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Abstract: Set classification aims to classify a set of observations as a whole, as

opposed to classifying individual observations separately. To formally understand

the unfamiliar concept of binary set classification, we first investigate the optimal

decision rule under the normal distribution, which uses the empirical covariance of

the set to be classified. We show that the number of observations in the set plays a

critical role in bounding the Bayes risk. Under this framework, we further propose

new methods of set classification. For the case where only a few parameters of

the model drive the difference between two classes, we propose a computationally

efficient approach to parameter estimation using linear programming, leading to

the Covariance-engaged LInear Programming Set (CLIPS) classifier. Its theoretical

properties are investigated for both the independent case and various (short-range

and long-range dependent) time series structures among the observations within

each set. The convergence rates of the estimation errors and the risk of the CLIPS

classifier are established to show that having multiple observations in a set leads to

faster convergence rates than in the standard classification situation in which there

is only one observation in the set. The applicable domains in which the CLIPS

classifier outperforms its competitors are highlighted in a comprehensive simulation

study. Finally, we illustrate the usefulness of the proposed methods in classifying

real image data in histopathology.

Key words and phrases: Bayes risk, `1-minimization, quadratic discriminant analy-

sis, set classification, sparsity.

1. Introduction

Classification is a useful tool in statistical learning, with applications in many

important fields. A classification method aims to train a classification rule based

on training data to classify future observations. Some popular classification meth-

ods include linear discriminant analyses, quadratic discriminant analyses, logistic

regressions, support vector machines, neural nets, and classification trees. Tradi-

tionally, the task at hand is to classify an observation into a class label.

Advances in technology have enabled the production of large amounts of data

in areas such as the healthcare and manufacturing industries. Oftentimes, mul-
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tiple samples collected from the same object are available. For example, it has

become cheaper to obtain multiple tissue samples from a single patient in cancer

prognosis (Miedema et al. (2012)). Specifically, Miedema et al. (2012) collected

348 independent cells, each containing observations of varying numbers (tens to

hundreds) of nuclei. Here, each cell, rather than each nucleus, is labeled as either

normal or cancerous. Each observation of nuclei contains 51 measurements of

shape and texture features. A statistical task herein is to classify the whole set of

observations from a single set (or all nuclei in a single cell) as normal or cancerous.

This problem was referred to as set classification by Ning and Karypis (2009) and

studied by Wang et al. (2012) and Jung and Qiao (2014). The problem appears

in the image-based pathology literature (Samsudin and Bradley (2010); Wang,

Ozolek and Rohde (2010); Cheplygina, Tax and Loog (2015); Shifat-E-Rabbi et al.

(2020)) and in face recognition, based on pictures obtained from multiple cam-

eras, sometimes called image set classification (Arandjelovic and Cipolla (2006);

Wang et al. (2012)). The approaches to set classification in the literature are

combinations of feature engineering, off-the-shelf classifiers (mostly the support

vector machine), and consensus learning (either majority or weighted voting).

To the best of the authors’ knowledge, there is no theoretical justification for

set classification. Set classification is not identical to multiple-instance learning

(MIL) (Maron and Lozano-Pérez (1998); Chen, Bi and Wang (2006); Ali and

Shah (2010); Carbonneau et al. (2018)), as shown by Kuncheva (2010). A key

difference is that in set classification, a label is given to sets, whereas observations

in a set have different labels in the MIL setting.

While conventional classification methods predict a class label for each ob-

servation, care is needed in generalizing the methods for set classification. In

principle, more observations should ease the task at hand. Moreover, higher-

order statistics, such as variances and covariances, can now be exploited to help

classification. Our approach to set classification is to use the extra information

available to us only when there are multiple observations. To elucidate this idea,

we illustrate samples from three classes in Fig. 1. All three classes have the

same mean, and Classes 1 and 2 have the same marginal variances. Classifying

a single observation near the mean to any of these distributions seems difficult.

On the other hand, classifying several independent observations from the same

class should be much easier. In particular, a set-classification method needs to

incorporate the difference between the covariances in order to differentiate these

classes.

In this work, we study a binary set-classification framework, where a set

of observations X = {X1, . . . , XM} is classified as either Y = 1 or Y = 2. In

particular, we propose set classifiers that extend a quadratic discriminant analysis

to the set-classification setting, and that are designed to work well in the set

classification of high-dimensional data with distributions similar to those in Fig. 1.
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Figure 1. A two-dimensional toy example showing classes with no difference in the mean
or marginal variance.

To provide a fundamental understanding of the set-classification problem,

we establish a Bayesian optimal decision rule under normality and homogeneity

(independent and identically distributed; i.i.d.) assumptions. This Bayes rule

uses the covariance structure of the testing set of future observations. We show

in Section 2 that it becomes much easier to accurately classify a set when the

set size, m0, increases. In particular, we demonstrate that the Bayes risk can be

reduced exponentially in the set size m0. To the best of our knowledge, this is the

first formal theoretical framework for set-classification problems in the literature.

Based on the Bayesian optimal decision rule, we propose new methods of

set classification in Section 3. For the situation where the dimension p of the

feature vectors is much smaller than the total number of training samples, we

demonstrate that a simple plug-in classifier leads to satisfactory risk bounds sim-

ilar to the Bayes risk. Again, a large set size plays a key role in significantly

reducing the risk. In high-dimensional situations, where the number of param-

eters to be estimated (≈ p2) is large, we assume that only a few parameters

drive the difference between the two classes. With this sparsity assumption, we

propose estimating the parameters in the classifier using linear programming,

referring to the resulting classifiers as Covariance-engaged LInear Programming

Set (CLIPS) classifiers. Specifically, the quadratic and linear parameters in the

Bayes rule can be estimated efficiently under the sparse structure, owing to the

extra observations in the training set resulting from having sets of observations.

Our estimation approaches are closely related to and built upon the successful

estimation strategies of Cai, Liu and Luo (2011) and Cai and Liu (2011). To

estimate the constant parameter, we perform a logistic regression with only one

unknown, given the estimates of the quadratic and linear parameters. This allows

us to implement the CLIPS classifier with high computation efficiency.
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In Section 4, we provide a thorough study of the theoretical properties of

CLIPS classifiers and establish an oracle inequality in terms of the excess risk. In

particular, the CLIPS estimates are shown to be consistent, and strong signals are

always selected with high probability in high dimensions. Moreover, in contrast

to naively using pooled observations, the excess risk can be reduced by having

more observations in a set, a new phenomenon related to set classification.

In the conventional classification problem where m0 = 1, a special case of the

proposed CLIPS classifier becomes a new sparse quadratic discriminant analysis

(QDA) method (cf., Fan et al. (2015); Fan, Jin and Yao (2013); Li and Shao

(2015); Jiang, Wang and Leng (2018); Qin (2018); Zou (2019); Gaynanova and

Wang (2019); Cai and Zhang (2019); Pan and Mai (2020)). As a byproduct of our

theoretical study, we show that the new QDA method enjoys better theoretical

properties than those of some state-of-the-art sparse QDA methods, such as that

of Fan et al. (2015).

The advantages of our set classifiers are demonstrated in comprehensive sim-

ulation studies. Moreover, in Section 5, we provide an application to histopathol-

ogy where we classify sets of nucleus images as normal or cancerous tissue. The

proofs of the main results and the technical lemmas can be found in the Sup-

plementary Material, as well as a study on the case where the observations in a

set demonstrate certain spatial and temporal dependent structures. There, we

use various (both short- and long-range) dependent time series structures within

each set by considering a very general vector linear process model.

2. Set Classification

We consider a binary set-classification problem. The training sample {(Xi,
Yi)}Ni=1 contains N sets of observations. Each set, Xi = {Xi1, Xi2, . . . , XiMi

} ⊂
Rp, corresponds to one object, and is assumed to be from one of the two classes.

The corresponding class label is denoted by Yi ∈ {1, 2}. The number of obser-

vations within the ith set is denoted by Mi and can vary between sets. Given

a new set of observations (X †,Y†), the goal of set classification is to predict Y†
accurately based on X † using a classification rule φ(·) ∈ {1, 2} trained on the

training sample.

To formally introduce the set-classification problem and study its fundamen-

tal properties, we start with a setting in which the sets in each class are homoge-

neous in the sense that all the observations in a class, regardless of the set mem-

bership, follow the same distribution independently. Specifically, we assume both

the N sets {(Xi,Yi)}Ni=1 and the new set (X †,Y†) are generated independently in

the same way as (X ,Y). To describe the generating process of (X ,Y), we assume

that the random variables M and Y are independent, denote the marginal class

probabilities by π1 = pr(Y = 1) and π2 = pr(Y = 2), and denote the marginal
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distribution of the set size M by pM . In other words, the class membership Y
cannot be predicted based only on the set size M . Conditioned on M = m and

Y = y, the observations X1, X2, . . . , XM in the set X are independent, and each

is distributed as fy.

2.1. Covariance-engaged set classifiers

Suppose there are M † = m observations in the set X † = {X†1, . . . , X
†
m}

that is to be classified (called the testing set), and its true class label is Y†.
The Bayes optimal decision rule classifies the set X † = {x1, . . . , xm} as Class

1 if the conditional class probability of Class 1 is greater than that of Class

2; that is, pr(Y† = 1 | M † = m, X†j = xj , j = 1, . . . ,m) > 1/2. This is

equivalent to π1pM (m)
∏m
j=1 f1(xj) > π2pM (m)

∏m
j=1 f2(xj), owing to the Bayes

theorem and the independence assumption among Y† and M †. Let us now assume

that the conditional distributions are both normal; that is, f1 ∼ N(µ1,Σ1) and

f2 ∼ N(µ2,Σ2). Then, the Bayes optimal decision rule depends on the quantity

g(x1, . . . , xm) =
1

m
log

{
π1pM (m)

∏m
j=1 f1(xj)

π2pM (m)
∏m
j=1 f2(xj)

}

=
1

m
log

(
π1

π2

)
− 1

2
log

(
|Σ1|
|Σ2|

)
− 1

2
µT1 Σ−1

1 µ1 +
1

2
µT2 Σ−1

2 µ2

+(Σ−1
1 µ1 − Σ−1

2 µ2)T x̄+
1

2
x̄T (Σ−1

2 − Σ−1
1 )x̄

+
1

2
tr{(Σ−1

2 − Σ−1
1 )S}. (2.1)

Here, |Σk| denotes the determinant of the matrix Σk, for k = 1, 2, and x̄ =∑m
j=1 xj/m and S =

∑m
j=1(xj − x̄)(xj − x̄)T /m are the sample mean and sam-

ple covariance, respectively, of the testing set. Note that the realization X † =

{x1, x2, . . . , xm} implies both the number of observations m and the i.i.d. obser-

vations xj , for j = 1, . . . ,m. The Bayes rule can be expressed as

φB(X †) = 2− 1{g(x1, . . . , xm) > 0}, where (2.2)

g(x1, . . . , xm) =
1

m
log

(
π1

π2

)
+ β0 + βT x̄+

x̄T∇x̄
2

+
tr(∇S)

2
,

in which the constant coefficient β0 = {− log(|Σ1|/|Σ2|)−µT1 Σ−1
1 µ1+µT2 Σ−1

2 µ2}/2
∈ R, the linear coefficient vector β = Σ−1

1 µ1 − Σ−1
2 µ2 ∈ Rp, and the quadratic

coefficient matrix ∇ = Σ−1
2 − Σ−1

1 ∈ Rp×p. The Bayes rule φB under the normal

assumption in (2.2) uses the summary statistics m, x̄, and S of X †.
We refer to (2.2) and any estimated version of it as a covariance-engaged

set classifier. In Section 3, several estimation approaches for β0, β, and ∇ are
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proposed. In this section, we discuss a rationale for considering (2.2).

The covariance-engaged set classifier (2.2) resembles the conventional QDA

classifier. As a natural alternative to (2.2), one may consider the sample mean x̄

as a representative of the testing set, and apply the QDA to x̄ directly to make a

prediction. In other words, we classify this single observation x̄ to one of the two

normal distributions, that is, f ′1 ∼ N(µ1,Σ1/m) and f ′2 ∼ N(µ2,Σ2/m). This

simple idea leads to

φB,x̄(X †) = 2− 1{gQDA(x̄) > 0}, where (2.3)

gQDA(x̄) =
1

m
log

(
π1

π2

)
+ β′0 + βT x̄+

x̄T∇x̄
2

,

in which β′0 = {−(1/m) log(|Σ1|/|Σ2|) − µT1 Σ−1
1 µ1 + µT2 Σ−1

2 µ2}/2. One major

difference between (2.2) and (2.3) is that the term tr(∇S)/2 is absent from (2.3).

Indeed, the advantage of (2.2) over (2.3) comes from the extra information in the

sample covariance S of X †. In the regular classification setting, (2.2) coincides

with (2.3), because tr(∇S)/2 vanishes when X † is a singleton.

Given multiple observations in the testing set, another natural approach is a

majority vote applied to the QDA decisions of individual observations:

φMV (X †) = 2− 1

 1

m

m∑
j=1

sign[gQDA(xj)] > 0

, (2.4)

where sign(t) = 1, 0,−1 for t > 0, t = 0, and t < 0 respectively, and gQDA(xj)

is given in (2.3) with x̄ replaced by xj (and m by one). In contrast, because

g(X †) = (1/m)
∑m

j=1 gQDA(xj), our classifier (2.2) predicts the class label using

a weighted vote of individual QDA decisions. In this sense, the majority voting

scheme (2.4) can be viewed as a discretized version of (2.2). In Section 5, we

demonstrate that our set classifier (2.2) performs significantly better than (2.4).

Remark 1. We have assumed that M and Y are independent in this setting.

In fact, this assumption is not essential, and can be relaxed. In a more general

setting, there can be two different distributions of M , pM1(m) and pM2(m),

conditional on Y = 1 and Y = 2, respectively. Our analysis throughout remains

the same, except that these distributions replace two identical factors pM (m) in

the first equality of (2.1). If pM1(m) and pM2(m) are significantly different, then

the classification is easier, because one can make a decision based on the observed

value of m. Here, we consider only the more difficult setting where Y and M are

independent.
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2.2. Bayes risk

In this section, we describe an advantage of having a set of observations

for prediction, rather than o having a single observation. For this, we suppose

for now that the parameters µk and Σk, for k = 1, 2, are known and make the

following assumptions. Denote λmax(A) and λmin(A) as the greatest and smallest

eigenvalues, respectively, of a symmetric matrix A.

Condition 1. The spectrum of Σk is bounded below and above: there exists some

universal constant Ce > 0 such that C−1
e ≤ λmin(Σk) ≤ λmax(Σk) ≤ Ce, for

k = 1, 2.

Condition 2. The support of pM is bounded between cmm0 and Cmm0, where

cm and Cm are universal constants and m0 = E(M). In other words, pM (a) = 0

for any integer a < cmm0 or > Cmm0. The set size m0 can be large or growing

when a sequence of models is considered.

Condition 3. The prior class probability is bounded away from zero and one:

there exists a universal constant 0 < Cπ < 1/2 such that Cπ ≤ π1, π2 ≤ 1− Cπ.

We denote RBk = pr(φB(X †) 6= k | Y† = k) as the risk of the Bayes classifier

(2.2), given Y† = k. Let δ = µ2 − µ1. For a matrix B ∈ Rp×p, we denote

‖B‖F = (
∑p

i=1

∑p
j=1B

2
ij)

1/2 as its Frobenius norm, where Bij is its ijth element.

For a vector a ∈ Rp, we denote ‖a‖ = (
∑p

i=1 a
2
i )

1/2 as its `2 norm. The quantity

Dp = (‖∇‖2F + ‖δ‖2)1/2 plays an important role in deriving a convergence rate of

the Bayes risk RB = π1RB1 + π2RB2. Although the Bayes risk does not have a

closed form, we show that under mild assumptions, it converges to zero at a rate

on the exponent.

Theorem 1. Suppose that Conditions 1–3 hold. If D2
pm0 is sufficiently large,

then RB ≤ 4 exp
(
−c′m0D

2
p

)
, for some small constant c′ > 0 depending on Ce,

cm, and Cπ only. In particular, as D2
pm0 →∞, we have RB → 0.

The significance of having a set of observations is illustrated by this funda-

mental theorem. When pM (1) = 1, which implies M † ≡ 1 and m0 = 1, Theorem

1 provides a Bayes risk bound RB ≤ 4 exp
(
−c′D2

p

)
for the theoretical QDA clas-

sifier in the regular classification setting. To guarantee a small Bayes risk for the

QDA, it is clear that D2
p must be sufficiently large. In comparison, for the set

classification to be successful, we may allow D2
p to be very close to zero, as long

as m0D
2
p is sufficiently large. The Bayes risk of φB can be reduced exponentially

in m0 because of the extra information from the set.

We have discussed an alternative classifier using the sample mean x̄ as a

representative of the testing set, leading to φB,x̄ (2.3). The following proposition

quantifies its risk, which has a slower rate than that of the Bayes classifier RB.
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Proposition 1. Suppose that Conditions 1–3 hold. Denote the risk of classifier

φB,x̄ in (2.3) as Rx̄. Assume ‖∇‖2F + m0‖δ‖2 is sufficiently large. Then, Rx̄ ≤
4 exp

(
−c′(‖∇‖2F +m0‖δ‖2)

)
, for some small constant c′ > 0 depending on Ce,

cm, and Cπ only. In addition, the rate on the exponent cannot be improved

in general, that is, Rx̄ ≥ exp
(
−c′′(‖∇‖2F +m0‖δ‖2)

)
, for some small constant

c′′ > 0.

Remark 2. Compared with the result in Theorem 1, the above proposition

implies that the classifier φB,x̄ needs a stronger assumption, but has a slower rate

of convergence when the mean difference m0‖δ‖2 is dominated by the covariance

difference ‖∇‖2F . After all, this natural x̄-based classification rule relies only on

the first moment of the data set X †, while the sufficient statistics, the first two

moments, are used fully by the covariance-engaged classifier in (2.2).

3. Methodologies

We now consider estimation procedures for φB based on N training sets

{(Xi,Yi)}Ni=1. In Section 3.1, we first consider a moderate-dimensional setting

where p ≤ c0m0N , with a sufficiently small constant c0 > 0. In this case, we

apply a naive plug-in approach using natural estimators of the parameters πk,

µk, and Σk. A direct estimation approach using linear programming, suitable

for high-dimensional data, is introduced in Section 3.2. Hereafter, p = p(N) and

m0 = m0(N) are considered as functions of N as N grows.

3.1. Naive estimation approaches

The prior class probabilities π1 and π2 can be estimated consistently using

the class proportions in the training data, π̂1 = N1/N and π̂2 = N2/N , where

Nk =
∑N

i=1 1{Yi = k}. Let nk =
∑N

i=1Mi1{Yi = k} denote the total sample size

for Class k = 1, 2. The set membership is ignored at the training stage, owing to

the homogeneity assumption. Note that nk, n1 + n2, and Nk are random, while

N is deterministic. One can obtain consistent estimators of µk and Σk based on

the training data and plug them into (2.2). It is natural to use the maximum

likelihood estimators, given nk,

µ̂k =
∑

(i,j):Yi=k

Xij

nk
and Σ̂k =

∑
(i,j):Yi=k

(Xij − µ̂k)(Xij − µ̂k)T

nk
. (3.1)

For the classification of X † = {X†1, . . . , X
†
M†}, with M † = m and X†i = xi,

the set classifier (2.2) is estimated as

φ̂(X †) = 2− 1

{
1

m
log

(
π̂1

π̂2

)
+ β̂0 + β̂T x̄+

x̄T ∇̂x̄
2

+
tr(∇̂S)

2
> 0

}
, (3.2)
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where β̂0 = −(1/2){log(|Σ̂1|/|Σ̂2|)− µ̂T1 Σ̂−1
1 µ̂1 + µ̂T2 Σ̂−1

2 µ̂2}, β̂ = Σ̂−1
1 µ̂1− Σ̂−1

2 µ̂2,

and ∇̂ = Σ̂−1
2 − Σ̂−1

1 . In (3.2), we have assumed p < nk, so that Σ̂k is invertible.

The generalization error of the set classifier (3.2) is R̂ = π1R̂1+ π2R̂2, where

R̂k = pr(φ̂(X †) 6= k | Y† = k). The classifier itself depends on the training data

{(Xi,Yi)}Ni=1, and hence is random. In the equation above, pr is understood as the

conditional probability given the training data. Theorem 2 reveals a theoretical

property of R̂ in a moderate-dimensional setting that allows p,N , and m0 to grow

jointly. This includes the traditional setting in which p is fixed.

Theorem 2. Suppose that Conditions 1–3 hold. For any fixed L > 0, if D2
pm0 ≥

C0 for some sufficiently large C0 > 0 and p ≤ c0Nm0, p2/(Nm0D
2
p) ≤ c0, and

log p ≤ c0N for some sufficiently small constant c0 > 0, then with probability at

least 1− O(p−L), we have R̂ ≤ 4 exp
(
−c′m0D

2
p

)
for some small constant c′ > 0

depending on Cπ, cm, L, and Ce.

In Theorem 2, large values of m0 not only relax the assumption on Dp, but

also reduce the Bayes risk exponentially in m0 with high probability. A similar

result for the QDA, where Mi = M † ≡ 1 and m0 = 1, was obtained in Li and

Shao (2015) under a stronger assumption p2/(ND2
p)→ 0.

For high-dimensional data where p = p(N) � Nm0, and hence p > nk
with probability one for k = 1, 2, by Condition 2, it is problematic to plug

in the estimators (3.1) because Σ̂k is rank deficient with probability one. A

simple remedy is to use a diagonalized or enriched version of Σ̂k, defined by

Σ̂k(d) = diag{(σ̂k,ii)i=1,...,p} or Σ̂k(e) = Σ̂k + δIp, where δ > 0 and Ip is a p × p
identity matrix. Both Σ̂k(d) and Σ̂k(e) are invertible. However, to the best of our

knowledge, no theoretical guarantee has been obtained without some structural

assumptions.

3.2. A direct approach using linear programming

To have reasonable classification performance in high-dimensional data anal-

ysis, one usually has to take advantage of certain extra information of the data

or model. There are often cases where only a few elements in ∇ = Σ−1
2 − Σ−1

1

and β = Σ−1
1 µ1 − Σ−1

2 µ2 truly drive the difference between the two classes. The

naive plug-in method proposed in Section 3.1 ignores this potential structure of

the data. We assume that both ∇ and β are known to be sparse, such that only

a few elements of those are nonzero. In light of this, the Bayes decision rule (2.2)

implies that the dimension of the problem can be significantly reduced, which

makes consistency possible, even in a high-dimensional setting.

We propose directly estimating the quadratic term ∇, the linear term β, and

the constant β0 coefficients, taking advantage of the assumed sparsity. Because

the estimates are calculated efficiently using linear programming, the resulting

classifiers are called CLIPS classifiers.
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We first deal with the estimation of the quadratic term∇ = Σ−1
2 −Σ−1

1 , which

is the difference between the two precision matrices. We use techniques developed

in the literature on precision matrix estimation (cf., Meinshausen and Bühlmann

(2006); Bickel and Levina (2008); Friedman, Hastie and Tibshirani (2008); Yuan

(2010); Cai, Liu and Luo (2011); Ren et al. (2015)). These methods estimate

a single precision matrix with a common assumption that the underlying true

precision matrix is sparse, in some sense. For the estimation of the difference, we

propose using a two-step thresholded estimator.

As the first step, we adopt the CLIME estimator (Cai, Liu and Luo (2011))

to obtain the initial estimators Ω̃1 and Ω̃2 of the precision matrices Σ−1
1 and

Σ−1
2 , respectively. Let ‖B‖1 =

∑
i,j |Bij | and ‖B‖∞ = maxi,j |Bij | be the vector

`1 norm and vector supnorm, respectively, of a p × p matrix B. The CLIME

estimators are defined as

Ω̃k = argmin
Ω∈Rp×p

‖Ω‖1 subject to ‖Σ̂kΩ− I‖∞ < λ1,N , k = 1, 2, (3.3)

for some λ1,N > 0.

Having obtained Ω̃1 and Ω̃2, in the second step, we take a thresholding pro-

cedure on their difference, followed by a symmetrization to obtain our final esti-

mator ∇̃ = (∇̃ij), where

∇̃ij = min{∇̆ij , ∇̆ji}, ∇̆ij = (Ω̃2,ij − Ω̃1,ij)1
{∣∣∣Ω̃2,ij − Ω̃1,ij

∣∣∣ > λ′1,N

}
, (3.4)

for some thresholding level λ′1,N > 0.

Although this thresholded CLIME difference estimator is obtained by first

individually estimating Σ−1
k , note that the estimation accuracy depends only on

the sparsity of their difference ∇, rather than on the sparsity of either Σ−1
1 or

Σ−1
2 , under a relatively mild sparsity condition in terms of their matrix `1 norms.

We show in Theorem 3 in Section 4 that if the true precision matrix difference ∇
is negligible, ∇̃ = 0 with high probability. When ∇̃ = 0, our method described in

(3.8) becomes a linear classifier adaptively. The computation of ∇̃ (3.4) is fast,

because the first step (CLIME) can be recast as a linear program, and the second

step is a simple thresholding procedure.

Remark 3. As an alternative, one can also consider a direct estimation of ∇
that does not rely on individual estimates of Σ−1

k . For example, by allowing

some deviations from the identity Σ1∇Σ2 − Σ1 + Σ2 = 0, Zhao, Cai and Li

(2014) proposed minimizing the vector `1 norm of ∇. Specifically, they pro-

posed ∇̃ZCL ∈ argminB ‖B‖1, subject to ‖Σ̂1BΣ̂2 − Σ̂1 + Σ̂2‖∞ ≤ λ′′1,n, where

λ′′1,n is some thresholding level. This method, however, is computationally ex-

pensive (because it has O(p2) number of linear constraints when cast to linear

programming) and can only handle a relatively small size of p. Cai and Zhang
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(2019) further considered a symmetric version of the above direct estimation, and

solved it using a primal-dual interior point method. See also Jiang, Wang and

Leng (2018). We chose to use (3.4), mainly because of the fast computation.

Next we estimate the linear coefficient vector β = β1−β2, where βk = Σ−1
k µk,

for k = 1, 2. In the literature on sparse QDA and sparse LDA, typical sparsity

assumptions are placed on µ1 − µ2 and Σ1 −Σ2 (see Li and Shao (2015)), or are

placed on both β1 and β2 (see, e.g., Cai and Liu (2011); Fan et al. (2015)). In

the latter case, β is also sparse because it is the difference between two sparse

vectors. For the estimation of β, we propose a new method that directly imposes

sparsity on β, without specifying the sparsity for µk, Σk, or βk, except for some

relatively mild conditions (see Theorem 4 for details.)

The true parameter βk satisfies Σkβk − µk = 0. However, owing to the

rank-deficiency of Σ̂k, there are either none or infinitely many θk that satisfy an

empirical equation Σ̂kθk − µ̂k = 0. Here, µ̂k and Σ̂k are defined in (3.1). We

relax this constraint and seek a possibly nonsparse pair (θ1, θ2) with the smallest

`1 norm difference. We estimate the coefficients β by β̃ = β̃1 − β̃2, where

(β̃1, β̃2) = argmin
(θ1,θ2):‖θk‖1≤L1

‖θ1 − θ2‖1 subject to ‖Σ̂kθk − µ̂k‖∞ < λ2,N , k = 1, 2,

(3.5)

where L1 is some sufficiently large constant, introduced only to ease the theoret-

ical evaluations. In practice, the constraint ‖θk‖1 ≤ L1 can be removed without

affecting the solution. Our procedure (3.5) can be recast as a linear program-

ming problem (see, e.g., Candes and Tao (2007); Cai and Liu (2011)) and is

computationally efficient.

The direct estimation approach for β = Σ−1
1 µ1 − Σ−1

2 µ2 above is a natural

extension of Cai and Liu (2011), in which a direct estimation of Σ−1(µ1−µ2) for

the LDA (Σ = Σ1 = Σ2) was considered. Note that by centering the quadratic

Bayes discriminant function gQDA(·), alternative sparse linear coefficient vectors

have been considered in the literature on QDA. For example, Jiang, Wang and

Leng (2018) proposed estimating (Σ−1
1 +Σ−1

2 )(µ1−µ2), while Li and Shao (2015),

Fan et al. (2015), and Cai and Zhang (2019) proposed estimating Σ−1
2 (µ1 − µ2),

both of which are location-invariant. Although β considered in our approach is

not location-invariant, we emphasize that the sparsity conditions for the three dif-

ferent linear coefficient vectors are not comparable, because their interpretations

differ. Other direct estimation approaches of the linear coefficient vector have also

been considered in related discriminant analyses, see, for example, Clemmensen

et al. (2011), Witten and Tibshirani (2011) and ,Mai, Zou and Yuan (2012); Mai,

Yang and Zou (2019).

Finally, we consider the estimation of the constant coefficient β0. The con-

ditional class probability η(x1, . . . , xm) = pr(Y = 1 | M = m, Xi = xi, i =
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1, . . . ,m) that a set belongs to Class 1 given X = {x1, . . . , xm} can be evaluated

by the following logit function:

log

{
η(x1, . . . , xm)

1− η(x1, . . . , xm)

}
= log

π1

π2
+ log

{∏m
i=1 f1(xi)∏m
i=1 f2(xi)

}
= log

(
π1

π2

)
+m

(
β0 + x̄Tβ +

1

2
x̄T∇x̄+

1

2
tr(∇S)

)
,

where x̄ and S are the sample mean and the covariance of the set {x1, . . . , xm},
respectively. Having obtained our estimators ∇̃ and β̃ from (3.4) and (3.5),

respectively, and estimated π̂1 and π̂2 by N1/N and N2/N , respectively, from the

training data, only the scalar β0 is undecided. We may estimate β̃0 by conducting

a simple logistic regression with a dummy independent variable Mi, and offset

log(π̂1/π̂2) +Mi

(
X̄T
i β̃ + X̄T

i ∇̃X̄i/2 + tr(∇̃Si)/2
)

for the ith set of observations

in the training data, where Mi, X̄i, and Si are the sample size, sample mean, and

sample covariance, respectively, of the ith set. In particular, we solve

β̃0 = argmin
θ0∈R

`(θ0 | {(Xi,Yi)}Ni=1, β̃, ∇̃),where the negative log-likelihood is

(3.6)

`(θ0 | {(Xi,Yi)}Ni=1, β̃, ∇̃) (3.7)

=
1

N

N∑
i=1

(
(Yi − 2)Mi

(
θ0 +

log(π̂1/π̂2)

Mi
+ X̄T

i β̃ +
X̄T
i ∇̃X̄i

2
+

tr(∇̃Si)
2

)

+ log

[
1 + exp

{
Mi

(
θ0 +

log(π̂1/π̂2)

Mi
+ X̄T

i β̃ +
X̄T
i ∇̃X̄i

2
+

tr(∇̃Si)
2

)}])
Because there is only one independent variable in the logistic regression above,

the optimization can be easily and efficiently solved. Alternative ways of esti-

mating the constant coefficient in the literature on QDA include a simple plug-in

estimator (Cai and Zhang (2019)) and using the idea of cross-validation (Jiang,

Wang and Leng (2018)).

For the purpose of evaluating theoretical properties, we apply the sample

splitting technique (Wasserman and Roeder (2009); Meinshausen and Bühlmann

(2010)). Specifically, we randomly choose the first batch of N1/2 and N2/2 sets

from two classes in the training data to obtain the estimators ∇̃ and β̃ using (3.4)

and (3.5), respectively. Then, β̃0 is estimated based on the second batch, along

with ∇̃ and β̃, using (3.6). We plug all estimators in (3.4), (3.5), and (3.6) into

the Bayes decision rule (2.2) and obtain the CLIPS classifier,

φ̃(X †) = 2− 1

{
log(π̂1/π̂2)

m
+ β̃0 + β̃T x̄+

x̄T ∇̃x̄
2

+
tr(∇̃S)

2
> 0

}
, (3.8)
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where x̄ and S are the sample mean and the covariance, respectively, of X †, and

M † = m is its size.

4. Theoretical Properties of the CLIPS classifier

In this section, we derive the theoretical properties of the estimators from

(3.4)–(3.6), as well as generalization errors for the CLIPS classifier (3.8). In

particular, we demonstrate the advantages of having sets of independent obser-

vations, in contrast to the classical QDA setting with individual observations

under the homogeneity assumption of Section 2. Parallel results under various

time series structures can be found in the Supplementary Material.

To establish the statistical properties of the thresholded CLIME difference

estimator ∇̃ defined in (3.4), we assume that the true quadratic parameter ∇ =

Σ−1
2 − Σ−1

1 has no more than sq nonzero entries,

∇ ∈ FM0(sq) =

{
A = (aij) ∈ Rp×p, symmetric :

p∑
i,j=1

1{aij 6= 0} ≤ sq

}
. (4.1)

Denote supp(A) as the support of the matrix A. We summarize the estimation

error and a subset selection result in the following theorem.

Theorem 3. Suppose Conditions 1–3 hold. Moreover, assume ∇ ∈ FM0(sq),

and ‖Σ−1
k ‖`1 ≤ C`1, with some constant C`1 > 0, for k = 1, 2, and log p ≤ c0N ,

with some sufficiently small constant c0 > 0. Then, for any fixed L > 0, with

probability at least 1−O(p−L), we have that

‖∇̃ − ∇‖∞ ≤ 2λ′1,N ,

‖∇̃ − ∇‖F ≤ 2
√
sqλ
′
1,N ,

‖∇̃ − ∇‖1 ≤ 2sqλ
′
1,N ,

as long as λ1,N ≥ CC`1
√

log p/Nm0 and λ′1,N ≥ 8C`1λ1,N in (3.4), where C

depends on L,Ce, Cπ, and cm only. Moreover, we have pr(supp(∇̃) ⊂ supp(∇)) =

1−O(p−L).

Remark 4. The parameter space FM0(sq) can be extended easily to an entry-

wise `q ball or weak `q ball, with 0 < q < 1 (Abramovich et al. (2006)) and the

estimation results in Theorem 3 remain valid with appropriate sparsity parame-

ters. The subset selection result also remains true, and the support of ∇̃ contains

those important signals of ∇ above the noise level
√

(log p)/Nm0. To simplify

the analysis, we consider only `0 balls in this work.

Remark 5. Theorem 3 implies that the error bounds of estimating ∇ under the

vector `1 norm and the Frobenius norm both rely on the sparsity sq imposed on
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∇, rather than those imposed on Σ−1
2 or Σ−1

1 . Therefore, even if both Σ−1
2 and

Σ−1
1 are relatively dense, we still have an accurate estimate of ∇, as long as ∇ is

very sparse and C`1 is not large.

The proof of Theorem 3, provided in the Supplementary Material, partially

follows from Cai, Liu and Luo (2011).

Next, we assume β = β1 − β2 is sparse in the sense that it belongs to the

sl-sparse ball,

β ∈ F0(sl) =

{
α = (aj) ∈ Rp :

p∑
j=1

1{αj 6= 0} ≤ sl

}
. (4.2)

Theorem 4 gives the rates of convergence of the linear coefficient estimator β̃ in

(3.5) under the `1 and `2 norms. Both depend on the sparsity of β only, rather

than that of β1 or β2.

Theorem 4. Suppose Conditions 1–3 hold. Moreover, assume that β ∈ F0(sl),

log p ≤ c0N , ‖βk‖1 ≤ Cβ, and ‖µk‖ ≤ Cµ, with some constants Cβ, Cµ > 0, for

k = 1, 2, and some sufficiently small constant c0 > 0. Then, for any fixed L > 0,

with probability at least 1−O(p−L), we have that

‖β̃ − β‖1 ≤ C ′′C`1slλ2,N ,

‖β̃ − β‖ ≤ C ′′C`1
√
slλ2,N ,

as long as λ2,N ≥ C ′
√

log p/Nm0 in (3.5), where max{‖Σ−1
1 ‖`1 , ‖Σ

−1
2 ‖`1} ≤ C`1

and C ′′, C ′ depend on L,Ce, cm, Cπ, Cβ, and Cµ only.

Remark 6. The parameter space F0(s) can be extended easily into an `q ball or

weak `q ball with 0 < q < 1 as well, and the results in Theorem 4 remain valid

with appropriate sparsity parameters. We focus on F0(s) to ease the analysis.

Lastly, we derive the rate of convergence for estimating the constant coeffi-

cient β0. Because β̃0 is obtained by maximizing the log-likelihood function after

plugging β̃ and ∇̃ into (3.6), the behavior of our estimator β̃0 critically depends on

the accuracy of estimating β and ∇. Theorem 5 provides the result for β̃0 based

on certain general initial estimators β̃ and ∇̃, with the following mild condition.

Condition 4. The expectation of the conditional variance of the class label Y
given X is bounded below; that is, E (Var(Y | X )) > Clog > 0, where Clog is some

universal constant.

Theorem 5. Suppose Conditions 1–4 hold, log p ≤ c0N with some sufficiently

small constant c0 > 0, and ‖µk‖ ≤ Cµ with some constant Cµ > 0, for k = 1, 2.

In addition, we have some initial estimators β̃, ∇̃, π̂1, and π̂2 such that m0(1 +
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(log p)/m0)‖β̃ − β‖+m0(1 + (log p)/m0)‖∇̃ − ∇‖1 + maxk=1,2 |πk − π̂k| ≤ Cp

for some sufficiently small constant Cp > 0 with probability at least 1− O(p−L).

Then, with probability at least 1−O(p−L), we have∣∣∣β̃0 − β0

∣∣∣ ≤ Cδ((1 +

√
log p

m0

)
‖β̃ − β‖

+

(
1 +

log p

m0

)
‖∇̃ − ∇‖1 + max

k=1,2

|πk − π̂k|
m0

+

√
log p

Nm2
0

)
,

where the constant Cδ depends on L,Ce, Cπ, Clog, Cµ, Cm, and cm.

Remark 7. Condition 4 is determined by our data-generating process stated

in Section 2.1. It is satisfied when the classification problem is nontrivial. For

example, it is valid if pr{C ′ < pr(Y = 1 | X ) < 1−C ′} > C with some constants

C and C ′ ∈ (0, 1). As a matter of fact, Condition 4 is weaker than the typical

assumption Clog < pr(Y = 1 | X ) < 1−Clog with probability one for X , which is

often seen in the literature on logistic regression. See, for example, Fan and Lv

(2013) and Fan et al. (2015).

Theorems 3, 4, and 5 demonstrate the estimation accuracy for the quadratic,

linear, and constant coefficients, respectively, in our CLIPS classifier (3.8). We

conclude this section by establishing an oracle inequality for its generalization

error by providing a rate of convergence of the excess risk. To this end, we

define the generalization error of the CLIPS classifier as R̃ = π1R̃1 +π2R̃2, where

R̃k = pr(φ̃(X †) 6= k | Y† = k) is the probability that a new set observation from

Class k is misclassified by the CLIPS classifier φ̃(X †). Again, pr is the conditional

probability given the training data {(Xi,Yi)}Ni=1 which φ̃(X †) depends on.

We first introduce some notation related to the Bayes decision rule in (2.2).

Recall that given M † = m, the Bayes decision rule φB(X †) depends solely on the

sign of the function g(X †) = (1/m) log(π1/π2) +β0 +βT x̄+ x̄T∇x̄/2 + tr(∇S)/2.

We define by Fk,m the conditional cumulative distribution function of the oracle

statistic g(X †), given that M † = m and Y† = k. The upper bound of the first

derivatives of F1,m and F2,m, for all possible m near zero is denoted by dN ,

dN = max
m∈[cmm0,Cmm0], k=1,2

{
sup

t∈[−δ0,δ0]

∣∣F ′k,m(t)
∣∣} ,

where δ0 is any sufficiently small constant. The value of dN is determined by

the generating process, and is usually small whenever the Bayes rule performs

reasonably well. According to Theorems 3, 4, and 5, with probability at least

1−O(p−L), our estimators satisfy that
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ΞN :=

(
1 +

√
log p

m0

)
‖β̃ − β‖+

(
1 +

log p

m0

)
‖∇̃ − ∇‖1

+ max
k=1,2

|π̂k − πk|
m0

+
∣∣∣β̃0 − β0

∣∣∣ = O(κN ),

where κN := ( 1 + (log p) /m0) sq λ
′
1,N + ( 1 +

√
(log p) /m0 )C`1

√
sl λ2,N +√

(log p)/(Nm2
0). The quantity κNdN is the key to obtaining the oracle inequal-

ity. Condition 5 guarantees that the assumptions of Theorem 5 are satisfied with

high probability in our settings.

Condition 5. Suppose κNm0 ≤ c0 and κNdN ≤ c0, with some sufficiently small

constant c0 > 0.

Theorem 6 reveals the oracle property of the CLIPS classifier, and provides

a rate of convergence of the excess risk, that is, the generalization error of the

CLIPS classifier less the Bayes risk RB defined in Section 2.2.

Theorem 6. Suppose that the assumptions of Theorems 3 and 4 hold, and that

Conditions 4–5 also hold. Then, with probability at least 1−O(p−L), we have the

oracle inequality

R̃ ≤ RB + Cg(κNdN + p−L),

where the constant Cg depends on L,Ce, Cπ, Clog, Cβ, Cm, cm, and Cµ only. In

particular, R̃ converges to the Bayes risk RB in probability as N goes to infinity.

Theorem 6 implies that, with high probability, the generalization error of the

CLIPS classifier is close to the Bayes risk with a rate of convergence no slower

than κNdN . In particular, whenever the quantities dN and C`1 are bounded by

some universal constant, the thresholding levels λ′1,N = O(
√

log p/(m0N)) and

λ2,N = O(
√

log p/(m0N)) yield the rate of convergence κNdN in the order of(
1 +

√
log p

m0

)√
log p

(m0N)

√
sl +

(
1 +

log p

m0

)√
log p

(m0N)
sq. (4.3)

The advantage of having large m0 can be understood by investigating (4.3)

as a function of m0. Indeed, the leading term of (4.3) is

log p

m
3/2
0

√
log p

N
sq, if m0 ≤ log p ·min

{
1,
s2
q

sl

}
;

√
log p

m0

√
log p

N

√
sl, if log p ·

s2
q

sl
≤ m0 ≤ log p;√

1

m0

√
log p

N
(
√
sl + sq), if log p ≤ m0.
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To illustrate the decay rate, we assume sl ≥ s2
q . Then, as m0 increases, the error

decreases at the order of m
3/2
0 up to a certain point log p · (s2

q/sl), and then

decreases at the order of m0 up to another point log p. When m0 is large enough

that m0 ≥ log p, the error decreases at the order of
√
m0.

To further emphasize the advantage of having sets of observations, we com-

pare a general case m0 = m∗, where log p ≤ m∗, with the special case that

m0 = 1, that is, the regular QDA situation. Then, the quantity κN with m∗

has a faster decay rate, with a factor of order between
√
m∗ log p and

√
m∗ log p

(depending on the relationship between sl and sq), compared to the m0 = 1 case,

owing to the extra observations within each set.

The above discussion reveals that in a high-dimensional setting, the bene-

fit of the set classification cannot be simply explained by having N∗ = Nm0

independent observations instead of having only N individual observations, as

in the classical QDA setting. Indeed, if we have N∗ individual observations in

the classical QDA setting, then the implied rate of convergence would be ei-

ther log p
√

log p/Nm0sq (if log p ·s2
q ≥ sl) or

√
log p

√
log p/Nm0

√
sl (otherwise),

which is slower than that provided in equation (4.3).

Remark 8. Note that even in the special QDA situation where m0 = 1, owing

to the sharper analysis, our result is still new, and the established rate of conver-

gence (log p)/N1/2√sl + (log p)3/2/N1/2sq in Theorem 6 is at least as good as the

(log p)3/2/N1/2(sq + sl) derived in the oracle inequality of Fan et al. (2015) under

similar assumptions. Whenever sl > sq, our rate is even faster, with a factor of

order
√
sl log p, than that in Fan et al. (2015).

Remark 9. The results in this section, including Theorem 6, demonstrate the

advantages of the set-classification setting in contrast to the classical QDA set-

ting. When multiple observations within each set have short-range dependence,

the rates of convergence for estimating the key parameters and the oracle inequal-

ity resemble the results under the independent assumption. However, the results

change significantly when there is a long-range dependence structure among mul-

tiple observations.

Remark 10. Cai and Zhang (2019) considered a sparse QDA using a constrained

convex optimization approach, establishing a minimax rate of convergence (sl +

sq)(log p · log2N)/N on the excess risk up to a logarithmic factor under similar

sparsity assumptions. In contrast, our result in the special QDA situation has

the rate of convergence discussed in Remark 8, which is slower for most scenarios

under different assumptions. It would be interesting to investigate the optimal

convergence rates for set classification under both short-range (including i.i.d.)

and long-range dependence structures in future studies.
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5. Numerical Studies

In this section, we compare various versions of covariance-engaged set clas-

sifiers with other set classifiers adapted from traditional methods. In addition to

the CLIPS classifier, we use the diagonalized and enriched versions of Σ̂k (labeled

as Plugin(d) and Plugin(e), respectively) introduced at the end of Section 3.1,

and plug them into the Bayes rule (2.2), as done in (3.2). For comparison, we also

supply the estimated β0, β, and ∇ from the CLIPS procedure to a QDA classifier,

which is applied to all the observations in a testing set, followed by a majority

voting scheme (labeled as QDA-MV). Lastly, we calculate the sample mean and

variance of each variable in an observation set to form a new feature vector, as in

Miedema et al. (2012). Then a support vector machine (SVM; Cortes and Vapnik

(1995)) and a distance-weighted discrimination (DWD; Marron, Todd and Ahn

(2007); Wang and Zou (2017)) are applied to the features to make predictions

(labeled SVM and DWD, respectively). We use the R library clime to calculate

the CLIME estimates, the R library e1071 to calculate the SVM classifier, and

the R library sdwd (Wang and Zou (2016)) to calculate the DWD classifier.

5.1. Simulations

Three scenarios are considered for the simulations. In each scenario, we

consider a binary setting with N = 7 sets in a class and M = 10 observations

from the normal distribution in each set.

Scenario 1 We set the precision matrix for Class 1 to Σ−1
1 = (1 +

√
p)Ip. For

Class 2, we set Σ−1
2 = Σ−1

1 + ∇̃, where ∇̃ is a p× p symmetric matrix with

10 elements randomly selected from the upper-triangular part with values

equal to ζ, and all other elements being zeros. For the mean vectors, we set

µ1 = Σ1(u, u, 0, . . . , 0)T and µ2 = (0, . . . , 0)T . Note that this makes the true

value of β = Σ−1
1 µ1 − Σ−1

2 µ2 = (u, u, 0, . . . , 0)T ; that is, only the first two

covariates have linear impacts on the discriminant function if u 6= 0. In this

scenario, the true difference in the precision matrices has some sparse and

large nonzero entries, the magnitudes of which are controlled by ζ. Note

that while the diagonals of the precision matrices are the same, the diagonals

of the covariance matrices are different between the two classes.

Scenario 2 We set the covariance matrices for both classes to be the identity

matrix, except that for Class 1, the leading five-by-five submatrix of Σ1 has

its off-diagonal elements set to ρ. The rest of the setting is the same as that

in Scenario 1. In this scenario, both the difference in the covariance and

the difference in the precision matrix are confined in the leading five-by-five

submatrix, so that the majority of the matrix entries are the same between

the two classes. The level of difference is controlled by ρ: when ρ = 0, the
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two classes have the same covariance matrix.

Scenario 3 We set the precision matrix Σ1 for Class 1 to be a Toeplitz matrix

with the first row (1 − ρ2)−1(ρ0, ρ1, ρ2, . . . , ρp−1). The covariance for Class

2, Σ2, is a diagonal matrix with the same diagonals as those of Σ1. It can

be shown that the precision matrix for Class 1 is a band matrix with degree

one, that is, a matrix with nonzero entries that are confined to the main

diagonal and one more diagonal on both sides. Because the precision matrix

for Class 2 is a diagonal matrix, the difference between the precision matrix

has up to p + 2(p − 1) nonzero entries. The magnitude of the difference is

controlled by the parameter ρ. The rest of the setting is the same as that

in Scenario 1.

We consider different comparisons where we vary the magnitude of the dif-

ference in the precision matrices (ζ or ρ), the magnitude of the difference in the

mean vectors (u), and the dimensionality (p) when the other parameters are fixed.

Comparison 1 (varying ζ or ρ) We vary ζ or ρ, but fix p = 100 and u = 0,

which means that the mean vectors have no discriminant power because the

true value of β is a zero vector. This shows the performance with different

potentials in the covariance structure.

Comparison 2 (varying u) We vary u, while fixing p = 100 and ζ = 0.55 in

Scenario 1 or ρ = 0.5 and 0.3 in Scenarios 2 and 3. This case illustrates the

potentials of the mean difference when there is some useful discriminative

power in the covariance matrices.

Comparison 3 (varying p) We let p = 80, 100, 120, 140, 160, while fixing ζ or

ρ in the same way as in Comparison 2, and fixing u = 0.05, 0.025, and 0.025

in Scenarios 1, 2, and 3, respectively.

Figure 2 shows the performance for Scenario 1. In the left panel, as ζ in-

creases, the difference between the true precision matrices increases. The pro-

posed CLIPS classifier performs the best among all methods under consideration.

It may be surprising that the Plugin(d) method, which does not consider the off-

diagonal elements in the sample covariance, works reasonably well in this setting

in which the major mode of variation is in the off-diagonal of the precision ma-

trices. However, because large values in the off-diagonal of the precision matrix

can lead to large values of some diagonal entries of the covariance matrix, the

good performance of Plugin(d) has some partial justification.

In the middle panel of Figure 2, the mean difference starts to increase. While

every method more or less improves, the DWD method gains the most (it is even

the best performing classifier when the mean difference u is as large as one).
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Figure 2. Set classification for Scenario 1. The three panels correspond to varying ζ,
varying u, and varying p, respectively. The CLIPS classifier performs very well when the
effect of the covariance dominates that of the mean difference.
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Figure 3. Set classification for Scenario 2. The three panels correspond to varying ρ,
varying u, and varying p, respectively. The classifiers that do not engage the covariance
perform poorly when there is no mean difference signal.

This may be because the mean difference on which DWD relies, instead of the

difference in the precision matrix, is sufficiently large to secure good performance

in separating sets between two classes.

Figure 3 shows the results for Scenario 2. In contrast to Scenario 1, there

is no difference in the diagonals of the covariances between the two classes (the

precision matrices are still different). When there is no mean difference (see

the left panel), it is clear that the DWD, SVM, and Plugin(d) method fail, for

obvious reasons (note that the Plugin(d) method does not read the off-diagonal of

the sample covariances, and hence both classes have the same precision matrices

from its viewpoint.) As a matter of fact, these methods all perform as badly as a

random guess. The CLIPS classifier always performs best in this scenario in the
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Figure 4. Set classification for Scenario 3. The three panels correspond to varying ρ,
varying u, and varying p, respectively. As in Scenario 2, the classifiers that do not engage
the covariance perform poorly when there is no mean difference signal.

left panel. Similarly to the case in Scenario 1, as the mean difference increases

(see the middle panel), the DWD method starts to improve.

The results for Scenario 3 (Figure 4) are similar to those of Scenario 2, ex-

cept that, this time, the advantage of the two covariance-engaged set classification

methods, CLIPS and Plugin(e), seems to be more obvious when the mean differ-

ence is zero (see left panel). Moreover, the QDA-MV method enjoys some good

performance, although not as good as the CLIPS classifier.

In all three scenarios, it seems that the test classification error is linearly

increasing in the dimension p, except for Scenario 3, in which the signal level also

depends on p (greater dimensions lead to greater signals).

5.2. Data example

One of the common procedures used to diagnose hepatoblastoma (a rare

malignant liver cancer) is a biopsy, in which the sample tissue of a tumor is

removed and examined under a microscope. A tissue sample contains a num-

ber of nuclei, a subset of which is then processed to obtain segmented images

of nuclei. The data we analyzed contain five sets of nuclei from normal liver

tissues and five sets of nuclei from cancerous tissues. Each set contains 50

images. The data set is publicly available (https://faculty.virginia.edu/

rohde/segmented-nuclei.zip) and was introduced in Wang et al. (2011); Wang,

Ozolek and Rohde (2010).

We tested the performance of the proposed method on the liver cell nuclei

image data set. First, the dimension was reduced from 36,864 to 30 using a

principal component analysis. Then, among the 50 images of each set, 16 images

are retained as a training set, 16 are a tuning set, and another 16 are the test

https://faculty.virginia.edu/rohde/segmented-nuclei.zip
https://faculty.virginia.edu/rohde/segmented-nuclei.zip
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Table 1. Classification performance for the liver cell nucleus image data.

Method number of misclassified sets standard error

CLIPS 0.01/10 0.0104

Plugin(d) 0.74/10 0.0450

Plugin(e) 0.97/10 0.0178

QDA-MV 0.08/10 0.0284

DWD 3.24/10 0.1164

SVM 3.13/10 0.1130

− −

−
−

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●
●●●●●
●
●●

●

●

●

●

●●●●

●

●

●

●

Figure 5. PCA scatter plots for the liver cell nucleus image data. Both classes are shown
in different colors (blue and purple, or lighter and darker gray). (1): the elementary
observations in the raw space; different sets are shown in different symbols. (2) and (3):
the augmented space seen by the DWD and SVM methods. (4) is a zoomed-in version
of (3). It is shown that traditional multivariate methods have a fundamental difficulty
with this data set.

set. In other words, for each of the training, tuning, and testing data sets, there

are 10 sets of images, five from each class, with 16 images in each set.

Table 1 summarizes the comparison between the methods under consider-

ation. All three covariance-engaged set classifiers (CLIPS, Plugin(d) and Plu-
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gin(e)) and the QDA-MV method perform better than those methods that do

not take the covariance matrices into account, such as the DWD and SVM (note

that they do consider the diagonal of the covariance matrix.)

To gain some insight into why the covariance-engaged set classifiers work

and traditional methods fail, we visualize the data set in Figure 5. Subfigure (1)

shows a scatter plot of the first two principal components of all the elementary

observations (ignoring the set memberships) in the data sets, in which blue (light

gray) and violet (dark gray) depict the two different classes. Observations in the

same set are shown using the same symbol. The first strong impression is that

there is no mean difference between the two classes on the observation level. In

contrast, it seems the second moment, such as the variance, distinguishes the two

classes.

One may argue that the DWD and SVM should theoretically work here,

because they work on the augmented space where the mean and variance of

each variable are calculated for each observation set, leading to a 2p-dimensional

feature vector for each set. However, Subfigures (2)–(4) invalidate this argument.

We plot the augmented training data in the space formed by the first two principal

components (Subfigure (2)). The augmented test data are shown in the same

space in Subfigure (3), with a zoomed-in version in Subfigure (4). Note that the

scales for Subfigures (2) and (3) are the same. These figures show that more than

just the marginal mean and variance are useful here, and our covariance-engaged

set classification methods have used the information in the right way.

Supplementary Material

The online Supplementary Material contains additional theoretical argu-

ments, proofs of all results, and an additional data analysis.
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