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Abstract: We consider the nonparametric two-way interaction model and propose a

method to select important main effect and interaction effect terms simultaneously.

Our method is based on backfitting local constant smoothing. Interaction selec-

tion is achieved by solving a constrained optimization problem to identify which

main effect and interaction effect terms favor an infinity smoothing bandwidth. We

establish the selection consistency for the proposed method. Simulation examples

and a real-data example illustrate its competitive finite-sample performance.

Key words and phrases: Additive model, backfitting, local constant smoothing,

variable selection.

1. Introduction

The ready availability of high-dimensional data owing to advances in tech-

nology has motivated the active research area of variable selection, resulting in

numerous relevant methods having been proposed in the literature. In this study,

we focus on a special kind of variable selection, namely interaction selection. More

explicitly, we study how predictor variables contribute to the response via pair-

wise interaction, and how to select an important pairwise interaction.

We consider the nonparametric regression of a univariate response Y on mul-

tivariate predictors X = (X1, X2, . . . , Xd)
T , withXj ∈ Ωj ⊂ R, for j = 1, 2, . . . , d.

The additive model Y = α +
∑d

j=1mj(Xj) + ε is a simplification of the fully

nonparametric regression model Y = m(X) + ε by assuming the predictors’

effects are additive. However, this additivity assumption may not be reason-

able in many real applications. Note that the fully nonparametric regression

model can be decomposed as Y = α+
∑d

j=1mj(Xj) +
∑

1≤j<k≤dmjk(Xj , Xk) +∑
1≤j<k<l≤dmjkl(Xj , Xk, Xl)+ · · ·+m12...d(X1, X2, . . . , Xd)+ε by separating the

interaction effects at different orders. In this sense, the additive model is essen-

tially an approximation of the fully nonparametric regression model in which we

ignore all interaction effects.
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We focus on the nonparametric two-way interaction model

Y = α+

d∑
j=1

mj(Xj) +
∑

1≤j<k≤d
mjk(Xj , Xk) + ε, (1.1)

and propose a new method to select important main effect and interaction effect

terms simultaneously. However the main idea can be easily extended to more

general cases with higher-order interactions. Model (1.1) is not identifiable itself.

Additional identifiability conditions are required. There are different ways to

formulate its identifiability conditions. To facilitate the implementation of our

proposed nonparametric interaction selection method, we adopt the following

fixed-point identifiability conditions (Gustafson (2000)):

mj(xj,0) = 0, j = 1, . . . , d; (1.2)

mjk(xj,0, ·) = 0, mjk(·, xk,0) = 0 and mjk(xj,0, xk,0) = 0, 1 ≤ j < k ≤ d, (1.3)

where xj,0 is any fixed point in the domain Ωj of Xj , for j = 1, 2, . . . , d. Our

goal is to estimate the sets of important main and interaction effects, denoted by

M = {j : mj(·) 6= 0} and I = {(j, k) : mjk(·, ·) 6= 0}, respectively.

Many attempts have been made to perform parametric interaction selection.

The parametric two-way interaction model essentially assumes that mj(Xj) =

βjXj and mjk(Xj , XK) = βjkXjXk in the above nonparametric two-way inter-

action model (1.1), and is also called a quadratic regression model. Zhao, Rocha

and Yu (2009) proposed a composite absolute penalties family, and demonstrated

that their method can perform parametric interaction selection for the parametric

two-way interaction model. Yuan, Joseph and Zou (2009) proposed a structured

variable selection and estimation procedure for the parametric two-way interac-

tion model. Choi, Li and Zhu (2010) proposed a parametric interaction selec-

tion method under a strong heredity assumption. Here, strong heredity requires

j ∈ M and k ∈ M, as long as (j, k) ∈ I. In comparison, weak heredity requires

j ∈ M or k ∈ M, or both, if (j, k) ∈ I. Bien, Taylor and Tibshirani (2013) pro-

posed a lasso for hierarchical interactions. Hao and Zhang (2014) and Niu, Hao

and Zhang (2018) studied interaction screening. Hao, Feng and Zhang (2018)

proposed a new regularization method, called the regularization algorithm un-

der marginality principle (RAMP), to perform parametric interaction selection.

Other related methods include those of Kong et al. (2017) and Wang, Jiang and

Zhu (2021), among many others.

Our focus is on nonparametric interaction selection. Lin and Zhang (2006)



NONPARAMETRIC INTERACTION SELECTION 1565

proposed a component selection and smoothing operator based on a smoothing

spline ANOVA that can be used to fit the above nonparametric two-way inter-

action model and perform interaction selection. Radchenko and James (2010)

proposed a method, called variable selection using adaptive nonlinear interac-

tion structures in high dimension (VANISH), for model (1.1). Their method

represents each main effect and interaction effect term using a preselected set of

univariate and bivariate orthonormal basis functions, respectively. In particular,

the bivariate orthonormal basis function is chosen as the tensor product of the

univariate basis functions in their implementation. This leads to some challenges

in approximating the complex interaction effect component function.

In this paper, we propose a new nonparametric interaction selection method

in a framework coupling backfitting with local constant smoothing. The essen-

tial idea is that if an infinity smoothing bandwidth is used in the local constant

smoothing for each main effect or interaction effect component function, the cor-

responding component function estimate will be a constant function, implying

that it is unimportant for the prediction of the response variable. Because we are

backfitting local constant smoothing, our method is much more flexible in fitting

any complex interaction component function. Furthermore, it can overcome the

aforementioned limitation of using tensor products of univariate basis functions

to approximate bivariate interaction component functions. In addition, our algo-

rithm does not need the strong or the weak heredity assumption. However, it is

possible to incorporate strong or weak heredity if such information is available,

as discussed at the end of the paper.

For nonparametric variable selection, Wu and Stefanski (2015) studied the

additive model

Y = α+

d∑
j=1

mj(Xj) + ε

without interaction, and proposed a structure recovery scheme toward polynomial

modeling. Their method is capable of identifying unimportant predictors, linear

predictors, quadratic predictors, and so on. White, Stefanski and Wu (2017)

proposed a variable selection method for the fully nonparametric model

Y = m(X1, X2, . . . , Xd) + ε.

The nonparametric two-way interaction model (1.1), which sits between the ad-

ditive model and the fully nonparametric model, is the focus of the current study.

The proposed method can estimate the sets of important main effects and two-

way interaction effects. In addition, it can be readily extended to models with
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high-order interactions. With this new contribution, we now have a full spectrum

of nonparametric variable selection methods.

The rest of the paper is organized as follows. Section 2 presents the ba-

sic backfitting local constant smoothing procedure for the two-way interaction

model. Our new nonparametric interaction selection method is introduced in

Section 3. Some implementation issues are discussed in Section 4, with a toy

example to illustrate how it works. Selection consistency is established in Section

5. Simulation examples in Section 6 and a real-data example in Section 7 demon-

strate of the proposed method’s competitive finite-sample performance. Section

8 discusses how to incorporate strong or weak heredity information and possible

future extensions.

2. Backfitting Estimation of the Two-way Interaction Model

Backfitting is a commonly used technique for the estimation of the additive

model (Hastie and Tibshirani (1990)). It can also be used to fit the two-way

interaction model (1.1) with both main and interaction effect terms. The backfit-

ting algorithm is an iterative algorithm. In each iteration, it sequentially updates

the estimate of one model component at a time. Each updating requires a uni-

variate or bivariate smoothing, depending on whether we are updating a main

effect or an interaction effect term. For the purpose of selecting important main

and interaction effect terms, we couple backfitting with local constant smoothing

(Fan and Gijbels (1996)).

2.1. Univariate local constant smoothing

Univariate local constant smoothing is used to update the estimate of the

main effect terms. To estimate a univariate regression function g(t) = E(Z|T = t)

from a random sample {(Ti, Zi) : i = 1, . . . , n}, the univariate local constant

smoothing approximates g(t) by a constant a. A weighted least squares approach

is used to estimate a, with weights specified by a kernel function K(·) and a

smoothing bandwidth h > 0. More specifically, the univariate local constant

smoothing estimate ĝ(t) of g(t) at any t is given by â, the optimizer of â =

argmina
∑n

i=1{Zi−a}2K((Ti − t)/h). We denote such a univariate local constant

smoothing by SK,h.

2.2. Bivariate local constant smoothing

Bivariate local constant smoothing is used to estimate the interaction effect

terms. It is based on the same idea as univariate local constant smoothing, but is
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used for the case with two predictors. Suppose we estimate a bivariate regression

function g(s, t) = E(Z|S = s, T = t) from a random sample {(Si, Ti, Zi) : i =

1, . . . , n}. The bivariate local constant smoothing estimate ĝ(s, t) of g(s, t) at any

s and t is given by ĉ, the optimizer of

ĉ = argmin
c

n∑
i=1

{Zi − c}2K
(
Si − s
h

)
K

(
Ti − t
h

)
.

Note that potentially different smoothing bandwidths can be used for S and T .

However, for simplicity, we use the same smoothing bandwidth. Denote this

bivariate local constant smoothing by S2K,h.

2.3. Backfitting algorithm

With the above univariate and bivariate local constant smoothings in place,

we are ready to present the backfitting algorithm for the two-way interaction

model (1.1). The backfitting algorithm is an iterative algorithm. The essen-

tial idea is to update the estimate of a single main or interaction effect term at

every step, while keeping the estimates of all other terms fixed. The detailed

backfitting algorithm for the two-way interaction model (1.1) is given in Algo-

rithm 1, with given smoothing bandwidths hj > 0 and h̃jk > 0 for the main and

interaction effect terms, respectively. Denote the estimates at the convergence

by α̂BF (h, h̃), m̂BF
j (·; h, h̃), and m̂BF

jk (·, ·; h, h̃), with h = (h1, h2, . . . , hd)
T and

h̃ = (h̃1,2, h̃1,3, . . . , h̃(d−1),d)
T . Note that we use h̃jk and h̃j,k interchangeably to

avoid potential confusion. Similarly, mjk(·, ·) (resp. λ̃jk and ̂̃λjk to be defined) is

the same as mj,k(·, ·) (resp. λ̃j,k and ̂̃λj,k).
In Algorithm 1, it is important to update the interaction effect terms before

updating the main effect terms in each iteration, for the following reason. After

applying a bivariate local constant smoothing to update the estimate of an inter-

action effect term in Step 2(a), the updated estimate of the interaction effect term

may not satisfy the identifiability condition (1.3). To ensure the identifiability

condition, a follow-up update in Step 2(b) is necessary in the interaction effect

term that changes the estimates of the corresponding two main effect terms. This

change may lead to suboptimal estimates of the main effect terms. However, it

can be fixed automatically by the updating of the mean effect terms in Step 3.

3. Main and Interaction Effect Selection

Wu and Stefanski (2015) noted that when hj = ∞, the univariate local

constant smoothing in Step 3(a) approximates mj(·) by a constant, leading to a
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Algorithm 1 Backfitting algorithm for the two-way interaction model (1.1)

Step 1: Initialize by setting α̂ = n−1
∑n

i=1 Yi, m̂j(·) ≡ 0 for j = 1, . . . , d and m̂jk(·) ≡ 0,
for 1 ≤ j < k ≤ d.

Step 2: For j = 1, . . . , d− 1; k = j + 1, . . . , d:

(a) apply the bivariate local constant smoother S2K,h̃jk
to[{

(Xij , Xik), Yi−α̂−
d∑

l=1

m̂l(Xil)−
∑

s<t : (s,t) 6=(j,k)

m̂st(Xis, Xit)

}
; i = 1, . . . , n

]

and set the estimated function to be the updated estimate m̂jk(·, ·) of
mjk(·, ·).

(b) update α̂ ← α̂ + m̂jk(xj,0, xk,0), m̂j(·) ← m̂j(·) + m̂jk(·, xk,0) −
m̂jk(xj,0, xk,0), m̂k(·) ← m̂k(·) + m̂jk(xj,0, ·) − m̂jk(xj,0, xk,0) and
m̂jk(·, ·) ← m̂jk(·, ·) − m̂jk(xj,0, ·) − m̂jk(·, xk,0) + m̂jk(xj,0, xk,0) to im-
plement the identifiability conditions (1.2) and (1.3).

Step 3: for j = 1, . . . , d:

(a) apply the univariate local constant smoother SK,hj
to[{

Xij , Yi − α̂−
∑
l 6=j

m̂l(Xil)−
∑

1≤s<t≤d

m̂st(Xis, Xit)

}
; i = 1, . . . , n

]

and set the estimated function to be the updated estimate m̂j(·) of mj(·).
(b) update α̂ ← α̂ + m̂j(xj,0), m̂j(·) ← m̂j(·) − m̂j(xj,0) to implement the

identifiability conditions (1.3).

Step 4: Update α̂← (1/n)
∑n

i=1

(
Yi −

∑d
j=1 m̂j(Xij)−

∑
1≤s<t≤d m̂st(Xis, Xit)

)
.

Step 5: Repeat Steps 2, 3, and 4 until the change in all m̂j(·) for j = 1, . . . , d and m̂jk(·)
for 1 ≤ j < k ≤ d between successive iterations are less than a specified tolerance.

constant function estimate. Then, Step 3(b) shifts the constant function estimate

to a zero function m̂j(·) = 0 to satisfy the identifiability condition (1.2). As a

result, an infinity smoothing bandwidth in the backfitting algorithm leads to the

corresponding predictor’s main effect being estimated as unimportant. Based on

this finding, Wu and Stefanski (2015) proposed a variable selection method for

the additive model.

By the same token, if h̃jk = ∞ in Algorithm 1, the bivariate local constant

smoothing in Step 2(a) leads to a bivariate constant function estimate. Then,
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Step 2(b) shifts it to a zero function estimate m̂jk(·, ·) = 0 in the same way. A

corresponding interpretation is that the interaction effect between Xj and Xk is

estimated to be unimportant.

According to these findings, the selection of important main effect and inter-

action effect terms for the two-way interaction model (1.1) boils down to identi-

fying which main effect and interaction effect terms favor an infinity smoothing

bandwidth in Algorithm 1. Based on this, we now propose a new method to per-

form main effect and interaction effect selection simultaneously for the two-way

interaction model (1.1).

It is not easy to estimate an infinity. We convert the estimation of an infinity

to the estimation of a zero by reparametrizing λj = 1/hj and λ̃jk = 1/h̃jk,

as in Wu and Stefanski (2015) and White, Stefanski and Wu (2017). Denote

λ = (λ1, λ2, . . . , λd)
T and λ̃ = (λ̃12, λ̃13, . . . , λ̃(d−1)d)

T as the vectors of the inverse

smoothing bandwidths for the main and interaction effect terms, respectively. For

a vector λ, we denote λ−1 = (1/λ1, 1/λ2, . . . , 1/λd)
T .

Following Wu and Stefanski (2015) and White, Stefanski and Wu (2017),

we propose estimating the favored smoothing bandwidth for each main effect or

interaction effect term by solving the following constrained optimization problem

min
λ,λ̃

n∑
i=1

Yi − α̂BF (λ−1, λ̃−1)−
d∑
j=1

m̂BF
j (Xij ;λ

−1, λ̃−1)

−
d−1∑
j=1

d∑
k=j+1

m̂BF
jk (Xij , Xik;λ

−1, λ̃−1)


2

, (3.1)

subject to λj ≥ 0, j = 1, . . . , d;

λ̃jk ≥ 0, 1 ≤ j < k ≤ d;

d∑
j=1

λj +

d−1∑
j=1

d∑
k=j+1

λ̃jk = τ,

where τ ≥ 0 is a regularization parameter to be tuned. Denote the optimizer by

λ̂ ≡ λ̂(τ) = (λ̂1(τ), λ̂2(τ), . . . , λ̂d(τ))T and

̂̃λ ≡ ̂̃λ(τ) = (̂̃λ1,2(τ), ̂̃λ1,3(τ), . . . , ̂̃λ(d−1)d(τ))T .

For an appropriately tuned τ , some components of λ̂ and ̂̃λ will be exactly zero.

Then, the estimated sets of important main and interaction effects are given

by M̂(τ) = {j : λ̂j(τ) > 0} and Î(τ) = {(j, k) : ̂̃λjk(τ) > 0}, respectively. To
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match our asymptotic consistency, developed in Section 5, we can possibly use the

alternative definitions M̂(τ) = {j : λ̂j(τ) > ε} and Î(τ) = {(j, k) : ̂̃λjk(τ) > ε},
respectively, for some small ε > 0. For example, ε can be chosen to be twice the

convergence tolerance adopted in the forthcoming modified coordinate descent

algorithm. However, based on our limited numerical experience, we have observed

that these two definitions always yield the same selection result, owing to the

lasso-type constraint.

4. Implementation Issues and a Toy Example

4.1. Modified coordinate descent algorithm

Convexity is a highly desired property in optimization. However, owing to

the complicated backfitting algorithm coupled with univariate and bivariate local

constant smoothing, the objective function of the optimization problem (3.1) is

not convex. We borrow the modified coordinate descent algorithm (Wu and

Stefanski (2015)) to solve (3.1) for any given τ > 0. We skip the details to save

space.

4.2. Tuning

The AIC, the BIC, and cross-validation can be used to tune the hyperpa-

rameter τ in the constrained optimization problem (3.1). For the AIC and BIC,

we need the sum of the squared errors and the degrees of freedom. The sum of

the squared errors can be simply calculated by

n∑
i=1

Yi − α̂BF (λ̂−1, ̂̃λ−1)− d∑
j=1

m̂BF
j (Xij ; λ̂

−1, ̂̃λ−1)
−
d−1∑
j=1

d∑
k=j+1

m̂BF
jk (Xij , Xik; λ̂

−1, ̂̃λ−1)


2

.

Note that the univariate and bivariate local constant smoothings are linear

smoothers (Fan and Gijbels (1996)). The trace of the corresponding smoothing

matrix can be used to gauge the degrees of freedom for the backfitting estimate

of each model component of the two-way interaction model (1.1).

In particular, the degrees of freedom for the main effect estimate m̂BF
j (·; h, h̃)

is given by tr (Sj − 1(sj(xj,0))
T ). Here, 1 is a column vector of ones of an appro-

priate length and, in the current context, is of length n, and Sj = (sj(x1j), sj(x2j),
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. . . , sj(xnj))
T is the smoothing matrix of the local constant smoothing, with

sj(xj)=

(
K

(
X1j − xj

hj

)
,K

(
X2j − xj

hj

)
, . . . ,K

(
Xnj − xj

hj

))T
/

n∑
i=1

K

(
Xij − xj

hj

)
.

Note that the first and second terms of tr(Sj − 1 (sj(xj,0))
T ) correspond to Step

3(a) and 3(b), respectively. Because tr(1 (sj(xj,0))
T ) = tr((sj(xj,0))

T 1) = 1, we

have tr(Sj − 1 (sj(xj,0))
T ) = tr(Sj)− 1, as in Wu and Stefanski (2015).

The process becomes more involved for the interaction effect term estimate

m̂jk(·, ·; h, h̃). Here are the details. Denote

s̃jk(xj , xk) =

1∑n
i=1K((Xij − xj)/h̃jk)K((Xik − xk)/h̃jk)


K
(
X1j−xj

h̃jk

)
K
(
X1k−xk

h̃jk

)
K
(
X2j−xj

h̃jk

)
K
(
X2k−xk

h̃jk

)
...

K
(
Xnj−xj

h̃jk

)
K
(
Xnk−xk

h̃jk

)

 .

Then, S̃jk = (s̃jk(x1j , x1k), s̃jk(x2j , x2k), . . . , s̃jk(xnj , xnk))
T is the smoothing ma-

trix for the bivariate local constant smoothing in Step 2(a) of Algorithm 1. For

Step 2(b), we similarly denote

S̃j0k = (s̃jk(xj,0, x1k), s̃jk(xj,0, x2k), . . . , s̃jk(xj,0, xnk))
T

and

S̃jk0 = (s̃jk(x1j , xk,0), s̃jk(x2j , xk,0), . . . , s̃jk(xnj , xk,0))
T .

Then, the degrees of freedom of the interaction effect estimate m̂jk(·, ·; h, h̃) is

given by

tr
{

S̃jk − S̃j0k − S̃jk0 + 1 (s̃jk(xj,0, xk,0))
T
}
,

where the last three terms follow from Step 2(b), which makes the interaction

effect estimate m̂jk(·, ·; h, h̃) satisfy the identifiability condition (1.3).

Following Buja, Hastie and Tibshirani (1989) and putting all these together,

the total degrees of freedom for the backfitting estimate for the two-way interac-

tion model (1.1) is given by

1 +

d∑
j=1

(tr(Sj)− 1) +
∑

1≤j<k≤d

[
tr
{

S̃jk − S̃j0k − S̃jk0

}
+ 1
]
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by noting similarly that tr(1 (s̃jk(xj,0, xk,0))
T ) = tr((s̃jk(xj,0, xk,0))

T 1) = 1.

Here, the first term 1 is the degrees of freedom used to account for the inter-

cept term estimated in Step 4 of Algorithm 1.

In our forthcoming numerical examples, we use the BIC to tune the regular-

ization parameter τ .

4.3. Refitting

With the tuned optimal τ̂ , the final estimated sets of main and interaction

effects are given by M̂(τ̂) and Î(τ̂), respectively. If we want to estimate the

overall regression function m(x) = α +
∑d

j=1mj(xj) +
∑

1≤j<k≤dmjk(xj , xk) as

well, a refitting step may be necessary to improve performance. Note that in the

nonparametric main and interaction effect estimation method proposed above,

we need to couple the backfitting algorithm with local constant smoothing to

perform the selection. However, it is well known that local constant smoothing

is suboptimal if one cares about estimating the regression function (Fan and

Gijbels (1996)). In particular, Fan and Gijbels (1996) showed theoretically that

local linear smoothing can do much better than local constant smoothing in

terms of reducing the smoothing bias, while estimating the regression function.

Consequently, a refitting step can be adopted to improve performance in terms

of estimating the overall regression function m(x).

For the selected final model

Y = α+
∑

j∈M̂(τ̂)

mj(Xj) +
∑

(j,k)∈Î(τ̂)

mjk(Xj , Xk) + ε,

we couple the backfitting algorithm with univariate (resp. bivariate) local linear

smoothing to update the main (resp. interaction) effect terms to obtain a final

estimate of the overall regression function. An optimization problem similar to

(3.1) can be used to determine optimal smoothing bandwidths for each term, in

conjunction with using the AIC to tune the corresponding regularization param-

eter, because local linear smoothing is also a linear smoother (Fan and Gijbels

(1996)).

4.4. A toy example

To get a better idea of how our proposed selection method works, we illustrate

it using a toy example. A random sample of size n = 200 is generated from the

following model, with five predictors in total, two important main effect terms
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Figure 1. Solution path for the toy example.

and three important interaction effect terms:

Y = m1(X1) +m2(X2) +m1,2(X1, X2) +m1,3(X1, X3) +m4,5(X4, X5) + ε,

where m1(t) = m2(t) = 2 sin(πt), m1,2(s, t) = m1,3(s, t) = m4,5(s, t) = 2 sin(πst),

X1, . . . , X5
i.i.d.∼ Unif(−1, 1), and independent ε ∼ N(0, 1). The identifiability

conditions (1.2) and (1.3) are satisfied with xj,0 = 0, for j = 1, 2, . . . , 5. Note

that there are five main effect terms and 10 interaction effect terms in total. We

apply our proposed main and interaction effect selection algorithm. The solution

path in Figure 1 plots λ̂j(τ) and ̂̃λjk(τ) versus the tuning parameter τ for the

main and interaction effects. Note that we only plot up to τ = 30 for the best

visual effect.

In the beginning, with τ = 0, all optimal inverse smoothing bandwidths are

zero, because τ is the summation of all inverse smoothing bandwidths. As τ

gradually increases, λ̂1(τ), λ̂2(τ), ̂̃λ1,3(τ), ̂̃λ1,2(τ), and ̂̃λ4,5(τ), corresponding to

the important main and interaction effect terms, sequentially depart from zero

before any unimportant term component does. Note that until τ = 25, the

optimal inverse smoothing bandwidth corresponding to one unimportant term

becomes nonzero. Therefore, our proposed method can perform main and inter-

action effect selection perfectly, as long as τ is tuned in a large interval [9, 24].

After rescaling appropriately, we overlay the BIC in Figure 1, denoted by the

thin black dotted line, showing that the BIC tuning leads to a perfect main and

interaction effect selection.
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5. Consistency

To establish the selection consistency for the proposed nonparametric main

and interaction effect selection method, we prove the following asymptotic results

for the optimizer of (3.1).

Theorem 1. Under Conditions 1–5 in the Appendix, if τ → ∞ and τ4/n → 0

as n → ∞, the optimizer of (3.1) satisfies ĥj(τ)
p→ ∞ and ĥj′(τ)

p→ 0 for any

j ∈ M and j′ 6∈ M, and ̂̃hjk(τ)
p→ ∞ and ̂̃hj′k′(τ)

p→ 0 for any (j, k) ∈ I and

(j′, k′) 6∈ I.

Theorem 1 implies the selection consistency straightforwardly; that is, P (M̂ =

M, Î = I)→ 1 as n→∞.

6. Simulation Studies

Predictors in our simulation examples are generated in two steps. We first

generate multivariate Gaussian (Z1, Z2, . . . , Zd)
T with E(Zj) = 0 and cov(Zj , Zk)

= ρ|j−k|, for 1 ≤ j, k ≤ d. Here, ρ controls the correlation among the predictors,

and we consider ρ = 0.6 in all of our simulation examples. Our predictors are

generated by applying transformation the Xj = 2Φ(Uj) − 1, with Φ(·) being

the cumulative distribution function of the standard normal distribution so that

marginally Xj ∼ Unif(−1, 1), for j = 1, 2, . . . , d. In our simulation studies, we

fix xj,0 = 0, for j = 1, 2, . . . , d, in the identifiability conditions (1.2) and (1.3).

The dimension of the predictors d is either 10 or 20 for all simulation examples.

We compare our proposed method with two existing methods: the regulariza-

tion algorithm under marginal principle (RAMP) method (Hao, Feng and Zhang

(2018)), and the variable selection using adaptive nonlinear interaction struc-

tures in high dimensions (VANISH) method (Radchenko and James (2010)).

We evaluate the performance of the methods in terms of two criteria: iden-

tifying important main and interaction effects, and the integrated squared er-

ror (ISE) of each estimate of the overall regression function m(·), defined as

ISE(m̂) = EX(m(X) − m̂(X))2, where m̂(·) denotes an estimate of m(·). The

expectation EX is replaced by an empirical expectation based on a big indepen-

dent test set.

Note that the VANISH method is designed for a nonlinear two-way interac-

tion model with strong heredity, and requires an extra validation set to tune its

regularization parameter. Here, the strong heredity requires that if an interac-

tion effect term is important, the two corresponding main effect terms must be

important. The RAMP method is designed for a quadratic regression, essentially
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an extended linear model with interaction effect terms added, and uses the EBIC

for tuning. In this sense, the RAMP is a linear method for main and interaction

effect selection, and requires either strong or weak heredity. The weak heredity

assumption requires that if an interaction effect term is important, at least one

of the two corresponding main effect terms is important. Thus, to provide a fair

comparison and a thorough investigation of our proposed method’s finite-sample

performance, we consider both linear and nonlinear two-way interaction models,

with and without strong heredity. In total, we consider four simulation exam-

ples. For the models with strong heredity, the strong heredity version of RAMP

is used, while for the models without strong heredity, the weak heredity version

of RAMP is used. For all four examples, VANISH uses a Fourier basis.

6.1. Models with strong heredity

First, we consider models with strong heredity.

Example 1. (Linear two-way interaction model with strong heredity). Data are

generated from the model

Y = 2.1X1 + 2.1X2 + 2.1X3 + 2.1X4 + 3.7X1X2 + 3.7X1X3 + ε,

where ε ∼ N(0, 1) is independent of the predictors. In this model, there are four

important main effect terms and two important interaction effect terms. Training

sets of size 200 are used. An independent test set of size 1,000 is generated to

evaluate the ISE for each final estimate of the overall regression function. The

strong heredity version of RAMP is used for Examples 1 and 2. Because the

tuning of VANISH requires a separate tuning set, we generate an independent

tuning set the same size as the training sets. In this sense, VANISH uses more

data than the other two methods being compared.

The results over 100 repetitions are summarized in the first block of Table 1.

For all three methods, the columns M and NM are the average number of selected

true and false main effect terms, respectively; the columns I and NI are the

average number of selected true and false interaction effect terms, respectively;

CM is the number of times recovering exactly the correct model (selecting all

important terms and getting rid of all unimportant terms) among 100 repetitions;

and ISE is the integrated squared error defined above. For our new method, there

are two extra columns: OISE (oracle ISE), which reports the ISE corresponding to

the oracle model with only true important main and interaction effect terms, and

PC (path consistency), which is the number of times the solution path contains at

least one exactly correct model. The OISE is essentially obtained by applying the
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refitting step of Section 4.3 with true sets of important main and interaction effect

terms. It serves as a benchmark for the performance our method can achieve.

The numbers in parentheses are the corresponding standard errors.

For main and interaction effect selection, our proposed method performs per-

fectly, selecting all important main and interaction effect terms, and excluding

all unimportant terms. RAMP also performs well as a linear method. It selects

all important main and interaction effect terms, but mistakenly includes a few

unimportant interactions. In comparison, VANISH has trouble selecting all im-

portant terms, resulting in smaller number of correct models. RAMP has the

smallest ISE because the true model is a linear two-way interaction model. The

ISE of our proposed method is much smaller than that of VANISH.

Example 2. (Nonlinear two-way interaction model with strong heredity). Data

are generated from the model

Y = m1(X1)+m2(X2)+m3(X3)+m4(X4)+m(1,2)(X1, X2)+m(1,3)(X1, X3)+ε,

where m1(X1) = 2.1 exp(X1), m2(X2) = 2.1 exp(X2), m3(X3) = 1.9 cos(X3π),

m4(X4) = 1.9 cos(X4π), m(1,2)(X1, X2) = 1.9 cos((X1−X2)π), andm(1,3)(X1, X3)

= 6.8|X1X3| · I{X<0}(X1X3). The sample size of the training data is 250, and all

other settings are as in the linear case.

The second block of Table 1 summarizes the corresponding simulation re-

sults in the same way. In terms of the main and interaction effect selection,

our proposed method still performs perfectly. RAMP misses some important

terms, especially when the shape of the nonlinear function is far from being lin-

ear, and adds some unimportant terms. VANISH also has trouble selecting some

important main effect and interaction effect terms. As a result, both RAMP and

VANISH have low numbers of correct models. Our proposed method has a signif-

icantly smaller ISE compared to the other two methods. Overall, our proposed

method outperforms RAMP and VANISH in this nonlinear case.

6.2. Models without strong heredity

Although the strong heredity assumption is commonly used, weak heredity

and no heredity constraints are possible in practice. Next, we consider more

general models without strong heredity.

Example 3. Linear two-way interaction model without strong heredity:

Y = 2.5X1 + 2.5X2 + 4X1X2 + 4X1X3 + 4X4X5 + ε,
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where ε ∼ N(0, 1). In this model, there are two important main terms and three

important interaction terms. Three different cases of important interaction terms

are considered to evaluate the performance of the methods: interaction term

(X1, X2), with both corresponding main effects being important; interaction term

(X1, X3), with one of the corresponding main effects being important; interaction

term (X4, X5), with none of the corresponding main effects being important.

Training data sets of size 150 and an independent test set of size 1,000 are used.

The third block of Table 1 shows the simulation results over 100 repetitions.

In terms of main and interaction effect selection, our proposed method still

performs well, selecting important main and interaction effect terms perfectly

(except missing one interaction term for one repetition) and unimportant terms

at very low frequency. In comparison, both RAMP and VANISH suffer a little.

RAMP, on average, selects several unimportant interaction terms, while VANISH

fails to select some important main and interaction effects. Note that both RAMP

and VANISH have either a weak or a strong heredity requirement. The interaction

term (X4, X5) does not satisfy either weak or strong heredity, and thus cannot

be chosen. RAMP tends to add some unimportant terms into the model to make

up for it, resulting in a smaller number of correct models. Our proposed method

has the smallest ISE. Although this is a linear model, our proposed method has

better selection performance and leads to a smaller ISE compared with the linear

method RAMP.

Example 4. Nonlinear two-way interaction model without strong heredity:

Y = m1(X1) +m2(X2) +m(1,2)(X1, X2) +m(1,3)(X1, X3) +m(4,5)(X4, X5) + ε,

(6.1)

where mi(Xi) = 1.9 cos(Xiπ) and m(j,k)(Xj , Xk) = 2.1sin(XjXkπ). The sample

size of the training data is 250, and all other settings are the same as in Example

3. The fourth block of Table 1 summarizes the corresponding simulation results

over 100 repetitions.

The performance comparison is very similar to Example 3. In this case, our

method achieves perfect main effect and interaction effect selection, while RAMP

and VANISH exhibit some errors.

The path consistency (PC) of our new method is always 100 out of 100

repetitions for all four simulation examples, even though the correct model (CM)

is not equal to 100 for Example 3. This could be improved by considering an

alternative tuning method.

During the review process, one reviewer inquired about the computational
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Table 1. Performance comparison for the simulation examples.

Example d
New method

M NM I NI CM PC ISE OISE

1
10 4.00 0.00 2.00 0.00 100 100 0.15(0.01) 0.15(0.01)

20 4.00 0.00 2.00 0.00 100 100 0.15(0.01) 0.15(0.01)

2
10 4.00 0.00 2.00 0.00 100 100 0.70(0.01) 0.70(0.01)

20 4.00 0.00 2.00 0.00 100 100 0.68(0.01) 0.68(0.01)

3
10 2.00 0.05 2.99 0.00 94 100 0.40(0.02) 0.38(0.02)

20 2.00 0.07 3.00 0.00 93 100 0.42(0.02) 0.43(0.02)

4
10 2.00 0.00 3.00 0.00 100 100 0.98(0.03) 0.98(0.03)

20 2.00 0.00 3.00 0.00 100 100 1.06(0.03) 1.06(0.03)

RAMP

M NM I NI CM ISE

1
10 4.00 0.00 2.00 0.04 96 0.04(0.01)

20 4.00 0.02 2.00 0.04 94 0.04(0.01)

2
10 2.62 0.79 1.23 3.08 0 3.89(0.16)

20 2.36 0.56 0.94 1.99 0 4.78(0.17)

3
10 2.00 0.50 2.49 2.74 17 1.12(0.11)

20 2.00 0.44 2.25 2.02 7 1.86(0.11)

4
10 0.34 0.80 1.26 3.58 0 6.00(0.23)

20 0.11 0.39 0.53 1.41 0 6.95(0.14)

VANISH

M NM I NI CM ISE

1
10 3.50 0.00 1.89 0.04 44 4.96(0.14)

20 3.64 0.00 1.93 0.07 56 4.91(0.16)

2
10 3.89 0.00 1.38 0.91 8 3.15(0.08)

20 3.89 0.00 1.24 0.80 2 3.02(0.08)

3
10 2.00 0.05 1.02 0.02 0 8.79(0.16)

20 1.98 0.02 0.96 0.03 0 8.52(0.28)

4
10 2.00 1.20 2.04 0.92 0 3.17(0.06)

20 2.00 1.15 2.02 0.65 0 2.89(0.05)

speed. On a MacBook equipped with an Intel Core i5 @2.3GHz processor, it

takes, on average, 1.37 and 23.81 minutes to solve the optimization problem (3.1)

for p = 10 and p = 20, respectively, in Example 3; it takes 3.60 and 59.81 minutes

to solve the optimization problem (3.1) for p = 10 and p = 20, respectively, in

Example 4.
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Table 2. Performance comparison for the real-data example.

New method RAMP VANISH
Main term size 3.1 (0.2) 2.9 (0.2) 1.0 (0.0)

Interaction term size 0.3 (0.1) 5.1 (0.6) 0.0 (0.0)
MSPE 76.03(2.58) 75.73(2.04) 170.85(3.71)

7. A real-data example

We apply our proposed method to analyze, the real estate valuation data

reported in Yeh and Hsu (2018). The data set includes information on 414 prop-

erties for the period June 2012 to May 2013 from the Xindian districts in Taipei

City. The response is the residential housing price per unit area, and there are

six predictors: X1=transaction date, X2=house age, X3=distance to the near-

est MRT (Taipei mass rapid transit) station, X4=number of convenience stores,

X5=latitude, and X6=longitude. There are no missing values in this data set.

We randomly split the data into a training set of size n = 210 and a test

set of size ñ = 204. We repeat this process with 30 random repetitions. We

still compare our method with RAMP and VANISH in terms of the number of

selected main and interaction effect terms. However, the ISE is replaced by the

mean squared prediction error (MSPE) over the corresponding test set, namely

MSPE = (1/ñ)
∑ñ

i=1(Ỹi −
ˆ̃Yi)

2, where Ỹi and ˆ̃Yi are the observed response and

the predicted response, respectively, for the ith observation in the test set for

each repetition. RAMP uses its weak heredity version and the EBIC for tuning,

VANISH uses 10-fold cross-validation for tuning, and our proposed method uses

the BIC for tuning.

Table 2 summarizes the results for the three methods over 30 repetitions.

VANISH only selects the third predictor in all repetitions, and the MSPE is larger

than those of the other two methods. Our method is comparable with RAMP in

terms of the MSPE. However, the model selected by our proposed method is more

parsimonious and easier to interpret, because our method, in general, selects a

model with fewer terms, especially for the interaction. Our method exhibits a

good balance between model complexity and prediction performance.

For a random repetition, our proposed model selects the main effect of X3

and the interaction effect of X2 and X3. The estimated main effect component

function m̂3(X3) and interaction effect component function m̂2,3(X2, X3) are plot-

ted in Figures 2 and 3, respectively. The results show that X2 (house age) and

X3 (distance to the nearest MRT station) show an interaction effect that cannot

be explained by the additive model without the interaction.
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Figure 2. Plot of fitted main effect component function of X3.

Figure 3. Plot of fitted interaction effect component function of X2 and X3.

8. Discussion

During the review process, one referee pointed out that it would be desirable

to provide a version that achieves strong or weak heredity. In fact, this is possible.

To achieve weak heredity, we can minimize (3.1) subject to the constraints

λj ≥ 0, j = 1, 2, . . . , d

d∑
j=1

λj = τ

λ̃jk = λj + λk, 1 ≤ j < k ≤ d.
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For strong heredity, we can minimize (3.1) subject to the constraints

δj ≥ 0, j = 1, 2, . . . , d,

λj =
∑
k 6=j

λ̃jk + δj , j = 1, 2, . . . , d,

λ̃jk ≥ 0, 1 ≤ j < k ≤ d,
d∑
j=1

δj +

d−1∑
j=1

d∑
k=j+1

λ̃jk = τ.

We admit that our algorithm is not fast. Our algorithm involves two layers

of iterations: (modified) coordinate descent and backfitting algorithms, and the

local constant smoothing. However, it is still manageable for a moderate dimen-

sionality. For high-dimensional cases, we are working on an interaction screening

procedure by extending the sure independence screening for nonparametric re-

gression (Feng, Wu and Stefanski (2018)). Lastly, the selection consistency in

Section 5 was established for the case with a fixed dimensionality. It would be of

great interest to extend this to the case with a diverging dimensionality.

Supplementary Material

Supplementary material contains implementation codes, technical conditions,

and proofs of theoretical results.
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