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Abstract: We introduce a variable selection procedure for function-on-function linear

models with multiple functional predictors, using the functional principal compo-

nent analysis (FPCA)-based estimation method with the group smoothly clipped

absolute deviation regularization. This approach enables us to select significant

functional predictors and estimate the bivariate functional coefficients simultane-

ously. A data-driven procedure is provided for choosing the tuning parameters of

the proposed method to achieve high efficiency. We construct FPCA-based esti-

mators for the bivariate functional coefficients using the proposed regularization

method. Under some mild conditions, we establish the estimation and selection

consistencies of the proposed procedure. Simulation studies are carried out to il-

lustrate the finite-sample performance of the proposed method. The results show

that our method is highly effective in identifying the relevant functional predictors

and in estimating the bivariate functional coefficients. Furthermore, the proposed

method is demonstrated in a real-data example by investigating the association

between ocean temperature and several water variables.

Key words and phrases: Functional data analysis, functional principal component

analysis, group SCAD, selection consistency, regularization.

1. Introduction

Functional data analysis (FDA) is becoming increasingly prevalent Ramsay

and Silverman (2005); Ferraty and Vieu (2006). FDA was developed to ana-

lyze data recorded as curves, images, or other objects over a continuum, usually

time, in scientific areas such as econometrics, ecology, and medical science. Func-

tional regressions that allow the responses or predictor variables, or both, to

be functions are important FDA tools. Based on the response and predictor

variables, functional regression models can be classified into three broad cate-

gories: scalar-on-function regressions (scalar responses against functional predic-

tors), function-on-scalar regressions (functional responses against scalar predic-
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tors), and function-on-function regressions (functional responses against func-

tional predictors). Many estimation methods have been developed for these

functional regression models; see, for example, Yao, Müller and Wang (2005),

Cai and Hall (2006), Hall and Horowitz (2007), Zhu, Li and Kong (2012), Zhang

and Wang (2015), Meyer et al. (2015), Scheipl and Greven (2016), Lin, Wang and

Cao (2016), Luo, Qi and Wang (2016), Luo and Qi (2017), Liu, Wang and Cao

(2017), Imaizumi and Kato (2018), Sang, Lockhart and Cao (2018), Sun et al.

(2018), Guan, Lin and Cao (2020), and the references therein.

In practical experiments, it is common to encounter functional and nonfunc-

tional data with many predictor variables. Incorporating all of these variables

into the regression model directly may cause a loss of prediction performance

in the fitted model, because some predictors may be irrelevant to the response

variables. Thus, identifying and selecting significant predictors is particularly

important in a regression analysis when the true underlying model has a sparse

representation. Under a standard linear regression framework with scalar co-

variates only, various regularization procedures have been developed for variable

selection, such as the LASSO Tibshirani (1996)), smoothly clipped absolute de-

viation (SCAD) Fan and Li (2001), and minimax concave penalty (MCP) Zhang

(2010). These procedures have also been extended to grouped variable selection

problems (see, e.g., Yuan and Lin (2006); Wang, Chen and Li (2007); Breheny

and Huang (2015)).

There is increasing interest in variable selection for functional regressions.

For example, Lian (2013) studied the variable selection problem for multiple

functional linear regressions using a group SCAD penalty; Kong et al. (2016)

incorporated scalar predictors into a functional linear regression and proposed

a shrinking estimation and selection procedure for a partially functional linear

regression in high dimensions; Yao, Sue-Chee and Wang (2017) introduced a regu-

larized method for a partially functional quantile regression model; and Lin et al.

(2017) proposed a functional SCAD regularization procedure for functional linear

regression models. Sang, Wang and Cao (2020) estimated a sparse functional ad-

ditive model using the adaptive group LASSO approach. Other variable selection

studies on functional regressions can be found in the sequence of monographs by

Zhou, Wang and Wang (2013), Huang et al. (2016), and Ma et al. (2019). Note

that these investigations on functional data are for scalar-on-function regressions

in which the response is scalar. However, few works have examined variable

selection for function-on-function regressions.

Here, we develop a variable selection procedure for multiple function-on-
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function linear regressions by using the FPCA-based estimation method (Hall

and Horowitz (2007)) and the group SCAD regularization (Wang, Chen and Li

(2007)). This work contributes to the literature in the following ways. First, our

approach treats the regularization of each functional predictor as a whole and,

as a result, each bivariate functional coefficient is assigned to a group. This en-

ables us to estimate the bivariate functional coefficients and select relevant func-

tional predictors with nonzero regression coefficients simultaneously. Second, we

construct FPCA-based estimators of the bivariate functional coefficients in the

function-on-function linear model, and show that our estimators are consistent

and exhibit sparsity. To the best of our knowledge, these theoretical properties

of variable selection for function-on-function regressions have not previously been

investigated in the literature. In practice, we also attain the rates of convergence

for the bivariate functional coefficient estimators. Under some mild assumptions

on the truncation parameters, these rates are shown to be minimax optimal.

Third, we present a data-driven procedure for choosing the tuning parameters of

the proposed method to achieve high efficiency. Simulation studies are carried

out to illustrate the performance of the proposed method. The results show that

our method is highly effective in identifying the relevant functional predictors

and in estimating the corresponding bivariate functional coefficients. Finally, we

demonstrate the effectiveness of the proposed method using a real-data example

by investigating the associations between ocean temperature and several water

variables.

The rest of this paper is organized as follows. In Section 2, we introduce the

function-on-function linear model and describe the estimation method. In Section

3, we study the estimation and selection consistencies of the proposed procedure.

Section 4 presents the implementation algorithm and tuning parameter selection.

Simulation results that evaluate the effectiveness of the proposed method are

reported in Section 5. Section 6 illustrates the proposed method by analyzing

Hawaii ocean data. Section 7 concludes the paper. The proofs are relegated to

the Appendix. The R code for the simulation studies and the real-data analysis

can be downloaded at https://github.com/caojiguo/VarSeFuL.

2. Model and Estimation Method

2.1. Function-on-function linear model

We consider a function-on-function regression with multiple functional pre-

dictors. Suppose Y (t) is a functional response defined on a closed interval T , and

{Xj(s), j = 1, . . . , p} are p functional predictors defined on S, where the num-

https://github.com/caojiguo/VarSeFuL
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ber of functional predictors p is assumed to be fixed. Without loss of generality,

we also assume that the functional response Y (t) and the functional predictors

{Xj(s), j = 1, . . . , p} have been centered to have mean zero. Then, the function-

on-function linear model takes the form

Y (t) =

p∑
j=1

∫
S
βj(t, s)Xj(s)ds+ ε(t), (2.1)

where the bivariate functional coefficients {βj(t, s), j = 1, . . . , p} are assumed to

be square-integrable, that is,
∫
T
∫
S β

2
j (t, s)dsdt < ∞, and ε(t) is a mean-zero

random error function independent of {Xj(·), j = 1, . . . , p}. For convenience,

we assume that only the first d functional predictors are significant, leading to

nonzero functional coefficients, while the rest are not; that is, βj(t, s) ≡ 0, for

j = d+ 1, . . . , p.

2.2. Estimation method

Let {Yi(t), Xij(s), j = 1, . . . , p, i = 1, . . . , n} be independent and identically

distributed (i.i.d.) samples generated from the population {Y ∈ L2 (T ) , Xj ∈
L2 (S) , j = 1, . . . , p}. We first represent the response and predictor functions us-

ing functional principal components (FPC). Denote CY (t1, t2) = cov(Y (t1), Y (t2))

and CXj
(s1, s2) = cov(Xj(s1), Xj(s2)) as the covariance functions of Y (t) and

Xj(s), respectively, for j = 1, . . . , p, where (Y,X1, . . . , Xp) represents a generic

set (Yi, Xi1, . . . , Xip). According to Mercer’s theorem, we have

CY (t1, t2) =

∞∑
k=1

wkφk(t1)φk(t2), CXj
(s1, s2) =

∞∑
l=1

ρjlψjl(s1)ψjl(s2),

where w1 > w2 > · · · > 0 and ρj1 > ρj2 > · · · > 0 are the eigenvalue sequences

of the covariance functions CY and CXj
, respectively, while {φk(t), k ≥ 1} and

{ψjl(s), l ≥ 1} are the corresponding eigenfunctions that form orthonormal bases

in L2(T ) and L2(S). For the sample curves, we have the Karhunen–Loève ex-

pansions

Yi(t) =

∞∑
k=1

ηikφk(t), Xij(s) =

∞∑
l=1

ξijlψjl(s), (2.2)

where ηik =
∫
T Yi(t)φk(t)dt and ξijl =

∫
S Xij(s)ψjl(s)ds are uncorrelated random

variables with mean zero and variances E(η2ik) = wk and E(ξ2ijl) = ρjl, respec-

tively. These coefficients ηik and ξijl are called FPC scores.

The functional coefficients βj(t, s) can also be expressed in terms of the com-
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plete orthonormal basis {φk(t), k ≥ 1} and {ψjl(s), l ≥ 1}:

βj(t, s) =

∞∑
k=1

∞∑
l=1

bjklφk(t)ψjl(s), j = 1, . . . , p. (2.3)

Substituting (2.2) and (2.3) into (2.1), we have

∞∑
k=1

ηikφk(t) =

p∑
j=1

∞∑
k=1

∞∑
l=1

bjklξijlφk(t) + εi(t), i = 1, . . . , n.

By the orthonormality of {φk(t), k ≥ 1}, we obtain

ηik =

p∑
j=1

∞∑
l=1

bjklξijl + εik, i = 1, . . . , n, k = 1, 2, . . . ,

where εik =
∫
T εi(t)φk(t)dt, for each k = 1, 2, . . . , .

Owing to the infinite expansions of the functional responses and functional

predictors, smoothing and regularization are required in the preprocessing stage

before conducting an estimation. We adopt a simple, yet effective truncation

method to represent the functional responses and functional predictors. The

truncated forms of Yi(t) and Xij(s) can be expressed as

Yi(t) ≈
kn∑
k=1

ηikφk(t) and Xij(s) ≈
mnj∑
l=1

ξijlψjl(s),

respectively, where kn and mnj are truncation parameters such that mnj → ∞
and kn → ∞ as n → ∞. Correspondingly, the bivariate functional coefficients

βj(t, s) are represented as βj(t, s) ≈
∑kn

k=1

∑mnj

l=1 bjklφk(t)ψjl(s), for j = 1, . . . , p.

Define Bj as a kn×mnj matrix with the (k, l)th element bjkl, for 1 ≤ k ≤ kn and

1 ≤ l ≤ mnj , and let B = (B1, . . . ,Bp). Then, the least-squares estimator for B

is obtained by minimizing

Qn(B) =

n∑
i=1

∥∥∥∥∥∥
kn∑
k=1

ηikφk(t)−
p∑
j=1

kn∑
k=1

mnj∑
l=1

bjklξijlφk(t)

∥∥∥∥∥∥
2

=

n∑
i=1

kn∑
k=1

ηik − p∑
j=1

mnj∑
l=1

bjklξijl

2

.

In practice, the FPC scores ηik and ξijl are unknown, and are estimated from
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the data. Using the empirical covariance functions ĈY (t1, t2) = n−1
∑n

i=1 Yi(t1)

Yi(t2) and ĈXj
(s1, s2) = n−1

∑n
i=1Xij(s1)Xij(s2), we can estimate the FPCs

φk(t) and ψjl(s) by eigendecomposing the empirical covariance functions:

ĈY (t1, t2) =

∞∑
k=1

ŵkφ̂k(t1)φ̂k(t2), ĈXj
(s1, s2) =

∞∑
l=1

ρ̂jlψ̂jl(s1)ψ̂jl(s2),

where ŵ1 ≥ ŵ2 ≥ · · · ≥ 0 and ρ̂j1 ≥ ρ̂j2 ≥ · · · ≥ 0. Then, the estimates of the

FPC scores are

η̂ik =

∫
T
Yi(t)φ̂k(t)dt and ξ̂ijl =

∫
S
Xij(s)ψ̂jl(s)ds.

Note that setting βj(t, s) = 0 is equivalent to setting all the entries of Bj to

zero. To achieve variable selection and estimation simultaneously, we minimize

argmin
B


n∑
i=1

kn∑
k=1

η̂ik − p∑
j=1

mnj∑
l=1

bjklξ̂ijl

2

+ 2n

p∑
j=1

Jλnj
(‖Bj‖)

 , (2.4)

where ‖Bj‖ = {
∑kn

k=1

∑mnj

l=1 b
2
jkl}1/2 is the group L2 norm, which reduces to the

Frobenius norm ‖A‖ = {tr(ATA)}1/2 for a matrix A, and to the vector L2 norm

‖a‖ = {aTa}1/2 for a vector a, and Jλnj
(·) is a shrinkage penalty function with

tuning parameter λnj . Many penalty functions are available for variable selection.

In this paper, we consider the SCAD penalty of Fan and Li (2001), the derivative

of which is defined as

J ′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
,

for a > 2 and θ > 0. Following the suggestion of Fan and Li (2001) we adopt

a = 3.7 for the implementation. The SCAD penalty possesses some desirable

properties. For example, it can produce sparse solutions, and it results in es-

timates that are almost unbiased for large coefficients. This method is also

referred to as the group SCAD procedure Wang, Chen and Li (2007). Let

{b̂jkl, j = 1, . . . , p, k = 1, . . . , kn, l = 1, . . . ,mnj} be the solution to minimiz-

ing (2.4). Then, the estimates of the bivariate functional coefficients βj(t, s), for

j = 1, . . . , p, are given by

β̂j(t, s) =

kn∑
k=1

mnj∑
l=1

b̂jklφ̂k(t)ψ̂jl(s).



FUNCTION-ON-FUNCTION LINEAR REGRESSION 1441

3. Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estima-

tors. We first specify some notation before stating the results. Let ‖ · ‖ represent

the L2 norm in functional spaces for different domains. That is, ‖f‖2 =
∫
T f

2(t)dt

for f ∈ L2(T ), and ‖g‖2 =
∫
T
∫
S g

2(t, s)dsdt for g ∈ L2(T × S). Without loss

of generality, we use a common truncation parameter mn for all the functional

predictors in the theoretical analysis. Let {b0jkl, j = 1, . . . , p, k ≥ 1, l ≥ 1} de-

note the true values of the coefficients {bjkl, j = 1, . . . , p, k ≥ 1, l ≥ 1}, and let

β0j(t, s) =
∑∞

k=1

∑∞
l=1 b0jklφk(t)ψjl(s), for j = 1, . . . , p. Denote the minimum

and maximum eigenvalues of a symmetric matrix A by ρmin(A) and ρmax(A), re-

spectively. Let ξjl be the lth FPC score of the jth functional predictor, and define

the pmn × 1 vector Z̃ = (ξ11ρ
−1/2
11 , . . . , ξ1mn

ρ
−1/2
1mn

, . . . , ξp1ρ
−1/2
p1 , . . . , ξpmn

ρ
−1/2
pmn )T

to combine all functional predictors. Let C > 1 represent a generic constant, of

which the value may vary. We assume the following regularity conditions:

(C1) The number of functional predictors p is assumed to be fixed, and for j =

1, . . . , p and all l, E‖Xj‖4 <∞, and E(ξ4jl) ≤ Cρ2jl. Moreover, E‖Y ‖4 <∞,

and E‖ε‖4 ≤ C.

(C2) The eigenvalues {wk}∞k=1 of CY and {ρjl}∞l=1 of CXj
satisfy

wk ≤ Ck−α1 , wk − wk+1 ≥ C−1k−α1−1

and

ρjl ≤ Cl−α2 , ρjl − ρj(l+1) ≥ C−1l−α2−1,

for k, l ≥ 1 and j = 1, . . . , p, where α1 > 1 and α2 > 1.

(C3) |b0jkl| ≤ Ck−γ1 l−γ2 , for k, l ≥ 1 and j = 1, . . . , p, where γ1 > α1/2 + 1 and

γ2 > α2/2+1.

(C4) mn →∞, kn →∞, and (m2α2+2
n +mα2+4

n + k3nm
α2
n )/n = o(1).

(C5) λnj = o(1) and max{n−1mα2+1
n kn,m

−2γ2+1
n , n−1k3nm

α2
n } = o(λ2nj), for j =

1, . . . , p.

(C6) 0 < C1 ≤ ρmin(U1) ≤ ρmax(U1) ≤ C2 <∞, for all n, where U1 = E(Z̃Z̃T ).

Conditions (C1)–(C3) are usually required in the functional regression liter-

ature (see, e.g., Cai and Hall (2006); Hall and Horowitz (2007); Imaizumi and

Kato (2018)). Specifically, condition (C1) ensures the consistency of the empiri-

cal covariance functions ĈY (s1, s2) and ĈXj
(t1, t2) (j = 1, . . . , p). (C2) prevents
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the spacings between the eigenvalues from being too small. (C3) is the smooth

condition for the bivariate functional coefficients. This condition guards against

the coefficients b0jkl decaying too slowly by controlling the tail for large k, l. (C4)

requires that the truncation parameters mn and kn are large enough but not too

large, because higher-order FPCs and eigenfunctions become increasingly unsta-

ble. (C5) gives the conditions for the tuning parameters λnj . This condition

is similar to Condition 7 in Kong et al. (2016), which is used to guarantee the

consistent estimation. Condition (C6) is similar to condition (C4) in Lian (2013)

and condition (B5) in the Supplementary Material of Kong et al. (2016), and

ensures the invertibility of U1.

Theorem 1. Under the conditions (C1)–(C6), we have

(a) (Estimation consistency) ‖β̂j − β0j‖ = op(1), for j = 1, . . . , p.

(b) (Selection consistency) β̂d+1 = · · · = β̂p = 0 with probability tending to one.

Remark 1. It is shown from the proof of Theorem 1 in the Appendix that

‖β̂j−β0j‖2 = Op(m
α2+1
n knn

−1+k−2γ1+1
n +m−2γ2+1

n +k3nm
α2
n n
−1). In practice, the

convergence rate of the estimator β̂j could be close to the optimal convergence rate

of univariate functional coefficient estimate in Hall and Horowitz (2007) under

some assumptions on the truncation parameters mn and kn. Similarly to Hall

and Horowitz (2007), if we set mn � n1/(α2+2γ2) and kn � n1/(2(α2+2γ2)), where

an � bn for positive an and bn, meaning that the ratio an/bn is bounded away

from zero and infinity, then we obtain that ‖β̂j−β0j‖2 = Op(n
−(2γ2−3/2)/(α2+2γ2))

when γ2 > max{2, α2/2 + 1} and γ1 ≥ 2γ2 − 1. It is easy to check that the

sets mn � n1/(α2+2γ2) and kn � n1/(2(α2+2γ2)) meet condition (C4) under the

assumption that γ2 > max{2, α2/2 + 1}.

4. Computation and Tuning Parameters Selection

4.1. Computation

For convenience, let

Ŵ =


η̂11 η̂12 . . . η̂1kn
η̂21 η̂22 . . . η̂2kn
...

...
...

...

η̂n1 η̂n2 . . . η̂nkn

 , Ẑj =


ξ̂1j1 ξ̂1j2 . . . ξ̂1jmnj

ξ̂2j1 ξ̂2j2 . . . ξ̂2jmnj

...
...

...
...

ξ̂nj1 ξ̂nj2 . . . ξ̂njmnj

 ,

Ẑ = (Ẑ1, . . . , Ẑp), Ĥj = Ẑj ⊗ Ikn , and Ĥ = (Ĥ1, . . . , Ĥp), where Ikn is the

kn × kn identity matrix, and ⊗ represents the Kronecker product. Recall that
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B = (B1, . . . ,Bp) is the coefficient matrix. Let bj = vec(Bj), b =
(
bT1 , . . . , b

T
p

)T
and V̂ = vec

(
Ŵ T

)
. Then, the minimization of (2.4) is equivalent to minimizing

Ln(b) =

∥∥∥∥∥∥V̂ −
p∑
j=1

Ĥjbj

∥∥∥∥∥∥
2

+ 2n

p∑
j=1

Jλnj
(‖bj‖). (4.1)

The minimization problem of (4.1) may be solved using the local quadratic

approximation (LQA; Fan and Li (2001)), one-step local linear approximation

(LLA; Zou and Li (2008)), or group coordinate descent (GCD; Wei and Zhu

(2012); Breheny and Huang (2015)) algorithms. The idea behind the GCD algo-

rithm is the same as that of the coordinate descent algorithms (Friedman et al.

(2007); Breheny and Huang (2011)), which have been shown to enjoy theoretical

convergence properties and are computationally more efficient than the LQA and

LLA algorithms in terms of fitting MCP and SCAD models. As pointed out in

Breheny and Huang (2015), the GCD algorithm not only inherits the high compu-

tational efficiency and convergence properties of coordinate descent algorithms,

but is also fast, efficient, and stable in solving the optimization problem in group

SCAD and group MCP models. Thus, instead of the LQA or LLA, we adopt the

GCD algorithm to solve the minimization problem.

Before applying the GCD algorithm, it is often necessary to orthonormalize

each predictor group. This orthonormalization can be accomplished without loss

of generality, because the resulting estimates can be transformed back to their

original scale after fitting the model. We orthonormalize each group of FPC

scores that serve as predictor variables using the singular value decomposition;

that is, ĤT
j Ĥj/n = QjΛjQ

T
j , where Qj is an orthonormal matrix containing

the eigenvectors of ĤT
j Ĥj/n, and Λj is a diagonal matrix of the eigenvalues of

ĤT
j Ĥj/n. Let Ȟj = ĤjQjΛ

−1/2
j . Then, we have ȞT

j Ȟj/n = I and Ȟj b̃j =

Ĥj(QjΛ
−1/2
j b̃j), where b̃j is the reparameterized coefficient vector of bj satisfying

bj = QjΛ
−1/2
j b̃j for the optimization problem of (4.1) on the orthonormalized

scale. In other words, the minimization problem of (4.1) can be transformed to

the optimization problem

b̌ = argmin
b̃

 1

2n

∥∥∥∥∥∥V̂ −
p∑
j=1

Ȟj b̃j

∥∥∥∥∥∥
2

+

p∑
j=1

Jλnj
(‖b̃j‖)

 ,

where b̌ = (b̌T1 , . . . , b̌
T
p )T is the solution with orthonormalized groups of predic-

tors. Then, the solution b̌ can be easily transformed back to the original problem
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using b̂j = QjΛ
−1/2
j b̌j . Note that ‖b̃j‖ =

√
bTj (ĤT

j Ĥj/n)bj = n−1/2‖Ĥjbj‖.
Therefore, orthonormalizing the groups is also equivalent to applying an L2

penalty on the scale of the linear predictor. As suggested in Breheny and Huang

(2015), we use λnj = λ
√
knmnj , where λ is an unknown regularization parameter,

and the
√
knmnj term is used to normalize across groups of different sizes.

Let zj = n−1ȞT
j (V̂ − Ȟ−j b̃−j) be the unpenalized solution for the jth

group of coefficients b̃j , where Ȟ−j is the portion of Ȟ that remains after Ȟj is

removed, and b̃−j denotes the corresponding regression coefficients. As described

in Wei and Zhu (2012) and Breheny and Huang (2015), the group estimator of

b̃j has the following closed form:

b̌j = F (zj , λnj , a)


S (zj , λnj) if ‖zj‖ ≤ 2λnj ,

a− 1

a− 2
S

(
zj ,

aλnj
a− 1

)
if 2λnj < ‖zj‖ ≤ aλnj ,

zj if ‖zj‖ > aλnj ,

(4.2)

where S(z, λ) = (1 − λ/‖z‖)+z is the multivariate soft-thresholding operator.

Next, we briefly describe the GCD algorithm. Denote r = V̂ − Ȟb̃. Then,

we have zj = n−1ȞT
j (V̂ − Ȟ−j b̃−j) = n−1ȞT

j r + b̃j . Suppose that the initial

estimate of b̃ is given, and is denoted b̌(0). Then, for any given λ, at step j of

iteration m, for j = 1, . . . , p, m = 0, 1, . . ., the following three calculations are

made until convergence:

(1) calculate zj = n−1ȞT
j r + b̌

(m)
j ,

(2) update b̌
(m+1)
j ← F (zj , λnj , a),

(3) update r ← r − Ȟj(b̌
(m+1)
j − b̌(m)

j ),

where λnj = λ
√
knmnj . The GCD algorithm possesses the descent property

because it minimizes the objection function with respect to b̃j at each update,

meaning that the objective function decreases with every iteration. We choose

the initial values for this algorithm using a similar approach to those in Breheny

and Huang (2011) and Breheny and Huang (2015). Note that the regularization

parameter λ may vary from a maximum value λmax, for which all the penalized

coefficients are zero down to a minimum value λmin, at which the model becomes

excessively large. It is clear from (4.2) that λmax = max1≤j≤p{‖n−1ȞT
j V̂ ‖}.

We choose these initial values by starting at λmax with b̌(0) = 0, and proceeding

toward λmin, using b̌ from the previous value of λ as the initial value of b̃ for the

next value of λ. The GCD algorithm can be implemented using the R package
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grpreg, developed by (Breheny and Huang (2015)). Let b̌j be the final estimate

of b̃j . We then obtain the final estimate of bj as b̂j = QjΛ
−1/2
j b̌j , for j = 1, . . . , p.

4.2. Tuning parameters selection

To implement the proposed method, we need to choose the truncation pa-

rameters kn,mn1, . . . ,mnp, and the regularization parameter λ. Several criteria,

such as generalized cross-validation (GCV Lian (2013)), the Schwarz information

criterion (SIC, Huang et al. (2016)), and the ABIC procedure proposed by Kong

et al. (2016), can be used to select these tuning parameters simultaneously.

In practice, the computation for selecting all p+ 2 tuning parameters simul-

taneously is intensive. To reduce the computational burden, we adopt a three-

stage method to select these parameters. We choose the truncation parameter

kn when the cumulative percentage of variance explained (CPVE) of Y based

on the first kn estimated FPCs exceeds a desired level (99% is the recommended

level); that is, (
∑kn

k=1 ŵk/
∑∞

k=1 ŵk) ≥ 99%. In order to retain the information

of the functional predictors and fit the model simultaneously, we first select the

initial parameters m̃nj (j = 1, . . . , p) using the CPVE method, and then refine

them using the AIC procedure adopted in Kong et al. (2016). Given a set of

values for kn,mn1, . . . ,mnp, we use the V -fold cross-validation method to select

the regularization parameter λ and obtain the index set of the selected functional

predictors. Specifically, let D denote the full data set, and randomly split D into

V subsets of roughly equal size, denoted as D1, . . . ,DV . The criterion is defined

as

CV (λ) =

V∑
v=1

∑
i∈Dv

kn∑
k=1

η̂ik − p∑
j=1

mnj∑
l=1

b̂
(−v)
jkl ξ̂ijl

2

, (4.3)

where b̂
(−v)
jkl are obtained from the data set D − Dv. In this paper, we consider

λ on a grid from λmax = max1≤j≤p{‖n−1ȞT
j V̂ ‖} to λmin = 0.01λmax, with 100

equally spaced log-scaled grids, and choose the optimal value of λ using five-fold

cross-validation.

The detailed steps for selecting these tuning parameters are as follows:

(a) Choose the parameter kn and the initial truncation parameters m̃nj (j =

1, . . . , p) when the corresponding CPVEs exceed 99%. In other words, the

selected kn and m̃nj (j = 1, . . . , p) represent a sufficiently large number

of FPCs that explain nearly all, say 99%, of the variance in Y and Xj ,

respectively, for j = 1, . . . , p.
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(b) Given the selected kn and m̃nj (j = 1, . . . , p), choose λ using five-fold cross-

validation and obtain the index set of the selected functional predictors,

denoted by G ⊂ {1, 2, . . . , p}. Then, refit the model and select the optimal

mnj by minimizing

AIC (mnj : j ∈ G) = log RSS (mnj : j ∈ G) + 2n−1
∑
j∈G

mnj ,

where

RSS (mnj : j ∈ G) =

n∑
i=1

∫
T

Yi(t)−∑
j∈G

kn∑
k=1

mnj∑
l=1

b̂∗jklξ̂ijlφ̂k(t)


2

dt,

with b̂∗jkl being the refitted values using the ordinary least squares method.

(c) Minimize (4.3) based on the selected kn, selected functional predictors, and

optimal mnj to get the optimal λ.

5. Simulation Studies

In this section, we conduct several Monte Carlo experiments to illustrate

the finite-sample performance of the proposed method. We set T = S = [0, 1].

Each response and predictor curve is observed at 100 equally spaced points in

their domains. The simulated data are generated from model (2.1) with p = 4

functional predictors, and the error term ε(t) is simulated as a mean-zero Gaussian

process with covariance function Σε(t1, t2) = σ2ρ10|t1−t2|, where σ2 is the variance

of ε(t), and ρ controls the correlation between ε(t1) and ε(t2), for all t1, t2 ∈ [0, 1].

We use similar mechanisms to those in Lian (2013) to generate the functional

predictors and bivariate functional coefficients. For j = 1, . . . , 4, we take Wj(s) =∑50
k=1 ξjkψk(s), where ξjk are i.i.d. as N(0, 16(2k−1)−2) for different j, ψ1(s) ≡ 1,

and ψk(s) =
√

2 cos{(k − 1)πs}, for k ≥ 2. The functional predictors are defined

through the linear transformations

X1 = W1 + τ (W2 +W3) , X2 = W2 + τ (W1 +W3) ,

X3 = W3 + τ (W1 +W2) , X4 = W4,

where τ controls the strength of the dependence between the first three functional

predictors, with τ = 0 resulting in independent predictors. The corresponding

bivariate functional coefficients are
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β1(t, s) =

4∑
k,l=1

b1,klψk(t)ψl(s), β2(t, s) =

50∑
k,l=1

b2,klψk(t)ψl(s),

and β3(t, s) = β4(t, s) = 0, where b1,kl = 0.1(k + l) and b2,kl = 2(−1)k+lk−1l−2.

We fix σ2 = 0.1 and consider three within-function correlation levels ρ =

0, 0.5, 0.8. When ρ = 0, ε(t) is Gaussian white noise. When ρ is bigger, the auto-

correlation in ε(t) is stronger and the sample curve is smoother. We consider

sample sizes n = 100, 200, 400 and set τ = 0 or 0.5. For each scenario, we use 100

Monte Carlo runs for the model assessment. In all numerical experiments, the

proposed estimator is implemented using the R package grpreg (https://cran.

r-project.org/package=grpreg), and the tuning parameters of the proposed

method are selected using the procedure presented in Section 4.2. All integrations

required in the simulations are approximated by the Riemann sums. To evaluate

the performance of the proposed method, we report the positive selection rate

(PSR) and the noncausal selection rate (NSR), as advocated by Wang et al.

(2013), as well as the average and standard deviation of the integrated squared

error (ISE),

ISE =

p∑
j=1

∫
T

∫
S
{β̂j(t, s)− βj(t, s)}2dtds,

over 100 simulation replicates, where the PSR is the proportion of causal features

selected by one method in all causal features, and the NSR is the average, re-

stricted only to the true zero coefficient functions. Let {X∗ij , Y ∗i , j = 1, . . . , 4, i =

1, . . . , N} be an independent test set generated from the same model with sample

size N = 200 for each Monte Carlo replicate. We assess the prediction accuracy

using the relative prediction error (RPE),

RPE =
1

N

N∑
i=1

∫
T {Ŷ

∗
i (t)− Y ∗i (t)}2dt∫
T {Y

∗
i (t)}2dt

,

where Ŷ ∗i (t) =
∑p

j=1

∫
S β̂j(t, s)X

∗
ij(s)ds, with β̂j(t, s) estimated from the corre-

sponding training sample.

Table 1 presents the simulation results when varying the truncation parame-

ter mnj ≡ mn from 1 to 16 in the scenario with sample size n = 200, correlation

level ρ = 0.5, and τ = 0.5 over 100 simulation replicates, where the other tuning

parameter kn is selected using the CPVE method, and λ is chosen using five-fold

cross-validation. The results show that the selection of the functional predictors

is quite accurate and stable when mn reaches a certain level. The ISE achieves a

minimum when mn = 6, and deteriorates as mn depart from this value. The RPE

https://cran.r-project.org/package=grpreg
https://cran.r-project.org/package=grpreg
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Table 1. The positive selection rate (PSR), noncausal selection rate (NSR), and averages
and standard deviations (in parentheses) of the integrated squared error (ISE) and the
relative prediction error (RPE) when varying the truncation parameter mnj ≡ mn from 1
to 16 in the scenario with sample size n = 200, correlation level ρ = 0.5, and τ = 0.5 over
100 simulation replicates. Tunemnj

indicates that the tuning parameter mnj is chosen
using the proposed procedure.

mn PSR NSR ISE RPE

1 0.89 0.60 8.9899 (1.0935) 1.0708 (0.2716)

2 1.00 0.65 1.8192 (0.9301) 0.3254 (0.1353)

3 1.00 0.79 0.6726 (0.1941) 0.1232 (0.0544)

4 1.00 0.96 0.0988 (0.0432) 0.0381 (0.0090)

5 1.00 0.98 0.0778 (0.0258) 0.0355 (0.0074)

6 1.00 0.97 0.0703 (0.0192) 0.0348 (0.0070)

7 1.00 0.96 0.0725 (0.0186) 0.0347 (0.0072)

8 1.00 0.95 0.0802 (0.0206) 0.0347 (0.0072)

9 1.00 0.91 0.0940 (0.0275) 0.0349 (0.0071)

12 1.00 0.91 0.1651 (0.0496) 0.0354 (0.0072)

16 1.00 0.91 0.3447 (0.0937) 0.0361 (0.0073)

Tunemnj
1.00 0.99 0.0693 (0.0187) 0.0347 (0.0071)

keeps decreasing until mn reaches seven and appears more stable for a wide range

of mn beyond the optimal level. Using the different truncation parameters mnj

selected by the proposed method to fit the model yields similar results to those at

the optimal RPE. This implies that the proposed method is not sensitive to the

values of mnj around the optimal level. Moreover, we examine the computational

efficiency of the proposed method with the tuning parameters selected using the

procedure presented in Section 4.2. The average computing time based on 100

simulation replicates for the case when ρ = 0.5, τ = 0.5, and n = 200 is around

50 seconds on a personal laptop with a 3.4 GHz Intel Core i5-7500 CPU.

For comparison, we also apply the least squares method without regular-

ization as the baseline, and report the corresponding results in the same table.

The truncation parameters required in this method are selected using the AIC

criterion. Table 2 summarizes the simulation results for the cases ρ = 0, 0.5, 0.8

and τ = 0, 0.5 with sample sizes of n = 100, 200, 400. Several observations can be

made from the table. First, there is a general tendency for the ISE and the RPE

to decrease as the sample size n increases. At the same time, the RPE tends to

be more stable than the ISE. Second, the within-function correlation level in ε(t)

has a significant effect on the estimation errors and on the noncausal selection

rate. The proposed method tends to be more accurate when the correlation level
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Table 2. The positive selection rate (PSR), noncausal selection rate (NSR), and averages
and standard deviations (in parentheses) of the integrated squared error (ISE) and the
relative prediction error (RPE), based on 100 Monte Carlo replicates for the cases ρ =
0, 0.5, 0.8 and τ = 0, 0.5, with sample sizes of n = 100, 200, 400.

Proposed method Baseline

ρ τ n PSR NSR ISE RPE ISE RPE

0 0 100 1.000 0.995 0.106 (0.028) 0.046 (0.007) 0.134 (0.064) 0.050 (0.013)

200 1.000 1.000 0.051 (0.011) 0.045 (0.007) 0.067 (0.028) 0.046 (0.007)

400 1.000 1.000 0.032 (0.006) 0.044 (0.007) 0.037 (0.011) 0.044 (0.007)

0.5 100 1.000 1.000 0.109 (0.030) 0.034 (0.007) 0.180 (0.144) 0.035 (0.008)

200 1.000 1.000 0.057 (0.014) 0.032 (0.006) 0.078 (0.034) 0.033 (0.006)

400 1.000 1.000 0.033 (0.006) 0.032 (0.006) 0.046 (0.015) 0.032 (0.006)

0.5 0 100 1.000 0.925 0.109 (0.027) 0.049 (0.009) 0.138 (0.058) 0.052 (0.010)

200 1.000 0.930 0.057 (0.012) 0.046 (0.008) 0.070 (0.021) 0.048 (0.009)

400 1.000 0.950 0.034 (0.006) 0.045 (0.008) 0.040 (0.012) 0.046 (0.009)

0.5 100 1.000 0.940 0.128 (0.037) 0.037 (0.008) 0.174 (0.080) 0.038 (0.009)

200 1.000 0.990 0.069 (0.019) 0.035 (0.007) 0.093 (0.040) 0.036 (0.008)

400 1.000 1.000 0.039 (0.007) 0.034 (0.007) 0.053 (0.025) 0.034 (0.007)

0.8 0 100 1.000 0.935 0.118 (0.034) 0.052 (0.012) 0.154 (0.071) 0.057 (0.016)

200 1.000 0.945 0.061 (0.012) 0.049 (0.012) 0.079 (0.029) 0.051 (0.012)

400 1.000 0.920 0.036 (0.007) 0.048 (0.012) 0.043 (0.011) 0.049 (0.012)

0.5 100 1.000 0.980 0.145 (0.043) 0.037 (0.010) 0.190 (0.106) 0.039 (0.011)

200 1.000 0.945 0.076 (0.023) 0.035 (0.009) 0.096 (0.041) 0.036 (0.010)

400 1.000 0.995 0.044 (0.012) 0.034 (0.009) 0.055 (0.021) 0.034 (0.009)

ρ is low. In particular, for the Gaussian white noise case where ρ = 0, the pro-

posed method appears to be the best. Third, the estimation errors become larger

when the correlations between different functional predictors increase. This phe-

nomenon is more evident when the within-function correlation level ρ is strong.

Finally, the estimation errors and the RPEs of the proposed method are obvi-

ously smaller than those of the least squares method without penalization. This

finding indicates that the proposed method is efficient, and can enhance the pre-

dictability and interpretability of the results when irrelevant predictors exist in

the model. We also performed an additional simulation study when the function-

on-function linear model has 20 functional predictors. A detailed discussion and

the results are presented in the Supplementary Material.
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Figure 1. The 200 sample curves for five functional variables, temperature, oxygen,
potential density, salinity, and chloropigment, on the depth domain [2, 200] below the
sea surface.

6. Application

The proposed method is applied to analyze Hawaii ocean data, available from

the Hawaii ocean time-series program. This program has been making repeated

observations of various hydrographic, chemical, and biological characteristics of

the water column at a station north of Oahu, Hawaii, since October 1988. In

this study, we collect a portion of the data in the data set (http://hahana.

soest.hawaii.edu/hot/hot-dogs/cextraction.html) of this program for the

20 years from January 1, 1999, to December 31, 2018. The data include five

functional variables: temperature (in the international temperature scale of 1990

(ITS-90)), oxygen concentration (umol/kg), potential density (kg/m3), salinity

(in the practical salinity scale of 1978 (PSS-78)), and chloropigment (ug/l), all of

which were measured every 2 m between 0 and 200 m below the sea surface. After

removing samples with missing measurements and the observations measured at

0 m (sea surface), a total of 200 samples are included in our analysis; see Figure

1.

We view these five variables as functions of depth, and investigate the asso-

ciation between the temperature (Y (t)) and the other four functional variables,

http://hahana.soest.hawaii.edu/hot/hot-dogs/cextraction.html
http://hahana.soest.hawaii.edu/hot/hot-dogs/cextraction.html
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Figure 2. The estimated coefficient functions β̂2(t, s) and β̂3(t, s) for two selected func-
tional predictors, Potential Density (X2(s)) and Salinity (X3(s)), in the estimated model
for the Hawaii ocean data set.

oxygen (X1(s)), potential density (X2(s)), salinity (X3(s)), and chloropigment

(X4(s)). To eliminate the effect of the intercept, we centralize the functional re-

sponse and four functional predictors to have mean zero, and apply the multiple

function-on-function linear regression in (2.1) with p = 4 to the data set. We fit

the model using the proposed method. The tuning parameters are chosen using

the procedure described in Section 4.2.

Our method selects potential density and salinity as two significant functional

predictors with nonzero coefficients; and the estimated bivariate functional co-

efficients are displayed in Figure 2. The first heatmap in Figure 2 shows that

β̂2(t, s) takes negative values around the diagonal line (t = s), and takes large or

positive values when |t − s| is relatively large. This implies that there exists a

strong negative influence of potential density on temperature. Similarly, the sec-

ond heatmap in Figure 2 implies that temperature is positively associated with

salinity for the region when |t− s| is less than 25 m. Moreover, we see that these

associations are strongest near a depth of 200 m (t = s = 200). It is known that

200 m below the sea surface is the depth that separates the epipelagic zone (the

layer between 0 m and 200 m below the sea surface) from the mesopelagic zone

(depths between 200 m and 1,000 m below the sea surface). The epipelagic zone

is also referred to as the sunlight zone, where most of the visible light exists.

In constrast, very little light reaches the mesopelagic zone, which weakens the

impact of sunlight on the temperature.

To assess our models and measure the goodness of fit, we calculate the average

functional R2, as in Harezlak et al. (2007). Given the fitted values Ŷi(t), the R2
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is formulated as

R2
ave =

1

T

∫ T

0
R2(t)dt, where R2(t) = 1−

∑n
i=1(Yi(t)− Ŷi(t))2∑n

i=1(Yi(t))
2

.

To better understand the effects of the selected functional predictors, we first fit

the model using only the selected functional predictors, obtaining R2
ave = 0.98968.

Adding oxygen (X1(s)) yields R2
ave = 0.98969. Adding both oxygen (X1(s)) and

chloropigment X4(s) leads to R2
ave = 0.98972. These results imply that including

oxygen and chloropigment does not obviously enhance the interpretability of the

variability in the temperature (Y (t)). In other words, oxygen and chloropigment

have no significant effects on temperature in these data. In addition, R2
ave of

the selected model is very close to one, meaning that it is enough to explain the

temperature using only the selected predictors, potential density and salinity.

Finally, we illustrate the prediction accuracy by using the RPE defined in

Section 5. For comparison, we calculate the RPEs for the selected model including

only potential density and salinity, the marginal model containing only oxygen

and chloropigment, and the full model involving all four functional predictors. We

repeat the following procedure 200 times to calculate the averages and standard

deviations of the RPEs corresponding to these three models. In each repetition,

we randomly split the 200 samples into a training set with 140 samples and a test

set with 60 samples. We estimate the bivariate functional coefficients using the

training set, and then conduct predictions for the responses in the test set. The

average and standard deviation of the RPEs over 200 repetitions are 1.599×10−2

and 0.234 × 10−2, respectively, for the selected model, 61.7 × 10−2 and 12.5 ×
10−2, respectively, for the marginal model, and 1.606 × 10−2 and 0.238 × 10−2,

respectively, for the full model. The lowest RPE indicates that the selected

model based on the proposed procedure has the best prediction performance. In

contrast, the marginal model performs badly in terms of prediction. This implies

that it would be inappropriate to predict the temperature using only the oxygen

and chloropigment levels. Overall, the temperature variables in the data set are

well predicted when using the two functional predictors, potential density and

salinity, which are selected by the proposed method. In other words, our method

is feasible for analyzing this data set and exhibits good performance.

7. Conclusion

We develop a variable selection procedure for multiple function-on-function

linear models using the FPCA-based estimation method and the group SCAD
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regularization. Note that our method employs, but is not limited to the group

SCAD regularization idea. Other regularization procedures, including the group

LASSO Yuan and Lin (2006) and group MCP Huang, Breheny and Ma (2012),

can also be adapted to our method.

A computational algorithm based on the group coordinate descent is pro-

vided for implementing the proposed method. FPCA-based estimators for the

bivariate functional coefficients in the regression model are constructed. With

some mild conditions, we show that the resulting estimators are consistent and

exhibit sparsity. To achieve high efficiency, we present a data-driven procedure for

choosing the tuning parameters of the proposed method. Simulation results show

that the proposed method is highly effective in identifying the relevant functional

predictors and in estimating the bivariate functional coefficients simultaneously.

A real-data example demonstrates the effectiveness of our method.

We have examined the variable selection problem for a function-on-function

linear regression with a fixed number of functional predictors. Whether the pro-

posed method and its associated theoretical properties hold for a regression in

which the number of functional predictors diverges with the sample size is unclear,

and warrants further investigation. Variable selection for function-on-function

quadratic regression models and regressions with both functional and scalar pre-

dictors are additional interesting topics for future research.

Supplementary Material

The online Supplementary Material includes additional simulation studies.
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Appendix

A. Proof for Theorem 1.

For convenience, we set mnj ≡ mn for all j ∈ {1, . . . , p} in the follow-

ing proofs. Let V = (η11, . . . , η1kn , . . . , ηn1, . . . , ηnkn)T and ε = (ε11, . . . , ε1kn ,

. . . , εn1, . . . , εnkn)T be two nkn × 1 vectors. To facilitate the theoretical analy-
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sis, we adopt a strategy similar to Kong et al. (2016) that reparameterizes bjkl
by writing θjkl = ρ

1/2
jl bjkl, so that the FPC scores serving as predictor vari-

ables are on a common scale of variability. This reparameterization is used only

for technical derivations and does not appear in the estimation procedure. Let

Aj = diag(ρ
1/2
j1 , . . . , ρ

1/2
jmn

), Žj = ẐjA
−1
j , Ňj = Žj ⊗ Ikn , Ž = (Ž1, . . . , Žp),

Ň = (Ň1, . . . , Ňp), θj = (Aj ⊗Ikn)bj and θ = (θT1 , . . . ,θ
T
p )T . The minimization

of (4.1) is equivalent to minimizing

Ln(θ) = ‖V̂ − Ňθ‖2 + 2n

p∑
j=1

Jλnj
(‖bj‖).

Given univariate functions f , g and a bivariate function G, write ‖f‖,
∫
fg

(or 〈f, g〉), f ⊗ g and |||G||| for {
∫
T f

2(t)dt}1/2,
∫
T f(t)g(t)dt, f(t)g(s) and {

∫
S
∫
T

G2(t, s)dtds}1/2, respectively. To prove Theorem 1, we first state some useful

lemmas.

Lemma 1. Under conditions (C1), (C2) and (C4), for j, j1, j2 = 1, . . . , p, l, l1, l2 =

1, . . . ,mn, k = 1, . . . , kn and i = 1, . . . , n, we have

|ξ̂ijl − ξijl|2ρ−1jl = Op
(
n−1lα2+2

)
, |η̂ik − ηik|2 = Op

(
n−1k2

)∣∣∣∣∣ 1n
n∑
i=1

{
η̂ikξ̂ijl − E(ηikξijl)

}
ρ
−1/2
jl

∣∣∣∣∣ = Op

(
n−1/2k + n−1/2lα2/2+1

)
and ∣∣∣∣∣ 1n

n∑
i=1

{
ξ̂ij1l1 ξ̂ij2l2 − E(ξij1l1ξij2l2)

}
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
= Op(n

−1/2l
α2/2+1
1 + n−1/2l

α2/2+1
2 ).

Proof of Lemma 1. Note that ψ̂jl is the eigenfunction of ĈXj
, ψjl is the

eigenfunction of CXj
. For any fixed j, we obtain that |||ĈXj

− CXj
||| = Op

(
n−1/2

)
by Theorem 2.5 of Horváth and Kokoszka (2012). Note that ‖ψ̂jl − ψjl‖2 =

Op
(
n−1l2

)
(see, e.g., Kong et al. (2016); Imaizumi and Kato (2018)). We have

|ξ̂ijl − ξijl|2ρ−1jl =

∣∣∣∣∫ Xij

(
ψ̂jl − ψjl

)∣∣∣∣2 ρ−1jl
≤ ‖Xij‖2‖ψ̂jl − ψjl‖2ρ−1jl = Op

(
n−1lα2+2

)
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uniformly for l = 1, . . . ,mn. By condition (C1), it holds that

E

(
1

n

n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

)2

= n−1E
[
{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)}

2 (ρj1l1ρj2l2)
−1
]

≤ n−1E
(
ξ2ij1l1ρ

−1
j1l1

ξ2ij2l2ρ
−1
j2l2

)
≤ n−1

{
E(ξ4ij1l1ρ

−2
j1l1

)E(ξ4ij2l2ρ
−2
j2l2

)
}1/2

≤ Cn−1.

Therefore, we have∣∣∣∣∣ 1n
n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

∣∣∣∣∣ = Op(n
−1/2).

Note that∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

ξ̂ij1l1

(
ξ̂ij2l2 − ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

ξij2l2

(
ξ̂ij1l1 − ξij1l1

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤ 1

n

(
n∑
i=1

ξ̂2ij1l1ρ
−1
j1l1

)1/2{ n∑
i=1

(
ξ̂ij2l2 − ξij2l2

)2
ρ−1j2l2

}1/2

+
1

n

(
n∑
i=1

ξ2ij2l2ρ
−1
j2l2

)1/2{ n∑
i=1

(
ξ̂ij1l1 − ξij1l1

)2
ρ−1j1l1

}1/2

.

Since E(
∑n

i=1 ξ
2
ij2l2

ρ−1j2l2) = n for any l2 = 1, . . . ,mn, we have
∑n

i=1 ξ
2
ij2l2

ρ−1j2l2 =

Op(n) uniformly for l2 = 1, . . . ,mn. Moreover,

n∑
i=1

ξ̂2ij1l1ρ
−1
j1l1
≤ 2

n∑
i=1

(
ξ̂ij1l1 − ξij1l1

)2
ρ−1j1l1 + 2

n∑
i=1

ξ2ij1l1ρ
−1
j1l1

= Op(l
α2+2
1 + n) = Op(n)
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uniformly for l1 = 1, . . . ,mn. Then, we have∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣ = Op(l
α2/2+1
1 n−1/2+l

α2/2+1
2 n−1/2).

It then follows that∣∣∣∣∣ 1n
n∑
i=1

{
ξ̂ij1l1 ξ̂ij2l2 − E(ξij1l1ξij2l2)

}
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
ξ̂ij1l1 ξ̂ij2l2 − ξij1l1ξij2l2

)
(ρj1l1ρj2l2)

−1/2

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

{ξij1l1ξij2l2 − E(ξij1l1ξij2l2)} (ρj1l1ρj2l2)
−1/2

∣∣∣∣∣
= Op(l

α2/2+1
1 n−1/2 + l

α2/2+1
2 n−1/2),

uniformly for l1, l2 = 1, . . . ,mn. Similarly, we can prove that |η̂ik − ηik|2 =

Op
(
n−1k2

)
and |n−1

∑n
i=1{η̂ikξ̂ijl−E(ηikξijl)}ρ

−1/2
jl |=Op

(
n−1/2k + n−1/2lα2/2+1

)
uniformly for k = 1, . . . , kn and l = 1, . . . ,mn.

Denote the minimum and maximum eigenvalues of a symmetric matrix A by

ρmin(A) and ρmax(A). Let ξjl be the lth FPC score of the jth functional predic-

tor and define the pmn×1 vector Z̃ = (ξ11ρ
−1/2
11 , . . . , ξ1mn

ρ
−1/2
1mn

, . . . , ξp1ρ
−1/2
p1 , . . . ,

ξpmn
ρ
−1/2
pmn )T to combine all functional predictors. Let U1 = E(Z̃Z̃T ), H̃ =

Z̃ ⊗ Ikn and U2 = E(H̃H̃T ). Denote the true vector value of b = (bT1 , . . . , b
T
p )T

by b0 = (bT01, . . . , b
T
0p)

T , and the true value of θ = (θT1 , . . . ,θ
T
p )T by θ0 =

(θT01, . . . ,θ
T
0p)

T . Let P = Ň(ŇT Ň)−1ŇT , ∆1 = P (V − Ňθ0) and ∆2 =

P (V̂ − Ňθ0). Lemma 2 characterizes the eigenvalues of the matrix ŇT Ň/n,

and Lemma 3 concerns the asymptotic order of ∆2 which is handled in the proofs

of our main theorems.

Lemma 2. Under conditions (C1), (C2), (C4) and (C6), we have |ρmin(ŇT Ň/n)

− ρmin(U2)| = op(1) and |ρmax(ŇT Ň/n)− ρmax(U2)| = op(1).

Proof of Lemma 2. Let ‖ · ‖1 denote the L1 norm for a matrix. It is obvious

that |ρmin(ŽT Ž/n)− ρmin(U1)| ≤ ‖ŽT Ž/n−U1‖1. By Lemma 1, we have∥∥∥∥ŽT Ž

n
−U1

∥∥∥∥
1

≤ Op

{
mn∑
l1=1

(
n−1/2l

α2/2+1
1 + n−1/2mα2/2+1

n

)}
= Op(m

α2/2+2
n n−1/2).
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Hence, it follows that∣∣∣∣ρmin

(
ŽT Ž

n

)
− ρmin(U1)

∣∣∣∣ = Op(m
α2/2+2
n n−1/2).

Note that ŇT Ň = (Ž ⊗ Ikn)T (Ž ⊗ Ikn) = (ŽT Ž)⊗ Ikn and U2 = U1 ⊗ Ikn , we

then have ρmin(ŇT Ň/n) = ρmin(ŽT Ž/n) and ρmin(U2) = ρmin(U1). Therefore,

we conclude that∣∣∣∣ρmin

(
ŇT Ň

n

)
− ρmin(U2)

∣∣∣∣ = Op(m
α2/2+2
n n−1/2) = op(1).

by condition (C4). Similarly, we can obtain that∣∣∣∣ρmax

(
ŇT Ň

n

)
− ρmax(U2)

∣∣∣∣ = op(1).

Lemma 3. Under conditions (C1)–(C4) and (C6), we have ‖∆2‖2 = Op(r
2
n),

where r2n = mnkn + nm−α2−2γ2+1
n + k3n.

Proof of Lemma 3. By condition (C6) and Lemma 2, we know that ŇT Ň is

invertible, hence P exists. We first explore the asymptotic order for ∆1. Observe

that

∆1 = P (V − Ňθ0) = P {ε+ ν + (N − Ň)θ0},

where ε = (ε11, . . . , ε1kn , . . . , εn1, . . . , εnkn)T and ν = (ν11, . . . , ν1kn , . . . , νn1, . . . ,

νnkn)T are two nkn × 1 vectors with νik =
∑p

j=1

∑∞
l=mn+1 ξijlb0jkl, N is the

matrix similar to Ň , where ξ̂ijlρ
−1/2
jl is replace by ξijlρ

−1/2
jl .

For Pε, we have E‖Pε‖2 = E(εTPε) = E{E(εTPε|X)} = E[tr{PE(εεT )}].
By condition (C1) and the orthonormality of φk, it follows that E(ε2ik) = E〈εi, φk〉2

≤ E‖εi‖2 ≤ C and E(εi1k1εi2k2) = 0 for i1 6= i2 or (and) k1 6= k2, i1, i2 = 1, . . . , n

and k1, k2 = 1, . . . , kn. Then, we obtain that E‖Pε‖2 ≤ Ctr(P ) = O(pmnkn),

hence ‖Pε‖2 = Op(mnkn).

For P (N − Ň)θ0, by Lemma 1 and condition (C3), we have

‖P (N − Ň)θ0‖2 ≤ ‖(N − Ň)θ0‖2

=

n∑
i=1

kn∑
k=1


p∑
j=1

mn∑
l=1

(ξijl − ξ̂ijl)b0jkl


2

≤ O

 n∑
i=1

kn∑
k=1

p∑
j=1

{
mn∑
l=1

(ξijl − ξ̂ijl)b0jkl

}2

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≤ O


n∑
i=1

kn∑
k=1

p∑
j=1

mn

mn∑
l=1

(ξijl − ξ̂ijl)2b20jkl


≤ O


n∑
i=1

kn∑
k=1

p∑
j=1

Op

(
mn

mn∑
l=1

n−1k−2γ1 l2−2γ2

) = Op(mn).

For Pν, it follows that

E‖Pν‖2 ≤ E‖ν‖2 = E


n∑
i=1

kn∑
k=1

 p∑
j=1

∞∑
l=mn+1

ξijlb0jkl

2
≤ O


n∑
i=1

kn∑
k=1

p∑
j=1

E

( ∞∑
l=mn+1

ξijlb0jkl

)2


= O


n∑
i=1

kn∑
k=1

p∑
j=1

Var

( ∞∑
l=mn+1

ξijlb0jkl

)
= O

 n∑
i=1

kn∑
k=1

p∑
j=1

∞∑
l=mn+1

ρjlb
2
0jkl


≤ O

 n∑
i=1

kn∑
k=1

p∑
j=1

∞∑
l=mn+1

k−2γ1 l−α2−2γ2


= O(nm−α2−2γ2+1

n ),

where the last two lines holds by conditions (C2) and (C3). Thus, we have

‖Pν‖2 = Op(nm
−α2−2γ2+1
n ). Then, we obtain that

‖∆1‖2 ≤ O{‖Pε‖2 + ‖P (N − Ň)θ0‖2 + ‖Pν‖2} = Op(mnkn + nm−α2−2γ2+1
n ).

Moreover, by Lemma 1, we can prove that

‖∆2 −∆1‖2 = ‖P (V̂ − Ňθ0)− P (V − Ňθ0)‖2 ≤ ‖V̂ − V ‖2 = Op(k
3
n).

Hence, it follows that

‖∆2‖2 = ‖∆2 −∆1 + ∆1‖2 ≤ 2‖∆2 −∆1‖2 + 2‖∆1‖2 = Op(r
2
n).

Lemma 4. Under conditions (C1)–(C6), let r2n = mnkn +nm−α2−2γ2+1
n +k3n, we

have
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(i) there exists a local minimizer θ̂ of Ln(θ) such that ‖θ̂− θ0‖2 = Op(n
−1r2n);

(ii) Pr(θ̂j = 0, j = d+ 1, . . . , p)→ 1.

Proof of Lemma 4 (i). Since only the first d functional predictors are signifi-

cant, we constrain Ln (θ) on the subspace {θ ∈ Rpknmn : θj = 0, j = d+ 1, . . . , p}
and prove the consistency in this subspace. Let αn = rnn

−1/2, it suffices to show

that for any given δ > 0, there exists a large constant C such that

Pr

{
inf
‖u‖=C

Ln (θ0 + αnu) > Ln (θ0)

}
> 1− δ, (A.1)

where u = (uT1 , . . . ,u
T
p )T is a pknmn×1 vector. This implies with probability at

least 1− δ that there exists a local minimizer θ̂ of Ln (θ) in the ball {θ0 + αnu :

‖u‖ ≤ C} such that ‖θ̂ − θ0‖ = Op(αn). Under condition (C4), it follows

that αnρ
−1/2
jmn

≤ O(rnm
α2/2
n n−1/2) = o(1). With Jλnj

(0) = 0, applying Taylor

expansion, we have

Ln (θ0 + αnu)− Ln (θ0)

= ‖V̂ − Ň(θ0 + αnu)‖2 − ‖V̂ − Ňθ0‖2

+2n

p∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

≥ ‖αnŇu‖2 − 2αn(V̂ − Ňθ0)T Ňu

+2n

d∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

= ‖αnŇu‖2 − 2αn∆
T
2 Ňu

+2n

d∑
j=1

{Jλnj
(‖b0j + αn(Aj ⊗ Ikn)−1uj‖)− Jλnj

(‖b0j‖)}

≥ nα2
nρmin

(
ŇT Ň

n

)
‖u‖2 − 2n1/2αn‖∆2‖ρ1/2max

(
ŇT Ň

n

)
‖u‖

+2n

d∑
j=1

{J ′λnj
(‖b0j‖)αn‖(Aj ⊗ Ikn)−1uj‖

+J ′′λnj
(‖b0j‖)α2

n‖(Aj ⊗ Ikn)−1uj‖2(1 + o(1))}

≥ nα2
nC1‖u‖2 − n1/2αnC2‖∆2‖‖u‖

+2n

d∑
j=1

{J ′λnj
(‖b0j‖)αn‖(Aj ⊗ Ikn)−1uj‖
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+J ′′λnj
(‖b0j‖)α2

n‖(Aj ⊗ Ikn)−1uj‖2(1 + o(1))}, (A.2)

where C1 and C2 are some positive constants, and the last inequality follows by

Lemma 2 and condition (C6). By Lemma 3, we know that ‖∆2‖ = Op(n
1/2αn).

Then, the second term on the right-hand side of (A.2) is on the order Op(nα
2
n‖u‖).

By choosing sufficiently large C, the first term nα2
nC1‖u‖2 dominates the sec-

ond term n1/2αnC2‖∆2‖‖u‖ in ‖u‖ = C. According to Fan and Li (2001),

we know that the SCAD penalty satisfies J ′λnj
(‖b0j‖) = J ′′λnj

(‖b0j‖) = 0 for all

j = 1, . . . , d since ‖b0j‖ ≥ C3 for some constant C3. Thus, the third term in

(A.2) is also dominated by the first term. Hence, with sufficiently large C, we

have Ln (θ0 + αnu) > Ln (θ0), which implies that there exists a local minimizer

θ̂ of Ln(θ) such that ‖θ̂ − θ0‖ = Op(αn).

Proof of Lemma 4 (ii). Let θ(1) = (θT1 , . . . ,θ
T
d )T and θ(2) = (θTd+1, . . . ,θ

T
p )T .

Then, θ = (θ(1)T ,θ(2)T )T , θ̂ = (θ̂(1)T , θ̂(2)T )T , and the true coefficient vector is

θ0 = (θ
(1)T
0 ,θ

(2)T
0 )T with θ

(2)
0 = 0. We now prove that θ̂(2) = 0 with probability

1. It is sufficient to show that with probability tending to 1 as n → ∞, for any

given θ(1) satisfying ‖θ(1) − θ(1)0 ‖ = Op(αn) and for any constant C,

Ln
{(
θ(1)T ,0T

)T}
= min
‖θ(2)‖≤Cαn

Ln
{(
θ(1)T ,θ(2)T

)T}
. (A.3)

Note that

Ln
{(
θ(1)T ,0T

)T}
− Ln

{(
θ(1)T ,θ(2)T

)T}
=
[
Ln
{

(θ(1)T ,0T )T
}
− Ln

{
(θ

(1)T
0 ,0T )T

}]
−
[
Ln
{

(θ(1)T ,θ(2)T )T
}
− Ln

{
(θ

(1)T
0 ,0T )T

}]
=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2
−2
(
V̂ − Ň(θ

(1)T
0 ,0T )T

)T
Ň
(

(θ(1) − θ(1)0 )T ,0T
)T

−
∥∥∥∥Ň (

(θ(1) − θ(1)0 )T ,θ(2)T
)T∥∥∥∥2

+2
(
V̂ − Ň(θ

(1)T
0 ,0T )T

)T
Ň
(

(θ(1) − θ(1)0 )T ,θ(2)T
)T
− 2n

p∑
j=d+1

Jλnj
(‖bj‖)

=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2 − ∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,θ(2)T

)T∥∥∥∥2
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+2
(
V̂ − Ň(θ

(1)T
0 ,0T )T

)T
Ň
(
0T ,θ(2)T

)T
− 2n

p∑
j=d+1

Jλnj
(‖bj‖)

=

∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,0T

)T∥∥∥∥2 − ∥∥∥∥Ň (
(θ(1) − θ(1)0 )T ,θ(2)T

)T∥∥∥∥2
+2∆T

2 Ň
(
0T ,θ(2)T

)T
− 2n

p∑
j=d+1

Jλnj
(‖bj‖)

≤ nρmax

(
ŇT Ň

n

)∥∥∥((θ(1) − θ(1)0 )T ,0T
)∥∥∥2 − nρmin

(
ŇT Ň

n

)
‖θ − θ0‖2

+2n1/2‖∆2‖ρ1/2max

(
ŇT Ň

n

)
‖(0T ,θ(2)T )‖ − 2n

p∑
j=d+1

Jλnj
(‖bj‖), (A.4)

where the last inequality holds by Cauchy-Schwarz inequality. By Lemma 2,

Lemma 3, condition (C6) and ‖θ− θ0‖ = Op(αn), we know that the first, second

and third terms on the right-hand side of (A.4) are on the order Op(nα
2
n). By

conditions (C2), (C5) and ‖θ(2)‖ ≤ Cαn, we know that for all j ∈ {d+ 1, . . . , p},
‖bj‖ = ‖(Aj ⊗Ikn)−1θj‖ = O(m

α2/2
n αn) = o(λnj), and then n

∑p
j=d+1 Jλnj

(‖bj‖)
= (

∑p
j=d+1 nλnj‖bj‖){1 + o(1)}. Since λnj/(m

α2/2
n αn) → ∞, it follows that

nλnj‖bj‖ ≥ nm
α2/2
n αn‖θj‖{λnj/(mα2/2

n αn)} is of higher order than nα2
n, which

implies that the last term on the right-hand side of (A.4) dominates the first, sec-

ond and third terms on the right-hand side of (A.4). Hence, we have Ln{(θ(1)T ,
0T )T } < Ln{(θ(1)T ,θ(2)T )T } for any given ‖θ(2)‖ ≤ Cαn and large n. Combin-

ing with the proof of part (i), (A.3) holds. Therefore, we have θ̂(2) = 0 with

probability tending to 1.

Now, we prove the main theorem.

Proof of Theorem 1. For part (a), for j = 1, . . . , p, the definitions of β̂j and

β0j yield that

‖β̂j − β0j‖2 =

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

b̂jklφ̂k ⊗ ψ̂jl −
∞∑
k=1

∞∑
l=1

b0jklφk ⊗ ψjl

∥∥∥∥∥
2

=

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

(
b̂jkl − b0jkl

)
φ̂k ⊗ ψ̂jl +

kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k ⊗ ψ̂jl − φk ⊗ ψjl

)

−
kn∑
k=1

∞∑
l=mn+1

b0jklφk ⊗ ψjl −
∞∑

k=kn+1

∞∑
l=1

b0jklφk ⊗ ψjl

∥∥∥∥∥
2
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≤ 4

kn∑
k=1

mn∑
l=1

(
b̂jkl − b0jkl

)2
+ 4

∥∥∥∥∥
kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k ⊗ ψ̂jl − φk ⊗ ψjl

)∥∥∥∥∥
2

+ 4

kn∑
k=1

∞∑
l=mn+1

b20jkl + 4

∞∑
k=kn+1

∞∑
l=1

b20jkl

, 4I1 + 4I2 + 4I3 + 4I4.

Given b̂j = (Aj ⊗ Ikn)−1θ̂j and b0j = (Aj ⊗ Ikn)−1θ0j , by condition (C4)

and the results in Lemma 4, it follows that I1 = ‖b̂j − b0j‖2 = Op(m
α2+1
n knn

−1

+m−2γ2+1
n + n−1k3nm

α2
n ). Note that

‖φ̂k ⊗ ψ̂jl − φk ⊗ ψjl‖2 = ‖φ̂k ⊗ (ψ̂jl − ψjl) + (φ̂k − φk)⊗ ψjl‖2

≤ 2‖ψ̂jl − ψjl‖2 + ‖φ̂k − φk‖2.

It holds that ‖φ̂k−φk‖ = Op(n
−1/2k) and ‖ψ̂jl−ψjl‖ = Op(n

−1/2l) (see, e.g., Kong

et al. (2016); Imaizumi and Kato (2018)). Then, by Cauchy-Schwarz inequality,

we have

I2 =

∫
T

∫
S

{
kn∑
k=1

mn∑
l=1

b0jkl

(
φ̂k(t)ψ̂jl(s)− φk(t)ψjl(s)

)}2

dsdt

≤ mnkn

kn∑
k=1

mn∑
l=1

b20jkl

∥∥∥φ̂k ⊗ ψ̂jl − φk ⊗ ψjl∥∥∥2
≤ Op

{
mnkn

kn∑
k=1

mn∑
l=1

k−2γ1 l−2γ2
(
k2n−1 + l2n−1

)}
= Op(mnknn

−1),

where the last line holds because γ1 > 3/2 and γ2 > 3/2 by condition (C3).

We can deduce that

I3 ≤ O

(
kn∑
k=1

∞∑
l=mn+1

k−2γ1 l−2γ2

)
= O(m−2γ2+1

n ).

Similarly, we obtain I4 = O(k−2γ1+1
n ). Hence, for j = 1, . . . , p, we conclude that

‖β̂j − β0j‖2 = Op(m
α2+1
n knn

−1 + k−2γ1+1
n + m−2γ2+1

n + k3nm
α2
n n
−1) = op(1) by

condition (C4). Moreover, it follows by Lemma 4 that part (b) holds. This

completes the proof of Theorem 1.
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Friedman, J., Hastie, T., Höfling, H. and Tibshirani, R. (2007). Pathwise coordinate optimiza-

tion. Ann. Appl. Stat. 1, 302–332.

Guan, T., Lin, Z. and Cao, J. (2020). Estimating truncated functional linear models with a

nested group bridge approach. J. Comput. Graph. Statist. 29, 620–628.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear

regression. Ann. Statist. 35, 70–91.

Harezlak, J., Coull, B. A., Laird, N. M., Magari, S. R. and Christiani, D. C. (2007). Penalized

solutions to functional regression problems. Comput. Statist. Data Anal. 51, 4911–4925.
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