2ij(φ2, qyi)qτj (xi),

π12i(φ2, qyi) =

1 + exp

φ20 + φ21xi + log

J−1 J∑
j=1

exp{φ22qτj (xi)}


−1

,

A12 = {i : δ1i + δ2i = 1}, qy = {qyi : δ1i + δ2i = 1}, and E2[Y | x] = E[Y | x, δ =

2].

An estimator of the variance of φ̂2 is

V̂ {φ̂2} = n−2Î−1n,φ2

(
n∑
i=1

Ûφ2iÛ
′
φ2i

)
Î−1n,φ2

, (3.3)

where we substitute the unknown parameters with their corresponding estimators

to define În,φ2
and Ûφ2i, as defined explicitly in Section S2 of the Supplementary

Material.

Theorem 2. Continue to assume the conditions of Theorem 1. In addition,

assume g(X,Y ) has bounded 2 + c moments for c > 0, and has bounded second

derivatives with respect to both x and y. Let Kn1
= max{Kn1,y,Kn1,x}. Then,
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√
nV −0.5g (θ̂−E[g(X,Y )])

d→ N(0, 1), where Vg = limn→∞(n−1)−1
∑n

i=1(ri− r̄)2,
r̄ = n−1

∑n
i=1 ri,

ri = g(xi, yi)− Eg(X,Y ) + δ2i(E2[g(xi, Y ) | xi]
−g(xi, yi)) + δ3i(E3[g(X, yi) | yi]− g(xi, yi)) (3.4)

+(δ1i + δ2i)
{
C̄2∞

}
e′2I

−1
φ2
Uφ2,i + (δ1i + δ3i)

{
C̄3∞

}
e′3I

−1
φ3
Uφ3,i

+δ1i

(∫ 1

0

∫ M2x

M1x

Cy(x, τ)′`i(τ)dF (x | δ = 2)dτ

+

∫ 1

0

∫ M2y

M1y

Cx(y, τ)′mi(τ)dF (y | δ = 3)dτ

)
,

C̄2∞ = limn→∞ n
−1∑n

k=1 δ2kCov2(g(xk, Y ), Y | xk), C̄3∞ = limn→∞ n
−1∑n

k=1

δ3kCov3(g(X, yk), X | yk), Cov2(g(x, Y ), Y | x) = Cov(g(x, Y ), Y | X = x, δ =

2), Cov3(g(X, y), X | y) = Cov(g(X, y), X | Y = y, δ = 3), E2[g(x, Y ) | x] =

E[g(x, Y ) | δ = 2, X = x], E3[g(X, y) | y] = E[g(X, y) | δ = 3, Y = y], e2 =

(0, 1, 0)′, e3 = (0, 0, 1)′, Cy(x, τ) = c̃y(x, τ)B(x), Cx(y, τ) = c̃x(y, τ)B(y),

c̃y(x, τ) =
cy(x, τ)∫ 1

0 exp(φ22qτ (x))
− E2[g(x, Y ) | x]

φ22exp(φ22qτ (x))∫ 1
0 exp(φ22qτ (x))

c̃x(y, τ) =
cx(y, τ)∫ 1

0 exp(φ31qτ (y))dτ
− E3[g(X, y) | y]

φ31exp(φ31qτ (y))φ31∫ 1
0 exp(φ31qτ (y))dτ

,

cy(x, τ) = exp(φ22qτ (x))g′y(x, qτ (x)) + g(x, qτ (x))exp(φ22qτ (x))φ22, cx(y, τ) =

exp(φ31qτ (y))g′x(qτ (y), y)+g(qτ (y), y)exp(φ31qτ (y))φ31, and mi(τ), Iφ3
, and Uφ3

are defined in the Supplementary Material for the linear approximation for φ̂3.

A proof of Theorem 2 is presented in Section S1 of the Supplementary Ma-

terial. An estimator of the variance of the imputed estimator is

V̂ {θ̂} = (n(n− 1))−1
n∑
i=1

(r̂i − ¯̂r)2, (3.5)

where r̂i is a plug-in estimator of ri defined in Section S2.3 of the Supplementary

Material, and ¯̂r = n−1
∑n

i=1 r̂i. In the Supplementary Material Section S2.4, we

define how to use a Taylor linearization to estimate the variance of “composite”

estimators of the form θ̂ = h(θ̂1, . . . , θ̂K) of a parameter θ = h(θ1, . . . , θK), where

each θk is of the form Egk(X,Y ), for some function gk(X,Y ).
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3.2. Propensity score-adjusted imputed estimator

The data set may contain a fourth group for which both xi and yi are missing.

Let δ4i = 1 if both xi and yi are missing. In this context, we interpret the

probabilities (2.1) as conditional probabilities, given that δ4i = 0. We apply the

imputation procedure to {i : δ4i = 0}, as described in Section 2. We then apply

a propensity score adjustment using a p-dimensional covariate vi, known for all

i = 1, . . . , n. Assume

P (δ4i = 0) = exp(φ40 + φ′41vi)[1 + exp(φ40 + φ′41vi)]
−1 := p4i(φ4). (3.6)

Estimate the (p+ 1)-dimensional parameter φ′4 = (φ40,φ
′
41)
′ as φ̂4 = (φ̂40, φ̂

′
41)
′

satisfying S4(φ̂4) = 0, where S4(φ4) =
∑n

i=1(1,vi)
′(1− δ4i − p4i(φ4)). Then, let

p̂4i = p4i(φ̂4). Assumption (3.6) justifies the propensity score-adjusted imputed

estimator defined by

θ̂PSA−IMP =
1

n

{
n∑
i=1

δ1i
g(yi, xi)

p̂4i
+ δ2i

∑J
j=1w2ij(φ̂2,y

∗
i )g(xi, y

∗
ij)

p̂4i

+δ3i

∑J
j=1w3ij(φ̂3,x

∗
i )g(x∗ij , yi)

p̂4i

}
.

The propensity weights p̂−14i extrapolate the set {i : δ1i + δ2i + δ3i = 1} onto the

full sample {i = 1, . . . , n}. In the Supplementary Material Section S3, we define

an estimator of the variance of θ̂PSA−Imp as a straightforward extension of (3.5),

and we verify through simulation that θ̂PSA−Imp and the corresponding variance

estimator are approximately unbiased.

4. Simulation Study

We assess the finite-sample properties of the proposed estimator. We first

compare the estimator of Section 2 to competitive alternatives. We then assess

the properties of the variance estimator proposed in Section 3.

4.1. Comparison of alternative imputation estimators

We consider two distributions for F (y, x, δ). For both, the parameter of

interest is θ = (EY,EX, V (Y ), V (X), C(X,Y ))′, where V (Y ) (or V (X)) and

C(X,Y ) denote the variance of Y (or X) and the correlation between X and Y ,

respectively. We compute the estimators for a Monte Carlo (MC) sample size of

500 and define θ based on a separate simulation of size 500,000.
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We compare the estimator proposed in Section 2 (abbreviated “Imp”) to

three alternatives. To assess the impact of accounting for an MNAR nonresponse,

we consider an ignorable (Ign) estimator that is essentially that of Chen and Yu

(2016), and is obtained by setting φ = 0 so that w2ij(φ2, qyi) = w3ij(φ3, qxi) =

J−1. We define parametric (Par) and nonparametric (NP) alternatives that

involve implementing the three steps of Section 2.3, including estimating φ,

but generating the imputed values differently. For Par, we assume that yi =

β0,y + β1,yxi + β2,yx
2
i + β3,yx

3
i + ei,y, where ei,y

i.i.d.∼ N(0, σ2e,y), and likewise,

xi = β0,x + β1,xyi + β2,xy
2
i + β3,xy

3
i + ei,x, where ei,x

i.i.d.∼ N(0, σ2e,x). The imputed

values for Par are v∗ij = v̂i + e∗vij , where for ν = x, y, e∗νij
i.i.d.∼ N(0, σ̂2e,ν), v̂i is the

predicted mean using the ordinary least squares coefficients (β̂0,v, β̂1,v, β̂2,v, β̂3,v),

and σ̂2e,ν = (n − 4)−1
∑n

i=1(νi − ν̂i)2. For NP, we generate imputed values in-

dependently and with replacement from the set of observed values such that

P{y∗ij = yk} = K(xk − xi)[
∑n

`=1 δ1`K(x` − xi)]−1, and P{x∗ij = xk} = K(yk −
yi)[
∑n

`=1 δ1`K(y`−yi)]−1, whereK(·) is a Gaussian kernel with bandwidth defined

by applying the R function bw.ucv to the sets {xi : δ1i = 1} and {yi : δ1i = 1}
individually. Owing to the adjustment for the MNAR nonresponse, by estimating

φ, the Par and NP estimators proposed above are themselves innovations upon

Kim and Yu (2011) and Wang and Chen (2009), respectively.

We define the FlippedExp simulation model by

yi = h(xi) + 1.25(1 + xi)(εi − 0.2) (4.1)

and εi
i.i.d.∼ Beta(1, 4), where h(xi) = {2exp(−2) − exp(−2(xi − 1))}I[xi < 2] +

{2exp(2)− exp(−2(xi − 5))}I[2 < xi < 4] + exp(−2(xi − 3))I[4 < xi < 6], xi
i.i.d.∼

Unif(0, 6), for i = 1, . . . , n, and (φ20, φ21, φ22, φ30, φ31, φ32) = (−1, 0.033, 0.12,

−0.800, 0.1, 0.033). We consider n = 100, 1000, and 5000. The penalties (λn1,y,

λn1,x) are (0.2, 2), (1, 10), and (3, 30) for n = 100, 1000, and 5000, respectively.

They are based on a rule of (λn1,y, λn1,x) ≈ (0.1, 0.01)n6/9, determined from an

exploratory analysis of simulated data using generalized cross-validation (Chen

and Yu (2016)) and the relation between λn1,y and n in Lemma 1. We define

J ≈ n0.5, giving J = 10, 30, and 70 for n = 100, 1000, and 5000, respectively.

The knots are the k/(K + 1) quantiles of {xi : δ1i + δ2i = 1, i = 1, . . . , n} and

{yi : δ1i + δ3i = 1, i = 1, . . . , n}, where k = 1, . . . ,K, and K = 20, 30, and 35 for

n =100, 1000, and 5000, respectively. The values of K are based loosely on the

rule of thumb, K = min{n/4, 35} (Ruppert, Wand and Carroll (1987)).
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Table 2. MC bias and RMSE of alternative estimators of θ for FlippedExp.

Bias RMSE

True Ign Imp Par NP Ign Imp Par NP

n = 100

EY 4.412 -0.034 0.022 0.041 -0.125 0.637 0.644 0.751 0.751

EX 3.000 -0.838 -0.001 -0.010 -0.014 0.862 0.180 0.186 0.196

V (Y ) 42.865 -0.182 0.619 3.469 -1.610 5.545 6.235 14.460 5.575

V (X) 3.000 0.954 -0.018 0.011 -0.040 1.010 0.315 0.308 0.312

C(X,Y ) 0.939 -0.341 -0.000 -0.015 -0.039 0.352 0.014 0.030 0.059

n = 1000

EY 4.412 -0.039 0.004 -0.044 0.011 0.209 0.208 0.229 0.211

EX 3.000 -0.839 -0.000 -0.003 -0.002 0.841 0.053 0.056 0.053

V (Y ) 42.865 -0.564 0.003 -0.114 -0.038 1.472 1.430 1.809 1.441

V (X) 3.000 1.001 -0.002 0.015 -0.005 1.006 0.089 0.095 0.090

C(X,Y ) 0.939 -0.341 0.000 -0.003 -0.005 0.342 0.004 0.005 0.007

n = 5000

EY 4.412 -0.035 0.007 -0.037 0.007 0.101 0.097 0.110 0.096

EX 3.000 -0.838 0.001 0.001 0.001 0.838 0.025 0.025 0.025

V (Y ) 42.865 -0.574 0.011 -0.190 -0.010 0.833 0.654 0.833 0.637

V (X) 3.000 1.002 -0.004 0.012 -0.004 1.003 0.039 0.042 0.039

C(X,Y ) 0.939 -0.341 0.000 -0.002 -0.001 0.341 0.002 0.003 0.002

Tables 2 and 3 contain the MC biases and RMSEs of the estimators of θ

and φ, respectively, with the smallest absolute value among competitors shown

in bold. For n = 100, variation from estimating additional parameters causes the

RMSE of Imp to exceed those of Par and Ign, except for EX and Cor(X,Y ). For

n = 1000, the Imp procedure is efficient. As n increases to 5,000, the efficiency

of NP improves. The Imp estimator of φ typically has the smallest absolute bias

and RMSE.

To construct a model that better satisfies the assumptions of the Par estima-

tor, we define the Exp configuration by (4.1) with h(xi) = exp(2xi), where xi
i.i.d.∼

Unif(−1, 1), and (φ20, φ21, φ22, φ30, φ31, φ32) = (−0.9, 0.15, 0.2,−0.8, 0.15, 0.1).

A rule of λn1,y = λn1,x ≈ n6/9 gives penalties of 20 and 100 for n = 100 and 1000,

respectively. We define the knots and τj in the same way as for FlippedExp.

The results for Exp in Table 4 favor Par because the assumed cubic approx-

imates the Exp function well. An exception is for V ar(X), where Imp has a

smaller RMSE than Par for n = 100 and n = 1000. Imp and Par are superior to

NP in Table 4, owing to the small sample size. The results for φ̂ and n = 5000

(omitted for brevity) lead to similar conclusions.
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Table 3. MC bias and RMSE of alternative estimators of φ for FlippedExp.

Bias RMSE

n True Imp Par NP Imp Par NP

φ20 100 -1.0000 0.1008 -0.2918 -0.3151 1.0756 1.3114 1.0886

φ21 100 0.0333 -0.0853 0.1236 0.1046 0.5482 0.6408 0.5548

φ22 100 0.1200 0.0277 -0.0323 -0.0176 0.1475 0.1712 0.1663

φ30 100 -0.8000 -0.0923 -0.0709 -0.0852 1.3860 1.5112 1.7724

φ31 100 0.1000 -0.0023 -0.0231 -0.0477 0.7272 0.7588 0.8893

φ32 100 0.0333 0.0061 0.0103 0.0223 0.1928 0.2037 0.2286

φ20 1,000 -1.0000 0.0021 -0.1877 -0.0042 0.3077 0.4324 0.3001

φ21 1,000 0.0333 -0.0049 0.0995 -0.0059 0.1531 0.2242 0.1510

φ22 1,000 0.1200 0.0025 -0.0248 0.0042 0.0400 0.0598 0.0402

φ30 1,000 -0.8000 0.0075 0.0664 0.0549 0.3613 0.4875 0.3721

φ31 1,000 0.1000 -0.0045 -0.0379 -0.0296 0.1824 0.2535 0.1892

φ32 1,000 0.0333 0.0014 0.0097 0.0078 0.0479 0.0669 0.0498

φ20 5,000 -1.0000 0.0014 -0.1442 -0.0016 0.1411 0.2273 0.1402

φ21 5,000 0.0333 -0.0012 0.0798 0.0000 0.0691 0.1198 0.0688

φ22 5,000 0.1200 0.0006 -0.0199 0.0006 0.0180 0.0311 0.0179

φ30 5,000 -0.8000 0.0057 0.0191 0.0221 0.1630 0.2210 0.1654

φ31 5,000 0.1000 -0.0027 -0.0100 -0.0113 0.0829 0.1139 0.0843

φ32 5,000 0.0333 0.0008 0.0025 0.0030 0.0214 0.0295 0.0218

Table 4. Comparison of imputation procedures for Exp.

Bias RMSE

True Ign Imp Par NP Ign Imp Par NP

n = 100

EY 1.813 -0.012 0.000 0.007 -0.025 0.203 0.202 0.199 0.223

EX 0.000 -0.008 0.002 0.009 -0.015 0.053 0.059 0.063 0.069

V (Y ) 3.613 -0.211 -0.161 -0.069 -0.197 0.685 0.675 0.648 0.846

V (X) 0.333 -0.084 0.001 0.024 -0.005 0.089 0.032 0.095 0.033

C(X,Y ) 0.888 -0.129 0.004 0.005 -0.075 0.139 0.015 0.018 0.107

n = 1000

EY 1.813 -0.015 -0.007 -0.008 -0.006 0.063 0.062 0.061 0.062

EX 0.000 -0.009 -0.001 -0.001 -0.003 0.018 0.019 0.019 0.019

V (Y ) 3.613 -0.099 -0.069 -0.070 -0.046 0.216 0.208 0.200 0.206

V (X) 0.333 -0.084 -0.001 0.002 -0.002 0.084 0.009 0.010 0.010

C(X,Y ) 0.888 -0.124 0.001 0.001 -0.010 0.125 0.006 0.005 0.014

4.2. Variance estimator for imputed estimator

Table 5 contains the MC variances (VMC(θ̂)) of the Imp estimators, the per-

cent relative biases (RB%) of the variance estimator (100(EMC [V̂ ] − VMC(θ̂))/
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Table 5. Properties of variance estimator for Imp for FlippedExp.

n = 100 n = 1000 n = 5000

VMC(θ̂) RB% CR% VMC(θ̂) RB% CR% VMC(θ̂) RB% CR%

×103 ×103 ×103

EY 517.943 -9.061 93.4 43.164 2.387 94.6 8.854 0.771 95.6

EX 37.112 -10.713 93.8 3.102 -0.216 94.0 0.633 -2.467 94.8

V (Y ) 36,090.740 -11.852 93.0 1,962.765 -1.616 94.4 435.427 -10.830 93.6

V (X) 84.684 33.543 96.6 7.271 10.397 95.2 1.623 -3.466 94.2

C(X,Y ) 0.185 29.068 96.0 0.014 0.177 92.8 0.003 12.921 95.6

φ20 1,121.574 5.837 97.4 100.770 -3.255 94.2 19.616 -2.589 95.2

φ21 298.448 1.864 97.0 25.131 -5.082 93.8 4.974 -6.440 94.6

φ22 21.847 -0.004 96.0 1.759 -5.536 93.6 0.343 -6.006 93.4

φ30 1,707.902 -5.553 97.4 131.168 -3.995 95.0 25.236 -2.336 94.2

φ31 467.293 -8.326 96.2 33.185 -3.753 95.0 6.163 1.473 95.0

φ32 32.245 -5.849 97.0 2.351 -5.450 95.0 0.411 5.636 95.4

Table 6. Number of records in each group for pet data.

Group Count Group Count
1: X∗ and Y ∗ observed 3,338 3: Only Y ∗ observed 262
2: Only X∗ observed 2,461 4: X∗ and Y ∗ missing 1,169

VMC(θ̂), where EMC [V̂ ] denotes the MC mean of the variance estimator (3.5)),

and the percent of normal theory confidence intervals that contain the true pa-

rameter values (CR%). For n = 100, the absolute RB% can exceed 30% and the

CR% can exceed 97%. For n ∈ {100, 5000}, the absolute RB% is below 15% and

the CR% is within 2.2% of 95%.

5. Data Analysis

We analyze data from the 2011 Pet Demographic Survey (PDS), a national

survey that collects information about pet ownership. The Iowa State Center for

Survey Statistics and Methodology (CSSM) received the data as an agreement

to plan for the 2017 survey. Variables of interest on the PDS include the number

and type of pets owned, body types of those pets, and expenditures on veterinary

services. We consider X∗, the sum of the most recent vet visit expenditures for

a dog and cat combined, as a covariate for Y ∗, the average vet visit expenditures

in 2011 for dogs and cats. Table 6 has the number of observations for X∗ and

Y ∗, with four missing data patterns. We apply the propensity-score-adjusted

imputed estimator to estimate the veterinary expenditures for dogs and cats.

The nature of the relationship between X∗ and Y ∗, as well as extreme values,

preclude us from finding a quantile regression model that fits the sample data
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well in the original scale. Furthermore, the 75 zeros for X∗ and 64 zeros for Y ∗

make a log transformation problematic. After exploring several transformations,

including the square root, cube root, and fifth root, we find that the cube root

transformation allows us to construct a quantile regression model that appears

adequate.

We apply the quantile regression procedure to first construct imputed values

for X = (X∗)1/3 and Y = (Y ∗)1/3 for groups 2 and 3. The generalized cross-

validation criterion of Chen and Yu (2016) suggests λn1,y = 100. The rule used for

the Exp configuration of λn1,y ≈ n
6/9
123, where n123 is the number of observations

in groups 1, 2, and 3, suggests λn1,y ≈ 330. First, we tried the approximate

mid-point of λn1,y ≈ 200, and obtained negative estimated quantiles for yi for τ1
and small values of xi. Increasing the penalty to λn1,y = 300 successfully avoided

negatives. We present the results for λn1,y = 300. We use a fixed sequence of

τj = j/(J + 1), for j = 1, . . . , J , with J = 80 ≈ n0.5123. The fixed sequence avoids

extreme quantiles and ensures that the data analysis is reproducible. (Chen and

Yu (2016) compare results for fixed and random τj .) We define knots at the

k/(K + 1) quantiles of {xi : δ1i + δ2i = 1 : i = 1, . . . , n} and {yi : δ1i + δ3i = 1 :

i = 1, . . . , n}, for k = 1, . . . ,K, where K = 35.

We assess the model identification conditions (2.4) and (2.5) using the esti-

mated functions ĥy(φ̂22, x) and ĥx(φ̂31, y) plotted in Figure 1. To construct the

left plot in Figure 1, we first define an estimate of hy(φ̂22, xi) in equation (2.4) as

the negative logarithm of the LOWESS regression of exp(−φ̂22yi) on xi for the

{i : δi = 1}, where φ̂22 is the estimated exponential tilting parameter in (2.7)

obtained using the method described in Section 2.3. The right plot is constructed

analogously, interchanging the roles of xi and yi, and replacing φ̂22 with φ̂31. The

nonlinearities seen in Figure 1 support the model identification conditions (2.4)

and (2.5).

Table 7 gives estimates and corresponding standard errors for the propensity

score model. The covariates, given in the column headings, are selected using

step-wise selection, starting with a model that contains all fully observed covari-

ates and using the BIC criterion. The gender variable is one for females and zero

for males. The other covariates (defined in Section S3.3 of the Supplementary

Material) are defined by ordered categories, and are treated as numeric. The

response variable is the indicator that unit i is not in group 4. Therefore, a posi-

tive coefficient is associated with a higher probability of providing a response. As

such, we estimate that women with higher income and education who live alone

or with one other person are more likely to provide a response to at least one of

the questions about veterinary expenses.
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Figure 1. Estimated ĥy(φ̂22, x) (left) and ĥx(φ̂31, y) (right).

Table 7. Estimated φ̂4 and SE for propensity score model.

Intercept Age Gender Income Education Household Size
Est. 0.16252 0.10355 0.38652 0.38395 0.21250 -0.31212
SE 0.20897 0.02687 0.09208 0.03056 0.03671 0.05129

Table 8. Estimates and standard errors for φ = (φ′2,φ
′
3)′ for the pet data.

φ2j Est. φ2j SE φ3j Est. φ3j SE
j = 0 0.5136 0.2782 -1.0677 0.4484
j = 1 -0.0561 0.0271 -0.2590 0.1037
j = 2 -0.0810 0.0903 0.0609 0.0587

Table 9. Complete case and Imp-PSA estimators of selected parameters, along with
standard errors for the Imp-PSA estimator.

EY EX V ar(Y ) V ar(X) Cor(X,Y ) EY 3 EX3

Complete Case 5.210 7.359 3.729 7.073 0.420 208.336 575.560
SE Complete Case 0.032 0.035 0.161 0.225 0.033 5.664 11.409
Imp-PSA 5.052 7.274 3.269 6.979 0.442 185.164 566.653
SE Imp-PSA 0.077 0.035 0.184 0.218 0.016 7.297 10.912

Table 8 contains estimates of φ2 and φ3 (obtained using (2.18) and (2.19)),

along with associated standard errors (defined in (3.3)). The estimator of φ21
differs significantly from zero at the 5% level, but after accounting for xi, yi is no

longer significantly associated with the response indicator, δ2i. Interestingly, the

estimate of φ31 is more than double the standard error. The component of the

model that accounts for a nonignorable nonresponse is important for δ3i.

Table 9 compares the propensity-score-adjusted imputed estimator (Imp-
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PSA) to the complete case estimator, which naively ignores missing values. The

parameters EY 3 and EX3 represent the mean expenditures in the original scale,

and are defined by g(x, y) = y3 and g(x, y) = x3, respectively. We also estimate

the means and the correlation in the cube root scale. The comparison of the com-

plete case and the imputed estimators suggests that ignoring the missing data

would overstate the expenditures and understate the correlation between X and

Y . As a result of the nonignorable nonresponse, the complete-case standard er-

rors are also invalid. Imputation requires estimating additional parameters, and

can therefore lead to an increase in the SE relative to the complete-case SE. The

sample size for the complete-case estimator of the correlation is smaller than that

used to estimate the other parameters, because the complete-case estimator of

the correlation only uses pairs where both xi and yi are observed simultaneously.

6. Discussion

The theory, simulations, and data analysis demonstrate that the proposed

semiparametric quantile regression imputation procedure is a viable method of

constructing imputed values when the probability of responding may depend on

the value of a missing response or covariate. We prove that the imputed estima-

tor is asymptotically normal, and verify through simulation that an estimate of

the large-sample covariance matrix has reasonable finite-sample properties. The

simulations also show that failing to account for a nonignorable nonresponse can

lead to severe bias. The squared bias of the ignorable predictor can account for

over 90% of the MSE. In contrast, the ratio of the squared bias to the MSE

for the proposed (Imp) estimator is consistently below 1%. In our simulations,

the quantile regression is more robust than the fully parametric imputation, and

more efficient than the nonparametric imputation at small sample sizes. We do

not have theoretical support for the superiority of semiparametric quantile re-

gression relative to the nonparametric regression, and therefore do not expect

these results to hold broadly. A further advantage of the quantile regression over

the nonparametric estimator of Wang and Chen (2009) is that the quantile re-

gression permits a linearization-based variance estimator. In the application, the

proposed procedure allows us to use one type of veterinary expenditure to impute

the other, while allowing for a nonignorable nonresponse and modeling complex

patterns in the data. Furthermore, we develop a propensity score adjustment to

incorporate a set for which neither veterinary expenditure is observed.

We have used a fully parametric model for the response probability. As

demonstrated in Robins and Ritov (1997), identification for a nonignorable non-
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response is elusive without any restrictions. Nonetheless, relaxing the parametric

assumptions of the response probability model, along the lines of Shao and Wang

(2016), is a possible avenue for future work.

In principle, our approach of modeling the conditional distribution of the

covariate given a response extends to multivariate covariates. One must ensure

that the quantile regression model adequately describes each full univariate con-

ditional, and that identification conditions are satisfied. We define an identifi-

cation condition for multivariate covariates in Section S4 of the Supplementary

Material. An alternative approach for missing covariates is to use Bayes’ rule to

deduce f(x | y) from a specification of f(y | x) and f(x) (Yang and Kim (2017))

. Our preliminary studies suggest that an extension of Yang and Kim (2017) to

a nonignorable nonresponse and a quantile regression is a promising direction for

future work.

7. Supplementary Material

The online Supplementary Material provides proofs of theorems, details of

variance estimation, and simulation results for the propensity-score-adjusted im-

puted estimator.
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