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Abstract: In this paper, we propose a class of monitoring statistics for a mean shift

in a sequence of high-dimensional observations. Inspired by recent U-statistic based

retrospective tests, we extend the U-statistic-based approach to the sequential mon-

itoring problem by developing a new adaptive monitoring procedure that can detect

both dense and sparse changes in real time. Unlike existing methods in retrospec-

tive testing that use self-normalization, we introduce a class of estimators for the

q-norm of the covariance matrix and prove their ratio consistency. To facilitate

fast computation, we further develop recursive algorithms to improve the compu-

tational efficiency of the monitoring procedure. The advantages of the proposed

methodology are demonstrated using simulation studies and real-data illustrations.
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1. Introduction

Change-point detection problems have been studied extensively in areas, such

as statistics, econometrics, and engineering, and there are wide applications in the

fields of physical science and engineering. The literature on this topic is extensive,

and growing rapidly. For low-dimensional data, early works include those of

Page (1954), MacNeill (1974), and Brown, Durbin and Evans (1975), among

others. More recent works on change-point problems for low-/fixed-dimensional

multivariate time series data include those of Shao and Zhang (2010), Matteson

and James (2014), Kirch, Muhsal and Ombao (2015), Bücher, Fermanian and

Kojadinovic (2019), among others. Refer to Perron (2006), Aue and Horváth

(2013), and Aminikhanghahi and Cook (2017) for excellent reviews on this topic.

The literature on change-point detection can be roughly divided into two

categories: retrospective testing and the estimation of change points based on

a complete data sequence offline, and online sequential monitoring for change
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points based on some training data and data that arrive sequentially. This study

focuses on the sequential monitoring problem for temporally independent, but

cross-sectionally dependent high-dimensional data. There are two major lines of

research for sequential change-point detection/monitoring. The first follows the

paradigm set by pioneers in the field, such as Wald (1945), Page (1954), and

Lorden (1971); see Lai (1995, 2001) and Polunchenko and Tartakovsky (2012)

for comprehensive reviews. Most sequential detection methods along this line

are optimized to have a minimal detection delay, controlling the average run

length under the null. Furthermore, most existing procedures are developed for

low-dimensional data. These methods often require us to make some parametric

assumptions about the pre-change and post-change distributions. In the second

line, Chu, Stinchcombe and White (1996) assume there is a set of training data

(without any change points), and apply sequential monitoring to test the data

that arrives sequentially. They employ the invariance principle to control the

type-I error, and their framework has been adopted by many other researchers

in both parametric and nonparametric contexts; see Horváth et al. (2004), Aue

et al. (2012), Wied and Galeano (2013), Fremdt (2013), and Dette and Gösmann

(2020). Here, it is typical to use the size and power (plus average detection delay)

to describe and compare the operating characteristics of competing procedures.

Our procedure falls into the second category. It seems to us that these two

frameworks are, in general, difficult to compare, because they differ in terms of

the model assumptions and evaluation criteria.

Today, with the rapid improvement of data acquisition technology, high-

dimensional data streams involving continuous sequential observations appear

frequently in modern manufacturing and service industries, and the demand for

efficient online monitoring tools for such data has never been higher. For example,

Yan, Paynabar and Shi (2018) proposed a method for monitoring a multi-channel

tonnage profile used for the forging process, which has thousands of attributes.

Furthermore, image-based monitoring (Yan, Paynabar and Shi (2015)) has be-

come popular in the literature, which includes thousands of pixels per image.

Lévy-Leduc and Roueff (2009) considered the problem of monitoring thousands

of Internet traffic metrics provided by a French Internet service provider. This

kind of high-dimensional data poses significant new challenges to traditional mul-

tivariate statistical process control and monitoring, because when the dimension

p is high and is comparable to the sample size n, most existing sequential monitor-

ing methods constructed based on fixed-dimension assumptions become invalid.

In this article, we propose a new class of sequential monitoring methodology

to detect the change in the mean of independent high-dimensional data based
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on (sequential) retrospective testing. Our proposal is inspired by recent works

on the retrospective testing of mean changes in high-dimensional data by Wang,

Volgushev and Shao (2019) and Zhang, Wang and Shao (2021). In Wang, Vol-

gushev and Shao (2019), the authors propose a U-statistic-based approach to

target the L2-norm of the mean difference by extending the U-statistic idea of

Chen and Qin (2010) from two-sample testing to the change-point testing prob-

lem. Zhang, Wang and Shao (2021) further extend the test of Wang, Volgushev

and Shao (2019) to an Lq-norm-based test mimicking that of He et al. (2021),

where q ∈ 2N, to capture the sparse alternative. By combining the L2-norm-

based test and the Lq-norm-based test, the adaptive test statistic they propose

is shown to achieve high power for both dense and sparse alternatives. However,

one of the limitations of these works is that the methods are designed for offline

analysis, which is not suitable in real-time online monitoring systems. Building

on the works of Wang, Volgushev and Shao (2019) and Zhang, Wang and Shao

(2021), we propose a new adaptive sequential monitoring procedure that can cap-

ture both sparse and dense alternatives. Instead of using the self-normalization

scheme (Shao (2010); Shao and Zhang (2010); Shao (2015)), as in Wang, Volgu-

shev and Shao (2019) and Zhang, Wang and Shao (2021), we use ratio-consistent

estimators for ‖Σ‖qq based on the training data, where Σ is the common covariance

matrix of the sequence of random vectors, and provide a rigorous proof for ratio

consistency. Furthermore, we develop recursive algorithms for fast implementa-

tion so that at each time, the monitoring statistics can be computed efficiently.

Finally, theory and simulations show that the resulting adaptive monitoring pro-

cedure using a combination of sequential tests based on L2 and Lq (say q = 6) is

powerful against both dense and sparse alternatives.

There is a growing body of literature on high-dimensional change-point detec-

tion in the retrospective setting; see Horváth and Hušková (2012),Cho and Fry-

zlewicz (2015), Jirak (2015), Yu and Chen (2021), Wang and Samworth (2018),

Yu and Chen (2019), Wang, Volgushev and Shao (2019), Zhang, Wang and Shao

(2021), and Wang and Shao (2020), among others. Note that Enikeeva and Har-

chaoui (2019) developed a test based on a combination of a linear statistic and

a scan statistic, and their test can be adaptive to both sparse and dense alter-

natives. However, their Gaussian and independent component assumptions are

too restrictive. In addition, works on the online monitoring of high-dimensional

data streams have been growing steadily in the literature on statistics and quality

control. In particular, Mei (2010) proposed a global monitoring scheme based on

the sum of the cumulative sum monitoring statistics from each individual data

stream. His method aims to minimize the delay time and control the global false
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alarm rate, which is based on the average run length under the null. This is dif-

ferent from the size and power analysis in our work. Note that the assumptions

in Mei (2010) are quite restrictive, in the sense that he assumed that no data

streams have cross-sectional dependence, and that both the pre-change and the

post-change distributions are known. See Wang and Mei (2015), Zou et al. (2015),

Liu, Zhang and Mei (2019), and Li (2020) for several variants on how to aggre-

gate the local monitoring statistics. Xie and Siegmund (2013) proposed a mixture

detection procedure based on a likelihood ratio statistic that takes into account

the fraction of data streams being affected. They argue that the performance

is good when the fraction of affected data streams is known, and do not require

a complete specification of the post-change distribution. However, the mixture

global log-likelihood they specify relies on the hypothesized affected fraction p0,

and they show the robustness of different choices of p0 using numerical studies

only. The results they derive hold for data generated from a normal distribution

or from other exponential families of distributions. A common feature of all these

works is that they assume the data streams do not have cross-sectional depen-

dence, which may be violated in practice. In fact, our theory for the proposed

monitoring statistic demonstrates the impact of the correlation/covariance struc-

ture of multiple data streams, which is lacking in the above-mentioned literature.

The rest of the paper is structured as follows. In Section 2, we specify

our change point monitoring framework and propose a monitoring statistic that

targets the Lq-norm of the mean change. An adaptive monitoring scheme can

be derived by combining the test statistic for different q, for q ∈ 2N. Section 3

provides a ratio-consistent estimator for ‖Σ‖qq, which is crucial when constructing

the monitoring statistics. Section 4 provides simulation studies that examine the

finite-sample performance of the adaptive monitoring statistic. In Section 5, we

apply the adaptive monitoring scheme to two real data sets. Section 6 concludes

the paper. All technical details can be found in the Appendix.

2. Monitoring Statistics

In this section, we specify the general framework we use to perform change-

point monitoring. We consider a closed-end change-point monitoring scenario, fol-

lowing Chu, Stinchcombe and White (1996). Assume that we observe a sequence

of temporally independent high-dimensional observations X1, . . . , Xn ∈ Rp, which

are ordered in time and have constant mean µ and covariance matrix Σ. We start

the monitoring procedure from time (n + 1) to detect whether the mean vector

changes in the future. Throughout the analysis, we assume that all data Xt are
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independent over time. A decision is made at each of the time points, and we

signal an alarm when the monitoring statistic exceeds a certain boundary. The

process ends at time nT , regardless of whether a change point is detected, where

T is a prespecified number. The type-I error of the monitoring procedure is con-

trolled at α, which means the probability of signaling an alarm when there is no

change within the period [n+ 1, nT ] is at most α.

Under the null hypothesis, no change occurs within the monitoring period,

and we have

E(Xt) = µ for t = 1, . . . , nT .

Under the alternatives, the mean function changes at some time t0 > n, and

remains at the same level for the following observations. That is,

E(Xt) =

{
µ, 1 < t < t0;

µ+ ∆, t0 ≤ t ≤ nT.

We propose a family of test statistics Tn,q(k), which serves as the monitoring

statistic targeting ‖∆‖q. The case q = 2 corresponds to dense alternatives, and

larger values of q correspond to sparser alternatives. We discuss the formulation

of our monitoring statistic for q = 2, and then extend this to general q in the

subsequent subsections.

2.1. L2-norm-based monitoring statistics

In this section, we first develop the L2-norm-based monitoring statistic, which

is especially useful for detecting the dense alternative. Furthermore, we discuss

the asymptotic properties of the L2-norm-based statistic. Finally, the recursive

computational algorithm is developed to allow for efficient implementation.

2.1.1. Monitoring statistics

For a given time k > n, suppose we know a change point happens at location

m, where n < m < k. We can separate the observations into two independent

samples: pre-break X1, . . . , Xm, and post-break Xm+1, . . . , Xk. Consider using a

two-sample U-statistic with kernel

h((X,Y ), (X ′, Y ′)) = (X − Y )T (X ′ − Y ′),

where (X ′, Y ′) is an independent copy of (X,Y ). Then, we have

E[h((X,Y ), (X ′, Y ′))] = ‖E(X)− E(Y )‖22,
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which estimates the squared L2-norm of the mean difference. Indeed, Wang,

Volgushev and Shao (2019) constructed an L2-norm-based retrospective change-

point detection statistic by scanning over all possible m. For the online moni-

toring problem, we combine this idea with the approach in Dette and Gösmann

(2020) to propose a monitoring statistic. Specifically, at each time point k, we

scan through all possible change-point locations m (n < m < k−2), and perform

a change-point testing. We take the maximum of these U-statistics over m as our

test statistics at time k. Suppose we get a ratio-consistent estimator of ||Σ||F
learned from the training sample {X1, . . . , Xn}, denoted by ‖̂Σ‖F . Then, our

monitoring statistic at time k = n+ 3, . . . , nT is

Tn,2(k) =
1

n3‖̂Σ‖F
max

m=n+1,...,k−2

p∑
l=1

∗∑
1≤i1,i2≤m

∗∑
m+1≤j1,j2≤k

(Xi1,l −Xj1,l)(Xi2,l −Xj2,l)

=
1

n3‖̂Σ‖F
max

m=n+1,...,k−2
Gk(m).

2.1.2. Asymptotic properties

To calibrate the size of the testing procedure, we need to obtain the asymp-

totic distribution of the test statistic under the null. The following conditions are

imposed in Wang, Volgushev and Shao (2019) to ensure the process convergence

results.

Assumption 1. tr(Σ4) = o(‖Σ‖4F ).

Assumption 2. Let Cum(h) =
∑p

l1,...,lh=1 cum
2(X1,l1 , . . . , X1,lh) ≤ C||Σ||hF , for

h = 2, 3, 4, 5, 6 and some constant C. Here cum(·) is the joint cumulant. In

general, for a sequence of random variables Y1, . . . , Yn, their joint cumulant is

defined as

cum(Y1, . . . , Yn) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

(∏
i∈B

Yi

)
,

where π runs through the list of all partitions of {1, . . . , n}, B runs through the

list of all blocks of partition π, and π is the number of parts in the partition.

Assumption 1 was also imposed in Chen and Qin (2010), who pioneered

the use of the U -statistic approach in the two-sample testing problem for high-

dimensional data, and can be satisfied by a wide range of covariance models.

Assumption 2 can be viewed as restrictions on the dependence structure, which

holds under uniform bounds on the moments and “short-range” dependence-type
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conditions on the entries of the vector (X0,1, . . . , X0,p). See Wang, Volgushev

and Shao (2019) for discussions about these two assumptions. Finally, under the

null hypothesis and these assumptions, we provide the limiting distribution of

the proposed monitoring statistic in Theorem 1.

Theorem 1. Under Assumptions 1 and 2, we have

max
k=n+3,...,nT

Tn,2(k)
D−→ sup

t∈[1,T ]
sup
s∈[1,t]

G(s, t),

where

G(s, t) = t(t− s)Q(0, s) + stQ(s, t)− s(t− s)Q(0, t),

and Q is a Gaussian process with the following covariance structure:

Cov(Q(a1, b1), Q(a2, b2)) ={
(min(b1, b2)−max(a1, a2))

2 if max(a1, a2) ≤ min(b1, b2)

0 otherwise.

In general, we can also consider some nonconstant boundary function w(t),

that is,

max
k=n+3,...,nT

Tn,2(k)

w(k/n− 1)

D−→ sup
t∈[1,T ]

sup
s∈[1,t]

G(s, t)

w(t− 1)
.

We take the double supremums here to control the familywise error rate. There-

fore, we reject the null hypothesis if Tn,2(k) > cαw(k/n − 1), for some k ∈
{n+ 3, . . . , nT}. The size can be calibrated by choosing cα such that

P

(
sup
t∈[1,T ]

sup
s∈[1,t]

G(s, t)

w(t− 1)
> cα

)
= α.

Different choices of w(t) are considered in Dette and Gösmann (2020).

• (T1) w(t) = 1,

• (T2) w(t) = (t+ 1)2,

• (T3) w(t) = (t+ 1)2 ·max{(t/(t+ 1))1/2, 10−10}.

These w(t) are motivated by the law of the iterated logarithm, and are used to

reduce the stopping delay under the alternative. Based on our simulation results

and real-data applications, the choice of w(t) from the above three candidates

does not seem to have a big impact on the power and detection delay. Thus, in
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practice, for a closed-end procedure, any choice would work. Detailed compar-

isons are shown in the simulation studies in Section 4.

Remark 1. The current method can be generalized to an open-end framework.

For an open-end monitoring procedure, we are interested in testing

E(Xt) = µ for t = 1, 2, . . . .

against the alternative

E(Xt) =

{
µ, 1 < t < t0;

µ+ ∆, t > t0,

for some t0 > n. Suppose we use the same L2-norm-based monitoring statistic

at time k = n+ 3, . . ., that is,

Tn,2(k) =
1

n3‖̂Σ‖F
max

m=n+1...,k−2
Gk(m).

For a suitably chosen boundary function w(·), we expect that

max
k=n+3,...,∞

Tn,2(k)

w(k/n− 1)

D−→ sup
t∈[1,∞)

sup
s∈[1,t]

G(s, t)

w(t− 1)
,

as n→∞. The critical value can be determined by

P

(
sup

t∈[1,∞)
sup
s∈[1,t]

G(s, t)

w(t− 1)
> cα

)
= α.

We reject the null hypothesis if Tn,2(k) > cαw(k/n−1), for some k ∈ {n+1, . . .}.
In practice, we can approximate the critical values cα using the procedure for

simulating the critical values in the closed-end procedure, using a large T , say

T = 200. Note that the boundary function used for open-end monitoring needs

to satisfy certain smoothness and decay rate assumptions, and the above three

we used for the closed-end procedure are no longer applicable; see Assumption

2.4 in Gösmann, Kley and Dette (2020) and the related discussion.

The following theorem provides a theoretical analysis of the power of the

L2-norm-based monitoring procedure.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Assume further that the

change point location is at bnrc, for some r ∈ (1, T ). Then, we have
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1. When n∆T∆/||Σ||F → 0,

max
k=n+3,...,nT

Tn,2(k)
D−→ sup

t∈[1,T ]
sup
s∈[1,t]

G(s, t).

2. When n∆T∆/||Σ||F → b ∈ (0 +∞),

max
k=n+3,...,nT

Tn,2(k)
D−→ T̃2 = sup

t∈[1,T ]
sup
s∈[1,t]

[G(s, t) + bΛ(s, t)] ,

where

Λ(s, t) =


(t− r)2s2, s ≤ r;
r2(t− s)2, s > r;

0, otherwise.

3. When n∆T∆/||Σ||F →∞,

max
k=n+3,...,nT

Tn,2(k)
D−→∞.

Theorem 2 implies that, under the local alternative where n∆T∆/||Σ||F → 0,

the proposed monitoring procedure has trivial power. For the diverging alterna-

tive where n∆T∆/||Σ||F → +∞, the test has power converging to one. When

the strength corresponding to the change falls in between, the test has power in

the range (α, 1).

2.1.3. Recursive computation

One challenge for the proposed monitoring statistic Tn,2(k) is that it needs

to be recomputed at each given time k. The brute force calculation of the test

statistics has O(n4p) time complexity and O(np) space complexity. In this sec-

tion, we develop a recursive algorithm to efficiently update the monitoring statis-

tic, which greatly improves the computational efficiency for online monitoring.

More specifically, we propose a recursive algorithm to update Gk(m), which is a

major component of computing the monitoring statistic Tn,2(k), as follows:

Gk(m) = (k −m)(k −m− 1)
∑

1≤i<j≤m
XT
i Xj +m(m− 1)

∑
m+1≤i<j≤k

XT
i Xj

− (m− 1)(k −m− 1)

m∑
i=1

k∑
j=m+1

XT
i Xj .
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To compute Gk(m), we need to keep track of two CUSUM processes

Bt =

t∑
i=1

Xi and Ct =

t∑
i=1

XT
i Xi,

where Bt are still p-dimensional. The partial sum process S(a, b) =
∑

a≤i<j≤b
XT
i Xj in Gk(m) can be expressed in terms of functions of Bt and Ct,

S(a, b) =
∑

a≤i<j≤b
XT
i Xj =

1

2
[(Bb −Ba−1)T (Bb −Ba−1)− (Cb − Ca−1)].

The detailed algorithm is stated as follows:

1. Initialization: Start with the first pair (m, k) = (n+ 1, n+ 3). Record the

following quantities:

Bn+1, Bn+2, Bn+3, Cn+1, Cn+2, Cn+3.

The first statistic is calculated based on

Gn+3(n+ 1) = 2 ·
(BT

n+1Bn+1 − Cn+1)

2

+(n+ 1)n
[(Bn+3 −Bn+1)

T (Bn+3 −Bn+1)− (Cn+3 − Cn+1)]

2

−nBT
n+1(Bn+3 −Bn+1).

2. Increase index from k to k + 1: Fix index m, and compute Bk+1 and

Ck+1:

Bk+1 = Bk +Xk+1, Ck+1 = Ck +XT
k+1Xk+1.

The statistic for the pair (m, k + 1) is

Gk+1(m) = (k −m+ 1)(k −m)
(BT

mBm − Cm)

2

+m(m− 1)
[(Bk+1 −Bm)T (Bk+1 −Bm))− (Ck+1 − Cm)]

2

−(m− 1)(k −m)

m∑
i=1

BT
m(Bk+1 −Bm).

3. Increase index from m to m + 1: For fixed index k, all Bi and Ci, for

i = n . . . , k, are already recorded. The statistic for the pair (m+ 1, k) is

Gk(m+ 1) = (k −m− 1)(k −m− 2)
(BT

m+1Bm+1 − Cm+1)

2
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+(m+ 1)m
[(Bk −Bm+1)

T (Bk −Bm+1))− (Ck − Cm+1)]

2

−(k −m− 2)mBT
m+1(Bk −Bm+1).

The algorithm should start with (m, k) = (n+1, n+3), increase the second index

k first, and then increase along the first index m. This recursive formulation

reduces the time complexity to O(n2p), with additional space complexity O(np).

2.2. Lq-norm-based monitoring statistics

In this section, we generalize the monitoring statistic from the L2-norm to

the Lq-norm. As shown in the previous analysis, the power of the L2-norm-

based monitoring statistic depends on the quantity ‖∆‖2, which is sensitive to

dense alternatives. However, in real applications, we usually do not know a

priori if the mean change is dense or not. As an approximation, we consider

a similar test statistic targeting ‖∆‖q, for q ∈ 2N. When q is large, we are

essentially testing against sparse alternatives. As a special case, if we let q →∞,

limq→∞ ‖∆‖q = ‖∆‖∞, we only target on the largest element (in absolute value)

of ∆.

2.2.1. Monitoring statistics

To define the monitoring statistics, we adopt the idea used in Zhang, Wang

and Shao (2021) without applying self-normalization. Self-normalization requires

more extensive computation, and can be avoided by using the Phase-I data to

obtain a ratio-consistent estimator of ‖Σ‖q. Furthermore, as pointed out by Shao

(2015), self-normalization can result in a slight loss of power. Essentially, we can

construct an Lq-norm-based test statistic at time k = n+ q + 1, . . . , nT ,

Tn,q(k) =
1√

n3q‖̂Σ‖qq

max
m=n+1,...,k−q

p∑
l=1

∗∑
1≤i1,...,iq≤m

∗∑
m+1≤j1,...,jq≤k

(Xi1,l −Xj1,l) · · · (Xiq,l −Xjq,l)

=
1√

n3q‖̂Σ‖qq
max

m=n+1,...,k−q
Un,q(k,m),

where ‖̂Σ‖qq is a ratio-consistent estimator of ‖Σ‖qq.
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2.2.2. Asymptotic properties

In this subsection, we study the asymptotic properties of the Lq-norm-based

test statistics. First, we impose the following conditions in Zhang, Wang and

Shao (2021) to facilitate the asymptotic analysis.

Assumption 3. Let Xt = µ + Zt. Suppose Zt are independent and identically

distributed (i.i.d.) copies of Z0 with mean zero and covariance matrix Σ. There

exists c0 > 0 independent of n such that infi=1,...,p V ar(Z0,i) ≥ c0.

Assumption 4. Z0 has up to eighth moments, with sup1≤j≤pE[Z8
0,j ] ≤ C, and

for h = 2, . . . , 8, there exist constants Ch depending on h only and a constant

r > 2 such that

|cum(Z0,l1 . . . , Z0,lh)| ≤ Ch
(

1 ∨ max
1≤i<j≤h

|li − lj |
)−r

.

These assumptions appeared in Zhang, Wang and Shao (2021), and Wang,

Volgushev and Shao (2019) showed that they imply Assumptions 1 and 2 for the

case q = 2. Assumption 4 can be implied by the geometric moment contraction

(cf. Proposition 2 of Wu and Shao (2004)), the physical dependence measure

proposed by Wu (2005) (cf. Section 4 of Shao and Wu (2007)), or α-mixing. It

essentially requires weak cross-sectional dependence among the p components in

the data.

Under the null hypothesis, to obtain the limiting distribution of the monitor-

ing statistic Tn,q, we use the limiting process in Zhang, Wang and Shao (2021).

Thus, we have the following theorem.

Theorem 3. Under Assumptions 3 and 4,

max
k=n+q+1,...,nT

Tn,q(k)
d−→ T̃q := sup

t∈[1,T ]
sup
s∈[1,t]

Gq(s, t),

where

Gq(s, t) =

q∑
c=0

(−1)q−c

(
q

c

)
sq−c(t− s)cQq,c(s; [0, t]),

and Qq,c(r; [a, b]) is a Gaussian process with covariance structure

cov(Qq,c1(r1; [a1, b1]), Qq,c2(r2; [a2, b2]))

=

(
C

c

)
c!(q − c)!(r −A)c(R− r)C−c(b−R)q−C ,

where A = max(a1, a2), c = min(c1, c2), C = max(c1, c2), and b = min(b1, b2).
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Table 1. Simulated critical values for Lq-norm-based test, T = 2.

Boundary T1 T2 T3

Quantile L2 L6 L2 L6 L2 L6

90% 0.756 3.235 0.204 0.867 0.141 0.592

95% 1.264 3.711 0.331 0.973 0.232 0.676

99% 2.715 4.635 0.706 1.196 0.485 0.837

Two processes Qq1,c1 and Qq2,c2 are mutually independent if q1 6= q2 ∈ 2N.

The limiting null distribution is pivotal, and its critical values can be simu-

lated based on the following equation:

P

(
sup
t∈[1,T ]

sup
s∈[1,t]

Gq(s, t)

w(t− 1)
> cα

)
= α.

We reject H0 when Tn,q(k) > cαw(k/n−1), for k = n+q+1, . . . , nT . We tabulate

the critical values for T = 2, q = 2, 6, and different boundary functions in Table

1. Critical values under other settings are available upon request.

Finally, we study the power of the Lq-norm-based monitoring procedure in

Theorem 4.

Theorem 4. Suppose that Assumptions 3 and 4 hold and the change-point loca-

tion is at bnrc, for some r ∈ (1, T ),

1. When nq/2‖∆‖qq/‖Σ‖q/2q → 0, max
k=n+q+1,...,nT

Tn,q(k)
D−→ T̃q;

2. When nq/2‖∆‖qq/‖Σ‖q/2q → γ ∈ (0,+∞),

max
k=n+q+1,...,nT

Tn,q(k)
D−→ sup

t∈[1,T ]
sup
s∈[1,t]

[Gq(s, t) + γJq(s; [0, t])],

where

Jq(s; [0, t]) =


rq(t− s)q, r ≤ s < t;

sq(t− r)q, s ≤ r < t;

0, otherwise;

3. When nq/2‖∆‖qq/‖Σ‖q/2q →∞, maxk=n+q+1,...,nTTn,q(k)
D−→∞.

Analogous to the q = 2 case, the power of the test depends on ‖∆‖q. There-

fore, for large q, the proposed test is sensitive to sparse alternatives.
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2.2.3. Recursive computation

Similarly to the L2-based-test statistics, we would like to extend the recursive

formulation to the Lq-norm-based test statistic. According to Zhang, Wang and

Shao (2021), under the null, the process Un,q(k,m) can be simplified as

Un,q(k,m) =

q∑
c=0

(−1)q−c

(
q

c

)
Pm−1−cq−c P k−m−q+cc Sn,q,c(m; 1, k),

where P kl = k!/(k − l)! and

Sn,q,c(m; s, k) =

p∑
l=1

∗∑
s≤i1,...,ic≤m

∗∑
m+1≤j1,...,jq−c≤k

c∏
t=1

Xit,l

q−c∏
g=1

Xjg,l.

Because Sn,q,c(m; 1, k) are the major building blocks of our final test statis-

tic, and need to be computed at each time k, we need to find efficient ways of

calculating them recursively. A key element is the sum of product terms such as

B(c,m, l) :=

∗∑
1≤i1,...,ic≤m

c∏
t=1

Xit,l, and

M(c,m, k, l) :=

∗∑
m≤j1,...,jc≤k

c∏
g=1

Xjg,l.

When we increase from m to m+ 1,

∗∑
1≤i1,...,ic≤m+1

c∏
t=1

Xit,l =

∗∑
1≤i1,...,ic≤m

c∏
t=1

Xit,l +Xm+1,l ·
∗∑

1≤i1,...,ic−1≤m

c−1∏
t=1

Xit,l.

We can derive the following recursive relationship for B(c, k, l):

B(c,m+ 1, l) = B(c,m, l) +B(c− 1,m, l) ·Xk+1,l. (2.1)

There is a similar recursive relationship for M(c,m, k, l),

M(c,m+ 1, k, l) = M(c,m, k, l) +Xm+1,lM(c− 1,m, k, l). (2.2)

To enable the recursive computation, for each c = 0, . . . , q, we maintain a

matrix to store the cumulative sums.

1. Initialization: Starting with c = 0 and c = 1, for all l = 1, . . . , p, initialize

B(0, k + 1, l), . . . , B(0, k + q, l) = 0 and calculate
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B(1, k + 1, l) =

k+1∑
i=1

Xi,l, . . . , B(1, k + q, l) =

k+q∑
i=1

Xi,l.

Then, recursively calculate B(c, i, l), for all c = 0, . . . , q and i ≤ k+q, based

on Equation (2.1).

2. Update from B(c, k, l) to B(c, k + 1, l): Let B(0, k + 1, l) = B(0, k, l) +

Xk+1,l, and obtain the result for other B(c, k + 1, l) (c ≤ q) using Equation

(2.1).

3. Update from M(c,m, k, l) to M(c,m+1, k, l): Fix index k, for any n+1 ≤
m ≤ k − q, l = 1, . . . , p, let M(0,m, k, l) = 0, and calculate

M(1,m, k, l) =

k∑
i=m

Xi,l.

All other M(c,m, k, l), where c ≤ q and n+ 1 ≤ m ≤ k− q, can be obtained

using Equation (2.2). Construct the test statistic Tn,q(k+1) using B(c, k, l)

and M(c,m, k, l) and repeat from step 2.

The time complexity of the recursive formulation is O(n2pq), with space com-

plexity O(npq).

2.3. Combining multiple Lq-norm-based statistics

In this section, we propose combining multiple Lq statistics to detect both

dense and sparse alternatives. Specifically, based on the theoretical results in

Zhang, Wang and Shao (2021), the U-process for different q are asymptotically

independent, which implies that {Tn,q}nTk=n+q+1 are asymptotically independent

for q ∈ 2N. Therefore, maxnTk=n+q+1 Tn,q(k) are asymptotically independent for

q ∈ I, where I ⊂ 2N, say I = {2, 6}. Thus, we can combine the monitoring

procedure for different q and adjust for the asymptotic size. In general, if we

want to combine a set of q ∈ I, we can adjust the size of each individual test

to be 1 − (1 − α)1/|I|, given the asymptotic independence, and reject the null if

any of the monitoring statistics exceeds its critical value. Zhang, Wang and Shao

(2021) provide power analysis for the identity covariance matrix case, showing

that the adaptive test enjoys good overall power.

In practice, there is this issue of which q to use. Based on the recommendation

in Zhang, Wang and Shao (2021), we set q = 6. As mentioned in the latter

paper, using larger q leads to more trimming and more computational cost. As

we demonstrate in the simulations, using q = 6 and combining with q = 2 show
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a very promising performance; see Section 4 for more details.

3. Ratio-Consistent Estimator of ‖Σ‖qq
Note that the test statistic Tn(k) requires a ratio-consistent estimator of

‖Σ‖qq. For example, when q = 2, this can be simplified to ‖Σ‖2F . A ratio-

consistent estimator of ‖Σ‖2F is proposed in Chen and Qin (2010), but it seems

difficult to generalize to ‖Σ‖qq. In this section, we introduce a new class of ratio-

consistent estimators of ‖Σ‖qq based on U-statistics. We first show the result when

q = 2, and generalize it to q ∈ 2N later.

Assume {Xt}nt=1 ∈ Rp are i.i.d. random vectors with mean µ and variance

Σ. Define

‖̂Σ‖2F = (3.1)

1

4
(
n
4

) ∑
1≤j1<j2<j3<j4≤n

tr
(
(Xj1 −Xj2)(Xj1 −Xj2)

T (Xj3 −Xj4)(Xj3 −Xj4)
T
)

as an estimator of ‖Σ‖2F .

Theorem 5. Under Assumption 1 and Cum(4)≤ C‖Σ‖4F in Assumption 2, ‖̂Σ‖2F
is a ratio-consistent estimator of ‖Σ‖2F , that is ‖̂Σ‖2F /‖Σ‖2F

p−→ 1.

Now, we extend this idea to general q ∈ 2N. We let

‖̂Σ‖qq =
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

(Xik,l1 −Xjk,l1)(Xik,l2 −Xjk,l2),

as an estimator for ‖Σ‖qq, for any finite positive even number q. The following

proposition states that the proposed estimator is unbiased.

Proposition 1. ‖̂Σ‖qq is an unbiased estimator of ‖Σ‖qq.

Proof of Proposition 1. Because {Xt}nt=1 are i.i.d.,

E[‖̂Σ‖qq] =
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

E[(Xik,l1 −Xjk,l1)(Xik,l2 −Xjk,l2)]

=
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

(2Σl1,l2)

=
1

2q
(
n
2q

) p∑
l1,l2=1

(
n

2q

)
2qΣq

l1,l2
= ‖Σ‖qq.
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This completes the proof.

The ratio consistency can be shown under the following assumption.

Assumption 5. We assume that

1. there exists c > 0 such that infi=1,...,p Σi,i > c;

2. there exists C > 0 and r > 2 such that for h = 2, 3, 4 and 1 ≤ l1 ≤ · · · ≤
lh ≤ p,

|cum(X0,l1 , . . . , X0,lh)| ≤ C(1 ∨ (lh − l1))−r.

Note that Assumption 5(2) is required for the ratio consistency, which is

weaker than Assumption 4. The Assumptions 1–5 required for our theory do not

state the explicit relationship between n and p. For example, when Σ = Ip, which

means there is no cross-sectional dependence, all the assumptions are satisfied

and (n, p) can go to infinity freely without any restrictions. When there is cross-

sectional dependence, our assumptions may implicitly restrict the relative scale

of n and p. In general, a larger p is a blessing in our setting, and it makes

the asymptotic approximation more accurate. Furthermore, a larger n is always

preferred, owing to the large-sample approximation. On the other hand, the

computational cost increases when both the dimension and the sample size get

large.

Theorem 6. Under Assumption 5, ‖̂Σ‖qq is a ratio-consistent estimator of ‖Σ‖qq,
that is, ‖̂Σ‖qq/‖Σ‖qq

p−→ 1.

Note that implementing the above estimator may be time-consuming for large

q. In practice, we can always take a random sample of all possible indices and

form an incomplete U-statistic to approximate. The consistency of the incomplete

U-statistic can also be established, but is not pursued here for simplicity.

4. Simulation Results

We compare the monitoring procedures for q = 2, q = 6, and q = (2, 6)

combined. We consider (n, p) = (100, 50) with T = 2, where the observations

Xi ∼ N(µi,Σ) are generated independently over time. We consider four possible

choices of Σ,

Σij = ρ|i−j| for ρ = 0, 0.2, 0.5, 0.8,

to evaluate the performance of the monitoring scheme for the independent-components

setting or under weak and strong dependence between components. All tests have

nominal size α = 0.1.
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Under the null H0, there is no change point: µi = 0, for all i. For the alter-

native, we consider µi =
√
δ/r(1r,0p−r), for i = (b1.25nc + 1), . . . , nT . Under

the dense alternative, we set (δ, r) = (1, p), (2, p). Under the sparse alternative,

we set (δ, r) = (1, 3), (1, 1).

To illustrate the finite-sample performance of our monitoring statistics, we

compare our results with those of Mei (2010) (denoted as Mei) and Liu, Zhang

and Mei (2019) (denoted as LZM), which are similar to the open-end scenario in

Chu, Stinchcombe and White (1996). Neither method require Phase-I data, and

both were originally designed to minimize the average run length. Therefore, they

do not explicitly control the type-I error. To make a fair comparison with the

current methods, which are proposed under the closed-end monitoring framework,

we generate n independent Gaussian samples from N(0, Ip×p), and calculate the

Mei and LZM monitoring statistics. We empirically determine the critical value

such that the empirical rejection rate is 10%, based on 2,500 simulated data

sets. For Mei’s methods, we need to specify the distribution after the change

point, which we set as the distribution under the alternative (δ, r) = (1, p). For

LZM’s method, we use the same setting in Liu, Zhang and Mei (2019), and set

b = log(10), ρ = 0.25, t = 4, and s = 1.

Table 2 shows the size of the monitoring procedure for the benchmark meth-

ods and the proposed methods for the three boundary functions T1, T2, and

T3 introduced in Section 2.1 under different correlation coefficients ρ. Note that

the size is noticeably worse for ρ = 0.8. This is partially due to the poor per-

formance of the ratio-consistent estimator, because its variance increases as the

cross-sectional dependence increases. Furthermore, note that the size seems to go

in different directions for q = 2 and q = 6 as the correlation increases. The com-

bined test, on the other hand, balances out such distortions. To make sure this is

only a finite-sample behavior, we increase (n, p) from (100, 50) to (200, 200), show-

ing that the size distortion for all tests improved noticeably for almost all settings.

The additional results are available in the Supplementary Material. In contrast,

Mei and LZM only achieved the correct size for the independent-component case,

because we select the threshold under the same setting. However, when there is

cross-sectional dependence between data streams, the size is no longer controlled,

and the size distortion is much more severe than it is in the Lq-based tests.

Table 3 provides the power result (left column) and average delay time (ADT)

(right column) for different tests under dense alternatives. As expected, the L2-

based test demonstrates higher power than that of the L6-based test. The power

of the combined test lies between and is closer to the power of the L2-based

test. As the correlation increases, the power of each test decreases, owing to
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Table 2. Sizes of different monitoring procedures.

T1 T2 T3

α = 0.1 Mei LZM L2 L6 Comb L2 L6 Comb L2 L6 Comb

ρ = 0 0.094 0.105 0.086 0.048 0.067 0.093 0.045 0.071 0.097 0.045 0.070

ρ = 0.2 0.058 0.125 0.083 0.048 0.057 0.082 0.045 0.055 0.083 0.046 0.051

ρ = 0.5 0.002 0.176 0.103 0.048 0.084 0.104 0.048 0.082 0.108 0.048 0.080

ρ = 0.8 0.000 0.409 0.135 0.028 0.085 0.145 0.027 0.093 0.137 0.026 0.086

the reduced signal. Of the three different boundary functions, T2 seems to have

the shortest ADT, with a slight sacrifice in power. Mei’s method is only better

than the L6-based test when there is no strong cross-sectional dependence, and

is generally worse than the other methods and has a relatively longer delay, even

when the distribution under the alternative is correctly specified. Note that when

ρ = 0.8, Mei’s method loses power completely. LZM, in general, has a slightly

shorter detection delay, but at the cost of much lower power compared with that

of the L2-based test and the combined test. This means the LZM is quicker in

signaling an alarm when a change point is detected. Although LZM showed good

power for the strong cross-sectional dependence case compared with the combined

test, it comes at the price of a much distorted size. This is because LZM assumes

all data streams are independent.

Table 4 provides the power of different tests under sparse alternatives. The

L6-based test and the combined test are comparable in terms of power, and the

L2-based test exhibits inferior power in most settings, as expected. An interest-

ing observation is that for the case (δ, r) = (1, 3), the L2-based test still shows

slightly higher power than the L6-based test when ρ = 0.2, which means that

for this particular setting, the change is not “sparse” enough. As the correlation

increases, we observe a noticeable drop in power, which is similar to the dense

alternative setting and is again attributed to the reduced signal size. Of the

three boundary functions, T2 still has the shortest ADT with a slight power loss

compared to the other two boundary functions. Mei’s method has worse power

because it is designed for dense signals and the distribution under the alternative

is misspecified. By comparison, LZM gives consistently good power and short

ADTs across all settings. However, the good power under strong cross-sectional

dependence is still offset by the severe size distortion under the null.

In addition to evaluating the size and power of the monitoring procedure,

we compare the computational cost of the recursive formulation versus that of

the brute force approach. For the case of (n, p) = (100, 50), the average run-time

of the brute force approach is 12.89 times that of the recursive algorithm under
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Table 3. Power under dense alternatives.

Power Mei LZM L2 L6 Comb

α = 0.1 (δ, r) power ADT power ADT w(t) power ADT power ADT power ADT

ρ = 0.0

(1, p) 0.852 72.9 0.628 38.0

T1 0.958 51.9 0.295 64.6 0.926 55.0

T2 0.951 44.3 0.284 63.0 0.921 47.7

T3 0.953 46.8 0.286 63.4 0.921 50.2

(2, p) 0.999 69.3 1.000 15.1

T1 1.000 27.5 0.919 56.2 1.000 29.5

T2 1.000 20.4 0.919 54.3 1.000 21.9

T3 1.000 22.9 0.920 54.9 1.000 24.7

ρ = 0.2

(1, p) 0.740 73.3 0.675 38.2

T1 0.935 51.8 0.302 64.4 0.907 54.9

T2 0.930 44.2 0.291 62.9 0.906 47.7

T3 0.933 46.7 0.294 63.5 0.903 50.3

(2, p) 1.000 69.9 1.000 15.6

T1 1.000 28.0 0.884 56.6 1.000 30.0

T2 1.000 20.8 0.884 54.8 1.000 22.3

T3 1.000 23.4 0.883 55.3 1.000 25.2

ρ = 0.5

(1, p) 0.243 74.1 0.715 34.3

T1 0.844 52.9 0.274 63.3 0.796 55.8

T2 0.843 45.2 0.267 61.5 0.787 47.9

T3 0.847 47.9 0.267 62.0 0.792 50.7

(2, p) 0.932 72.2 1.000 15.7

T1 1.000 30.7 0.864 55.9 1.000 33.0

T2 1.000 23.1 0.861 54.2 1.000 24.8

T3 1.000 25.7 0.861 54.8 1.000 27.8

ρ = 0.8

(1, p) 0.000 NA 0.803 29.0

T1 0.632 54.6 0.165 62.5 0.560 56.8

T2 0.637 46.4 0.162 60.9 0.575 48.6

T3 0.642 49.4 0.162 61.4 0.568 51.8

(2, p) 0.001 74.0 0.997 16.1

T1 0.990 38.3 0.666 56.0 0.984 40.8

T2 0.990 30.1 0.663 54.2 0.983 32.1

T3 0.990 32.7 0.666 54.9 0.983 35.4

H0, and is 13.07 times that of the recursive algorithm under the alternative. The

code is implemented in R. This demonstrates the substantial efficiency gain from

the recursive computational algorithm.

5. Data Illustration

5.1. Tonnage dat aset

We first apply the proposed methodology to monitor the multi-channel ton-

nage profile collected in a forging process in (Lei, Zhang and Jin (2010)), where

four different strain gauge sensors are mounted at each column of the forging

machine, measuring the exerted force of the press. The setup of the process is

shown in Figure 1a. The four strain gauge sensors represent the signature of the

product and are used for process monitoring and change detection in Lei, Zhang

and Jin (2010). For example, 10 examples of the signals before the changes and
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Table 4. Power under sparse alternatives.

Power Mei LZM L2 L6 Comb

α = 0.1 (δ, r) power ADT power ADT w(t) power ADT power ADT power ADT

ρ = 0.0

(1, 3) 0.422 74.0 0.990 27.4

T1 0.976 51.5 0.999 37.8 0.999 40.5

T2 0.967 43.8 0.999 35.9 0.999 38.0

T3 0.972 46.4 0.999 36.6 0.999 39.0

(1, 1) 0.400 73.9 1.000 23.4

T1 0.961 51.5 0.951 51.0 0.976 52.2

T2 0.958 44.1 0.953 49.5 0.974 46.3

T3 0.959 46.4 0.953 50.0 0.976 48.7

ρ = 0.2

(1, 3) 0.274 74.1 0.990 29.1

T1 0.946 52.2 0.937 51.6 0.955 52.6

T2 0.939 44.6 0.935 50.0 0.955 47.1

T3 0.943 47.1 0.936 50.5 0.954 49.2

(1, 1) 0.268 74.1 1.000 23.9

T1 0.961 52.6 0.998 37.3 0.999 40.2

T2 0.951 45.3 0.998 35.4 0.999 37.7

T3 0.957 47.6 0.998 36.0 0.999 38.6

ρ = 0.5

(1, 3) 0.048 74.5 0.972 28.2

T1 0.871 54.7 0.881 51.5 0.887 53.4

T2 0.856 47.1 0.878 49.8 0.884 48.7

T3 0.860 49.9 0.880 50.4 0.886 50.6

(1, 1) 0.036 74.3 1.000 23.2

T1 0.880 55.9 0.997 38.0 0.997 40.7

T2 0.871 49.1 0.997 36.1 0.997 38.2

T3 0.879 51.2 0.997 36.8 0.997 39.2

ρ = 0.8

(1, 3) 0.000 NA 0.971 24.7

T1 0.621 58.9 0.800 52.9 0.808 55.3

T2 0.610 50.6 0.801 51.3 0.802 51.5

T3 0.614 53.7 0.803 51.9 0.807 53.2

(1, 1) 0.000 NA 1.000 21.5

T1 0.602 61.1 0.998 38.8 0.997 41.7

T2 0.588 53.6 0.998 36.8 0.997 39.3

T3 0.601 56.8 0.998 37.5 0.997 40.2

after the changes are shown in Figure 1b. As mentioned by Lei, Zhang and Jin

(2010) and Yan, Paynabar and Shi (2018), the missing part affects only a small

region of the signals, making it difficult to detect, as shown in Figure 1b.

We select a subset of the data with n = 200 observations, where the first 130

observations are from the normal tonnage sample, and the last 70 observations

are abnormal. We project the data onto a 20-dimensional space by training the

anomaly basis on a holdout sample, as in Yan, Paynabar and Shi (2018). The

first 100 observations are treated as a Phase-I stage without any changes, and we

learn the 2-norm and q-norm of the covariance matrix from them. The monitoring

scheme started at observation 107 (trimming due to q = 6). The L6-based test

stopped at time 137, and estimated the possible change-point location at time 128

by performing a retrospective test at time 137. The L2-based test signaled slightly

earlier at time 135, and also estimated the change at 128. The combined test
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Figure 1. Forging machine setup and the collected tonnage data set.
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(b) L6 based test for tonnage data

Figure 2. Testing Statistics for tonnage data.

signaled an alarm at time 135, with the same estimated location. The trajectory

of the L2 and the L6 test statistics are shown in Figure 2a and 2b, respectively.

Note that when we set the size of the individual test to α∗ = (1−0.1)1/2 = 5.13%,

the size of the combined test is α = 1 − α∗2 = 0.1. We signal an alarm when at

least one test statistic exceeds the corresponding threshold.

5.2. Rolling data set

Here, we consider process monitoring in a steel rolling manufacturing process.

Surface defects, such as seam defects, can result in a stress concentration on the

bulk, and may cause failures if the steel bar is used in a product. However, the

rolling process is a high-speed process, with the rolling bar moving at around

200 miles per hour. Thus, providing real-time online anomaly detection for the
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(a) Normal rolling image (b) Abnormal rolling image

Figure 3. Examples of the rolling images.

high-speed rolling process is very important to prevent further product damage.

The data set is collected in the high-speed rolling process. Here, we selected

a segment near the end of the rolling bar, which contains 100 images of the rolling

process. To remove the trend, we have applied a smooth background remover and

downsampled the image to 16× 64 pixels. An example of the normal image and

the abnormal image are shown in Figure 3a and 3b, respectively.

We treated the first 50 observations as the training set and obtained ratio-

consistent estimators ‖̂Σ‖qq. After performing the change-point monitoring pro-

cedure, the L6-norm-based test signaled an alarm at time 97, and estimated that

the possible change-point location is at time 89, based on the retrospective test.

On the other hand, the L2 based test failed to detect the change within the finite

time horizon. The combined test also signaled an alarm at time 97. We present

the rolling image at time 91 in Figure 3b. This shows that after downsampling,

the change is still quite sparse. The adaptive monitoring procedure is still pow-

erful, as long as one test has power. We also present the trajectory of the test

statistic at each time point in Figure 4a and 4b. Note that there is a downshift

in the L2-based monitoring statistic right after the estimated change. This is

because the signal is very sparse, and the construction of our proposed statistic

may admit negative values for a short period. The negative values here should

not be a major concern, because the test statistic should admit positive values

in probability under the alternatives. We confirmed this by adding an artificial

dense change to the data. On the other hand, the L6-based monitoring statistics

detect the change efficiently, owing to their ability to capture the sparse change

in the system.
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Figure 4. Examples of the rolling images.

6. Conclusion

In this article, we have proposed a new methodology to monitor a mean

shift in temporally independent high-dimensional observations. Our change point

monitoring method targets the Lq-norm of the mean change for q = 2, 4, 6, . . ..

By combining the monitoring statistics for different values of q ∈ 2N, the adap-

tive procedure achieves overall satisfactory power against both sparse and dense

changes in the mean. This can be desirable from a practitioner’s viewpoint, be-

cause often we do not have knowledge about the types of alternatives. Compared

with the recently developed methods for monitoring large-scale data streams (e.g.,

Mei (2010), Xie and Siegmund (2013), Liu, Zhang and Mei (2019)), our method is

fully nonparametric and does not require strong distributional assumptions. Fur-

thermore, our method allows for certain cross-sectional dependence across data

streams, which could arise naturally in many applications.

To conclude, we mention a few interesting directions for future work. First,

our focus is on the mean change, and it is natural to ask whether the method

can be extended to monitor a change in the covariance matrix. Second, many

streaming data have weak dependence over time, owing to their sequential nature.

Thus, how to accommodate weak temporal dependence is of interest. Third, in

the current implementation, the ratio-consistent estimators are learned from the

training data, and do not change as more observations become available. In

practice, if the monitoring scheme runs for a long time without signaling an

alarm, it might be helpful to periodically update the ratio-consistent estimators

to gain efficiency, especially when the initial training sample is short. However,

it may be impractical to update this estimator for each k, because there seems
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no easy recursive way to update this estimator and the associated computational

cost is high. The user might need to determine how often to update it based on

the actual computational resources. Fourth, even though the proposed algorithm

can detect a sparse change, in many applications, it is also an important problem

to identify which individual data stream actually experiences a change. These

issues are left for future research.

Supplementary Material

The online Supplementary Material contains technical proofs for the theo-

retical results, as well as additional simulation results.
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