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Abstract: An extension of quantile regression is proposed to model zero-inflated

outcomes, which have become increasingly common in biomedical studies. The

method is flexible enough to depict complex and nonlinear associations between the

covariates and the quantiles of the outcome. We establish the theoretical properties

of the estimated quantiles, and develop inference tools to assess the quantile effects.

Extensive simulation studies indicate that the novel method generally outperforms

existing zero-inflated approaches and the direct quantile regression in terms of the

estimation and inference of the heterogeneous effect of the covariates. The approach

is applied to data from the Northern Manhattan Study to identify risk factors for

carotid atherosclerosis, measured by the ultrasound carotid plaque burden.

Key words and phrases: Constrained post-estimation smoothing, nonnormal asymp-

totic distribution, quantile regression, zero-inflated outcomes.

1. Introduction

Zero-inflated outcomes are common in disease etiology studies. One such

example is carotid plaque (thickening of part of the artery wall), which mea-

sures carotid atherosclerosis, a proximate risk factor for stroke and cardiovascular

diseases. Figure 1a shows the frequency histograms of two carotid plaque fea-

tures, namely plaque area (plaqarea, in mm2) and plaque echodensity (plaqden,

in mm−3), measured using high-resolution ultrasounds in 1,462 participants of

the NOrthern MAnhattan Study (NOMAS) (Cheung et al. (2017)). Specifically,

the plaque area measures the size of the plaque, and the echodensity indicates

the texture of the plaque. When an individual does not have detectable plaque,

both variables are zero. One objective of the study is to understand how the

potential determinants of cardiovascular risks, including demographics, health

behaviors, and medical conditions, are associated with the natural progress of

carotid atherosclerosis.
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(a) Frequency histograms of plaque area (plaqarea, left) and echodensity (plaqden, right) in
carotid plaque data.
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(b) Empirical quantiles of plaque echodensity (plaqden) against systolic blood pressure. The
relationship is nonlinear because the proportion of zeros changes with systolic blood pressure.

Figure 1. Plots of carotid plaque data.

A typical modeling approach for zero-inflated outcomes assumes that the

distribution of the outcome is a mixture of a degenerated distribution at zero

and another parametric distribution(s), such as the zero-inflated Poisson (ZIP)

regression (Lambert (1992)) or generalized ZIP (GZIP) mixture regression (Lim,

Li and Philip (2014)). More generally, Jorgensen (1987) considered a compound

Poisson-gamma (CPG) distribution within the generalized linear model frame-

work. However, these parametric methods often impose strong assumptions on
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the outcome distributions, likely leading to biased results and invalid inferences.

The standard quantile regression (Koenker and Bassett (1978)) is more ro-

bust, because it avoids parametric specifications, and more versatile at describing

heterogeneous effects at different quantile levels. However, it cannot be applied

directly to model zero-inflated outcomes, for two reasons. First, the feasibility of

the estimation and the validity of the inference for quantile regression models are

based on the assumption that the conditional distribution of the outcome is ab-

solutely continuous, which is violated with the presence of zero inflation. Second,

the direct quantile regression implicitly assumes a constant chance of observing

a positive outcome, which is unlikely because the degree of zero inflation varies

across subjects. Furthermore, because the probability of the outcome taking the

value zero varies according to the covariates, the quantile function of the outcome

depends on the covariates in a nonlinear fashion, which is not readily depicted in

a regular quantile regression model. To illustrate this point, Figure 1b plots the

τth empirical quantiles of echodensity (plaqden) by subgroups based on systolic

blood pressure, where τ = 0.10, 0.25, 0.50, 0.75, 0.90. It shows that individuals

with lower systolic blood pressure are associated with a greater proportion of ze-

ros, resulting in a nonlinear relationship between the quantiles of echodensity and

systolic blood pressure. This characteristic is not captured by a linear quantile

regression that ignores the point mass at zero.

In this paper, we propose a two-part modeling strategy that uses a logistic re-

gression to model the probability of being positive, and a linear quantile regression

to model the positive part, with the quantile levels adjusted by subject-specific

zero inflation rates. The model generalizes the parametric two-part regression ap-

proach of Duan et al. (1983) and the hurdle regression model of Mullahy (1986).

Although conceptually straightforward, obtaining a valid estimation and inference

of the proposed two-part quantile regression model is challenging, for two reasons.

First, the neighboring quantile estimation around the change point from zero to

positive may have an unbounded variance. The variance of the unadjusted esti-

mated quantile process is inversely proportional to the local data density. When

approaching the change point, the local density of positive data could go to zero,

in which case, the variance is pushed to infinity. Second, estimations and infer-

ences of the quantile covariate effect are complicated. The quantile effect is a

composite of the logistic and quantile regression components, and it depends on

the values of the covariate of interest and other covariates in the two-part model.

To address these challenges, we develop an algorithm to achieve a consistent

estimation of the conditional quantiles, while circumventing the unbounded vari-

ance at the quantile level where the conditional quantile changes from zero to
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positive. The consistency and asymptotic distribution of the resulting estimated

conditional quantile function are established. To facilitate inferences, we define

marginal quantile treatment effects, and develop inference tools to determine

their statistical significance. Similar applications of two-part quantile regression

models are used in Heras, Moreno and Vilar-Zanón (2018) to estimate actuarial

profiles and provide new insights for actuarial science. The work, however, does

not include any theoretical validation or development. To the best of our knowl-

edge, our work provides the first theoretically valid estimation and inference of

two-part quantile regression models for zero-inflated outcomes.

The rest of the paper is organized as follows. Section 2 presents our pro-

posed model, the model-based conditional quantile estimation, and its asymp-

totic properties. The model-based inference tool for the quantile treatment ef-

fects and model-based predictions are discussed in Section 2.3. We compare the

finite-sample performance of the proposed method with that of the uncorrected

direct quantile regression and parametric approaches for zero-inflated outcomes

using simulation studies in Section 3. Section 4 presents a real application of the

proposed method, studying the effect of risk factors for carotid atherosclerosis,

measured by the ultrasound carotid plaque burden, comparing the results with

those competing methods. Section 5 concludes the paper.

2. Proposed Methods

2.1. Model

Suppose Y is a nonnegative, zero-inflated outcome, and X is a vector of

covariates that may be associated with the quantiles of Y . Throughout the

paper, we denote QY (τ |X) as the τth conditional quantile of Y given X.

To estimate the distribution of the zero-inflated Y , we decompose its condi-

tional distribution as

F (Y |X) = P (Y = 0|X) + F (Y |X, Y > 0)P (Y > 0|X),

and then model the two components F (Y |X, Y > 0) and P (Y > 0|X) separately.

We first assume that the probability of observing a positive Y , P (Y > 0|X),

follows a logistic regression model,

logit{P (Y > 0|X)} = X>γ, (2.1)

where γ is the true coefficient, such that P (Y > 0|X) = exp(X>γ)/{1 +

exp(X>γ)}. Next, we assume that for any nominal quantile level τ ∈ (0, 1),
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the conditional quantile of Y given Y > 0 is a linear function of X,

QY (τ |X, Y > 0) = X>β(τ). (2.2)

The model implies that the conditional quantile function X>β(τ) is nonnegative,

while neither the covariate X nor the coefficient function β(τ) is required to be

positive. In addition, we assume that for any X,

lim
τ→0+

QY (τ |X, Y > 0) = 0, (2.3)

which ensures that the quantile function QY (τ |X) is continuous at zero. Note

that, in practice, different subsets of the covariate profile X can be used as the

two covariates in Models (2.1) and (2.2).

Under Models (2.1) and (2.2) and Assumption (2.3), the τth conditional

quantile of Y given the covariates X can be written as

QY (τ |X) = I{τ > 1− π(γ,X)} ·X>β ◦ Γ(τ ;X,γ), (2.4)

where π(γ,X) = P (Y > 0|X) is the probability of observing a positive Y given

the covariates X. The function Γ(τ ;X,γ) : (1 − π(γ,X), 1) → (0, 1) maps the

target quantile level τ of Y to the nominal quantile level τs of Y |Y > 0 in Model

(2.2). Specifically,

β ◦ Γ(τ ;X,γ) = β(τs), and τs = Γ(τ ;X,γ) = max

(
τ − {1− π(γ,X)}

π(γ,X)
, 0

)
.

(2.5)

Equation (2.5) is derived from the fact that, for a τ > 1− π(γ,X),

τ = P{Y ≤ QY (τ |X)|X}
= {1− π(γ,X)}+ π(γ,X)P{Y ≤ QY (τs |X, Y > 0)|X, Y > 0}.

The proposed quantile model for the zero-inflated outcome (2.4) is flexible

enough to accommodate nonlinear heterogeneous quantile associations and a wide

range of outcome distributions by linear models only.

Suppose we have independent and identically distributed (i.i.d.) random

samples {(xi, yi); i = 1, . . . , n} following the conditional quantile model (2.4). We

can estimate the coefficients γ using a logistic regression (i.e., regress I{yi > 0}
against xi), and then estimate the quantile coefficient function β(τ) by regressing

the positive yi against xi using a quantile regression at a sequence of quantile
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levels. Specifically, γ̂n and β̂n(τ) are solutions to the objective functions,

γ̂n = argmax
γ

1

n

n∑
i=1

[
I(yi > 0) log

{
π(γ,xi)

1− π(γ,xi)

}
+ log{1− π(γ,xi)}

]
,

β̂n(τ) = argmin
β(τ)

1

n

n∑
i=1

ρτ{yi − x>i β(τ)}I(yi > 0)

= argmin
β(τ)

1

n

n∑
i=1

{yi − x>i β(τ)}{τ − I(yi − x>i β(τ) < 0)}I(yi > 0).

However, owing to the change point at τ = 1 − π(γ,x) and the fact that

Var{β̂n(τ)} → ∞ when τ → 0+, it is nontrivial to combine γ̂n and β̂n(τ) to

obtain a consistent estimation of QY (τ |x) with a bounded variance around the

change point. In Section 2.2, we propose a piecewise estimator for the conditional

quantiles and establish its consistency and asymptotic distribution.

2.2. Estimation of QY (τ |x)

Recall that γ̂n and β̂n(τ) are the estimated coefficients from Models (2.1)

and (2.2). The procedure to estimate the conditional quantile function QY (τ |x)

is implemented as follows:

Step 1. Estimate the probability of observing a positive Y given the covariates

x,

π(γ̂n,x) =
exp(x>γ̂n)

1 + exp(x>γ̂n)
.

Step 2. Let δ be a constant in (0, 1/2). Divide the support of the target quantile

levels (0, 1) of Y into three sub-intervals An, Bn, and Cn, such that (0, 1) =

An ∪Bn ∪ Cn, and

An =
{
τ : 0 < τ < 1− π(γ̂n,x)

}
,

Bn =
{
τ : 1− π(γ̂n,x) ≤ τ ≤ 1− π(γ̂n,x) + n−δ

}
,

Cn =
{
τ : 1− π(γ̂n,x) + n−δ < τ < 1

}
.

Step 3. Estimate the quantile coefficients β̂n at the nominal quantile level Γ(1−
π(γ̂n,x) + n−δ;x, γ̂n) and perform an interpolation if the target quantile

level τ of Y belongs to Bn. If τ is in Cn, directly estimate β̂n at Γ(τ ;x, γ̂n).

The estimator Q̂Y (τ |x), as shown in Figure 2, is then a piecewise function
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Figure 2. Piecewise estimator of the conditional quantile function QY (τ |x).

defined by

Q̂Y (τ |x) = 0 · I{τ ∈ An}
+x>β̂n ◦ Γ(1− π(γ̂n,x) + n−δ;x, γ̂n)

· τ − {1− π(γ̂n,x)}
n−δ

· I{τ ∈ Bn}

+x>β̂n ◦ Γ(τ ;x, γ̂n) · I{τ ∈ Cn}. (2.6)

The first and third pieces of the estimator (2.6) correspond to the two parts

in (2.4), while the second piece is a linear interpolation between zero and the

conditional quantile x>β̂n ◦Γ(1− π(γ̂n,x) +n−δ;x, γ̂n). The width of the inter-

polation window, n−δ, is designed to converge more slowly than the convergence

rate of γ̂n, so that we do not need to estimate at the problematic change point,

1 − π(γ̂n,x). In Section 2.2.1, we establish the asymptotic properties of the

estimator Q̂Y (τ |x) in (2.6).

2.2.1. Asymptotic properties of Q̂Y (τ |x)

In this subsection, we establish the asymptotic properties of Q̂Y (τ |x), where

x denotes a placeholder. We first make the following assumptions:

Assumption 1. Observations {(xi, yi); i = 1, . . . , n} are i.i.d. from a joint dis-

tribution P , where xi is a p-dimensional vector of covariates.

Assumption 2. The conditional distribution function FY (·|x, Y > 0) is abso-

lutely continuous with a positive continuous density fY |Y >0(·|x) on [0,∞).
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Assumption 3. The conditional quantile function has the property

lim
τ→0+

QY (τ |x, Y > 0) = 0.

Assumption 4. The quantile coefficient function β(τ) is differentiable at ∀ τ ∈
(0, 1), with a bounded first derivative that supτ∈(0,1) β̇(τ) = supτ∈(0,1)(dβ(t)/dt

) |t=τ<∞.

Assumption 5. ‖E(XX>)‖∞ <∞.

Assumption 2 is borrowed from Theorem 4.1 of Koenker (2005) to ensure

the validity of the linear quantile regression on the positive part, and it incor-

porates Theorem 1 on Page 640 of Shorack and Wellner (1986) to help establish

the limiting distribution at the change point. Assumption 3 is the connectivity

constraint stated in (2.3). Assumptions 2 and 3 together ensure a nonnormal

limiting distribution of Q̂Y (τ |x) at the special quantile level τ = 1 − π(γ,x).

Assumption 5 ensures that the following matrices exist and are positive definite:

D1,β(τ) = E
[
π(γ,X)fY |Y >0{X>β(τ) |X}XX>

]
, (2.7)

D0 = E
{
π(γ,X)XX>

}
, (2.8)

D1,γ = E
[
π(γ,X){1− π(γ,X)}XX>

]
. (2.9)

Assumptions 4 and 5 both impose constraints on the quantities involved in the

theory of Q̂Y (τ |x), for any τ > 1− π(γ,x), ensuring a normal asymptotic distri-

bution. Then, we have Theorem 1, the proof of which is provided in the online

Supplementary Material.

Theorem 1. Under Model (2.4) and Assumptions 1–5, for any given τ ∈ (0, 1),

we have

(i) Q̂Y (τ |x) is a consistency estimator; that is, as n→∞,

Q̂Y (τ |x)→
p
QY (τ |x).

(ii) Q̂Y (τ |x) has different limiting distributions, given different relationships be-

tween τ and π(γ,x):

(a) If τ < 1− π(γ,x), Q̂Y (τ |x) is super-efficient; that is, as n→∞,

√
n
(
Q̂Y (τ |x)− 0

)
→
p

0.
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(b) If τ = 1 − π(γ,x), denote Q
′

Y (0|x, Y > 0) as the right derivative,

which is well defined because β(τ) is right differentiable at zero. Then

as n→∞,

√
n
(
Q̂Y (τ |x)− 0

)
→
d

{1− π(γ,x)}
√
x>D−1

1,γx Q
′

Y (0|x, Y > 0)Z0I{Z0 > 0},

where D1,γ is defined in (2.9) and Z0 ∼ N(0, 1).

(c) If τ > 1− π(γ,x), as n→∞,

√
n
(
Q̂Y (τ |x)−QY (τ |x)

)
→
d
N(0, Σ1 + Σ2),

where

Σ1 = Γ(τ ;x,γ)
{

1− Γ(τ ;x,γ)
}
x>D−1

1,β◦Γ(τ ;x,γ)D0D
−1
1,β◦Γ(τ ;x,γ)x,

Σ2 =
{

1− Γ(τ ;x,γ)
}2{

1− π(γ,x)
}2
x>D−1

1,γx

·x>β̇ ◦ Γ(τ ;x,γ) β̇ ◦ Γ(τ ;x,γ)>x,

and D1,β(τ),D0, and D1,γ are defined in (2.7), (2.8), and (2.9), respec-

tively.

Note that at the change point τ = 1−π(γ,x), Q̂Y (τ |x) follows a zero-inflated

half-normal limiting distribution with a variance determined by the variation

from the logistic regression and the right derivative of the conditional quantile

at zero. For τ > 1 − π(γ,x), the asymptotic distribution is normal, while the

two components of the asymptotic variance, Σ1 and Σ2, are composites of varia-

tions in the logistic and quantile regression models. In contrast to the standard

asymptotic results of the linear quantile regression, the Hessian matrix, D1,β(τ)

in (2.7) is evaluated on the conditional density given Y > 0, and adjusted using

the individual zero inflation rate, π(γ,X). The Jacobian matrix, D0 in (2.8), is

also adjusted using the subject-specific zero inflation. Because only the positive

y contribute to the quantile regression model fitting, π(γ,X) can be regarded

as a propensity score, and adjusts the contribution of each observation when

estimating the covariance matrix.

2.2.2. Choice of δ

The estimation of the conditional quantile function Q̂Y (τ |x) involves a nui-

sance parameter δ. An inappropriate choice of δ could introduce bias into the
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conditional quantile estimation via the linear interpolation on Bn. A large δ that

approaches 1/2 is preferred, because a faster convergent interpolation area in-

duces a smaller bias. However, a δ that is too large would inflate the variance of

the estimated quantile around the change point, leading to unstable estimation.

Thus, we recommend choosing δ = 0.499.

If predicting future outcome values is of interest, we can perform a cross-

validation on a grid of potential δ to determine the optimal choice. Details of

prediction methods based on the proposed model and the corresponding measure

of prediction quality are discussed in Section 2.3.2.

2.2.3. Constrained post-estimation smoothing

The piecewise estimator outlined in (2.6) guarantees a consistent estimation

of the quantile function. The estimated function, however, is nonsmoothing. To

achieve a smooth estimation, one can take advantage of the constrained B-spline

smoothing (COBS) introduced by He and Ng (1999).

We propose estimating the linear quantile model (2.2) on a sequence of kn
evenly spaced quantile levels [1/(kn + 1), kn/(kn + 1)], where kn = o(n1/2), which

is slightly finer than n−δ. Then, we construct β̂n(τ) as the linear spline expanded

from the estimated quantile coefficients. As shown by Wei and Carroll (2009),

β̂n(τ) is a uniformly consistent estimator of β(τ). Next, we apply COBS to the

resulting Q̃Y (τ |x, Y > 0) = x>β̂n(τ) to obtain the smoothed Q̂Y (τ |x, Y > 0).

After matching the kn nominal quantile levels to the target quantile levels based

on the estimated probability of observing a positive Y , we can obtain the final

estimate Q̂Y (τ |x).

The asymptotic properties of the smooth estimator are not discussed in this

paper. Its finite sample performance is not inferior to that of the nonsmooth ver-

sion, as shown in the simulation studies in Section 3 and the real data application

in Section 4.

2.3. Model-based inference and prediction

2.3.1. Average quantile effect and its estimation

Under the proposed two-part model, the covariates X could influence the

conditional quantiles of Y in two ways: changing the probability of observing a

positive Y , and changing the quantiles of Y |Y > 0. Consequently, as Model (2.4)

shows, the quantile effect of a covariate Xj depends on the actual value of Xj ,

and also varies with the levels of other covariates X(−j), where X(−j) stands for

the covariates excluding Xj . Hence, we define the average quantile effect (AQE)
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of the covariate Xj by

∆τ (Xj ;u, v) = EX(−j)

{
QY (τ |Xj = u,X(−j))−QY (τ |Xj = v,X(−j))

}
. (2.10)

The AQE, ∆τ (Xj ;u, v), is the marginal change of the τth quantile of Y due to

the change of Xj from v to u. When Xj is the treatment assignment, coded

as one for the treatment and zero for the placebo, we have the average quantile

treatment effect (AQTE),

∆τ (Xj ; 1, 0) = EX(−j)

{
QY (τ |Xj = 1,X(−j))−QY (τ |Xj = 0,X(−j))

}
, (2.11)

which is the expected quantile treatment effect in the target population.

A natural sample estimator of the AQE is

∆̂τ (Xj ;u, v) =
1

n

n∑
i=1

{
Q̂Y (τ |Xj = u,x

(−j)
i )− Q̂Y (τ |Xj = v,x

(−j)
i )

}
, (2.12)

where Q̂Y (·) is the estimated conditional quantile function defined in (2.6). In

what follows, we provide the asymptotic properties of ∆̂τ (Xj ;u, v). We first make

the following assumption:

Assumption 6. The coefficient functions β ◦ Γ(τ ;Xj ,X
(−j),γ) are smooth

functions of X(−j) with compact supports.

Then, we have Theorem 2, the proof of which is deferred to the Supplemen-

tary Material.

Theorem 2. At a given quantile level τ ∈ (0, 1), ∆̂τ (Xj ;u, v) is the estimator

constructed in (2.12) for the AQE defined in (2.10). Under Assumptions 1–6,

there exists a tight process G(X(−j)), indexed by X(−j), such that

√
n
(

∆̂τ (Xj ;u, v)−∆τ (Xj ;u, v)
)
→
d

∫
G(X(−j))dPX(−j) .

If the distribution PX(−j) of X(−j) is absolutely continuous w.r.t. the Lebesgue

measure, we have

√
n
(

∆̂τ (Xj ;u, v)−∆τ (Xj ;u, v)
)
→
d

∫
G(X(−j))dPX(−j) = N(0, σ2),

where

σ2 =

∫ ∫
Cov{G(X(−j)), G(X∗(−j))} dPX(−j) dPX∗(−j) ,
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with X(−j) and X∗(−j) i.i.d. under PX(−j).

Although the asymptotic variance, σ2, can be decomposed into tractable

components, estimating it directly is complicated. In practice, we use the paired

bootstrap to numerically construct a bootstrap percentile interval, and then con-

duct hypothesis testing for the marginal covariate effect accordingly.

2.3.2. Prediction

Accurate clinical predictions are of great importance and interest in medical

applications. Owing to its percentile interpretation, a conditional quantile func-

tion can be conveniently used to construct prediction intervals. Let xnew be the

covariate profile of a new patient. We can construct the (1 − α) × 100% level

prediction interval of his/her outcome as[
Q̂Y

(
α

2

∣∣∣∣xnew

)
, Q̂Y

(
1− α

2

∣∣∣∣xnew

)]
,

where Q̂Y (·) is the estimated conditional quantile function defined in (2.6). In

addition, we propose using the conditional median,

m̂Y |xnew
= Q̂Y (0.5|xnew),

as the predicted value. Conventionally, the predicted value is defined as the

estimated conditional mean given xnew, which can be estimated by integrating

the conditional quantile function, that is, µ̂Y |xnew
=
∫ 1

0 Q̂Y (τ |xnew) dτ . However,

owing to the zero-inflated nature of the outcome, the conditional median would

be a better choice. For example, if a subject has over 80% chance of obtaining a

zero outcome, given his/her covariate profile, zero (the conditional median) could

be a more sensible prediction than the mean-based one. Consequently, to achieve

an optimal prediction, we use cross-validations with some chosen measures to

select the covariates and nuisance parameters δ.

3. Simulation

3.1. Simulation settings

In this section, we present a numerical study to illustrate the finite-sample

performance of the proposed methods, and to compare this with that of the direct

quantile regression and existing parametric models for zero-inflated outcomes. We

generate simulated data in the context of the carotid plaque data, with echoden-

sity (plaqden) as the outcome, and male and systolic blood pressure (systolic) as
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covariates. For each sample, we first generate the discrete covariate, male, from

Bernoulli(0.5), and the continuous covariate, systolic, from N(150, 152). We then

generate a binary indicator D from a Bernoulli trial with the success probability

P (D = 1|X) = π(γ,X) =
exp(−1.92 + 0.19 male + 0.02 systolic)

1 + exp(−1.92 + 0.19 male + 0.02 systolic)
,

where X = (male, systolic)>, and the parameters γ = (−1.92, 0.19, 0.02)> were

estimated based on the carotid plaque echodensity of the NOMAS data. For a

sample with D = 1, we generate plaqden from the conditional quantile function

Qplaqden(τ |X,plaqden > 0) = β0(τ) + β1(τ) male + β2(τ) systolic,

where the true coefficient functions, β(τ), are estimated based on echodensity

again, and plotted in Figure S1 of the Supplementary Material. Specifically, we

randomly draw a variable U from U(0, 1), and then generate a positive value of

plaqden as β0(U) + β1(U) male + β2(U) systolic. For a sample with D = 1, we

assign the value zero to plaqden. We generate n = 500 random samples in one

data set, and repeat the simulation process 1,000 times.

We compare the proposed methods to the following existing approaches: (1)

direct quantile regression, (2) ZIP regression, (3) hurdle regression, and (4) CPG

regression. The direct quantile regression assumes the outcome is absolutely

continuous. When the data contain a probability mass at zero, the estimation

algorithm often fails to converge. To circumvent this numerical difficulty, we add

a small perturbation (∼ N(0, 10−14)) to the zero-valued outcomes, and apply the

linear quantile regression to the perturbed data directly. To use the ZIP/hurdle

models designed for count data, we round the outcomes to integers before esti-

mation. Though the semi-continuous setting does not favor ZIP/hurdle models,

we select them as comparisons because they represent the widely applied para-

metric mixture/two-part model, and the rounding does not substantially affect

their results.

3.2. Estimation of conditional quantile functions

In this section, we compare the estimation accuracy of the conditional quan-

tiles by the various methods. We estimate the quantile functions given 10 covari-

ate profiles, which are formed by male ∈ {0, 1} and systolic ∈ {130.78, 139.88,

150.00, 160.12, 169.22} (the 0.10th, 0.25th, 0.50th, 0.75th, and 0.90th empirical

quantiles of systolic blood pressure in the NOMAS data). We consider three
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measures to assess the estimation performance:

RIMSEQ̂ =

∫
E{Q̂Y (τ |X)−QY (τ |X)}2dτ∫

QY (τ |X)2dτ
,

RIBias2
Q̂

=

∫
{E Q̂Y (τ |X)−QY (τ |X)}2dτ∫

QY (τ |X)2dτ
,

RIVarQ̂ =

∫
E{Q̂Y (τ |X)− E Q̂Y (τ |X)}2dτ∫

QY (τ |X)2dτ
,

where RIMSEQ̂ is the relative integrated mean squared error, RIBias2
Q̂

is the

relative integrated bias squared, and RIVarQ̂ is the relative integrated variance.

Table 1 reports RIMSEQ̂, RIBias2
Q̂

, and RIVarQ̂ of the estimated conditional

quantile functions using the proposed estimation with smoothing, proposed esti-

mation without smoothing, direct quantile regression, and competing parametric

approaches, based on the 10 sets of covariate values. In general, the proposed

methods have much smaller biases than that of the direct quantile regression.

The reduction in bias by the nonsmooth estimation is 0.24%, on average, across

the 10 cases (0.10% vs. 0.84%, 0.05% vs. 0.33%,. . . , 0.03% vs. 0.33%). By the

smooth estimation, the mean reduction of the bias is also 0.24% (0.09% vs. 0.84%,

0.04% vs. 0.33%, . . . , 0.04% vs. 0.33%). Note that the proposed methods show

more noticeable advantages when systolic is assumed to contain more extreme

values. For example, with (male, systolic)=(0, 130.78), the bias of the nons-

mooth proposed estimator is 0.10%, while that of the direct method is 0.84%,

yielding a reduction in bias of 0.74%. However, with (male, systolic)=(1, 150.00),

the reduction is only 0.08% (0.03% vs. 0.11%). Furthermore, while the proposed

nonsmooth estimation leads to larger variances, the additional post-estimation

smoothing can reduce the variance by approximately 0.08%, on average (1.07%

vs. 1.19, 0.64% vs. 0.73%, . . ., 0.44% vs. 0.52%).

We also note that the bias of the direct method is more evident around the

change point, that is, the very τ where the quantile function QY (τ |X) changes

from zero to positive. To investigate this in detail, we evaluate RIMSEQ̂, RIBias2
Q̂

,

and RIVarQ̂ in an interval of half-length of 0.1 around the change point. The

results are summarized in Table S1 in the Supplementary Material. As shown in

Table S1, the bias in the neighborhood of the change point is remarkably reduced

by the proposed methods compared to the direct approach, especially for the

covariates with more extreme values.

In general, the parametric approaches perform poorly, even worse than the

direct quantile regression (Table 1 and S1). This is because the performance of
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Table 1. Summary of RIMSE(%), RIBias2(%), and RIVar(%) of the estimated condi-
tional quantile functions of echodensity on the entire QY (τ |X).

Proposed (smooth) Proposed (nonsmooth) Direct

(gender, systolic) RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar

(0, 130.78) 1.16 0.09 1.07 1.28 0.10 1.19 1.45 0.84 0.61

(0, 139.88) 0.68 0.04 0.64 0.77 0.05 0.73 0.79 0.33 0.45

(0, 150.00) 0.48 0.03 0.45 0.55 0.03 0.52 0.56 0.18 0.39

(0, 160.12) 0.48 0.03 0.45 0.56 0.03 0.53 0.57 0.14 0.43

(0, 169.22) 0.58 0.04 0.54 0.68 0.04 0.64 0.81 0.27 0.54

(1, 130.78) 0.91 0.07 0.84 0.99 0.07 0.92 0.85 0.28 0.57

(1, 139.88) 0.55 0.04 0.51 0.61 0.04 0.57 0.61 0.21 0.40

(1, 150.00) 0.39 0.03 0.36 0.44 0.03 0.41 0.43 0.11 0.32

(1, 160.12) 0.39 0.03 0.36 0.45 0.03 0.42 0.47 0.12 0.35

(1, 169.22) 0.47 0.04 0.44 0.56 0.03 0.52 0.79 0.33 0.46

ZIP Hurdle CPG

(gender, systolic) RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar

(0, 130.78) 5.94 3.65 2.29 5.94 3.65 2.29 6.21 5.84 0.37

(0, 139.88) 5.43 3.81 1.61 5.43 3.81 1.61 5.59 5.32 0.27

(0, 150.00) 5.18 3.90 1.27 5.18 3.90 1.27 5.16 4.94 0.22

(0, 160.12) 5.09 3.83 1.26 5.09 3.83 1.26 4.97 4.74 0.23

(0, 169.22) 5.11 3.73 1.38 5.11 3.73 1.38 4.99 4.69 0.30

(1, 130.78) 6.88 4.85 2.03 6.88 4.85 2.03 4.59 4.23 0.36

(1, 139.88) 6.49 5.05 1.45 6.49 5.04 1.45 4.10 3.83 0.27

(1, 150.00) 6.31 5.18 1.13 6.31 5.18 1.13 3.77 3.55 0.21

(1, 160.12) 6.25 5.16 1.09 6.25 5.16 1.09 3.63 3.40 0.23

(1, 169.22) 6.26 5.10 1.17 6.26 5.10 1.17 3.71 3.40 0.30

the parametric methods depends on whether the model assumptions are satisfied.

Neither the mixture (or combination) of zeros and the Poisson distribution nor

the CPG distribution is an appropriate model for echodensity in this simulation.

3.3. Point and interval estimations of AQTE

In this section, we compare the point and interval estimates of the average

quantile treatment effect (AQTE) of being male by the various methods. With

each simulated data set, the point estimate of AQTE is computed as stated

in (2.12). Next, in each of the 1,000 simulation runs, we conduct 500 paired

bootstraps and construct the (1−α)×100%-level bootstrap percentile confidence

interval of the estimated AQTE[
∆̂(B)
τ (male; 1, 0)α/2, ∆̂

(B)
τ (male; 1, 0)1−α/2

]
,
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with the estimated AQTE based on each of the bootstrapped data sets

∆̂(B)
τ (male; 1, 0) (3.1)

=
1

n

n∑
i=1

{Q̂(B)
plaqden(τ |male = 1, systolic

(B)
i )− Q̂(B)

plaqden(τ |male = 0, systolic
(B)
i )}.

Note that Theorem 2 in Section 2.3.1 guarantees a normal limiting distribu-

tion of the estimated AQTE because systolic follows a continuous distribution.

Here, we set α = 0.10 and use a grid of representative quantile levels, τ =

0.10, 0.25, 0.50, 0.75, 0.90. For the parametric approaches, we can estimate any

quantity of the conditional distribution based on the estimated parameters, to-

gether with the instance (male=0 or 1, systolic
(B)
i ). Therefore, using the ZIP,

hurdle, and CPG regression models, we can also estimate the conditional quan-

tiles and estimate the AQTE, as stated in (3.1). We use three measures to evalu-

ate the inference performance for the AQTE: (1) the bias of the average estimate

of the AQTE, (2) the coverage rate of the 90% bootstrap percentile confidence

interval, and (3) the average length of the confidence interval.

As Table 2 shows, the proposed methods provide the most accurate esti-

mates of the AQTEs on all five quantiles. In addition, their coverage rates are

all close to the nominal level, 90%. Though the direct quantile regression gives

the best estimate, zero, at τ = 0.10, its coverage rate is 0%. This reflects the

fact that the direct method cannot capture the different levels of zero inflation

between different covariate profiles at lower quantiles of the outcome. The cov-

erage rates of the ZIP and hurdle regressions at higher quantiles are remarkably

lower than 90%, which signifies their limitation in describing the extreme tails

of outcome distributions. The CPG model produces the worst coverage rates

when τ = 0.25, 0.50. Although the coverage of the ZIP and hurdle regressions

at lower quantiles and that of the CPG model at extreme quantiles are close to

the nominal rate, the average lengths of the intervals are much wider than those

of the proposed approaches. Thus, for making inferences based on the AQTE,

the proposed quantile regression model outperforms the direct quantile regression

and existing parametric methods in all respects.

4. Analysis of the Carotid Plaque Data

In this section, we apply the proposed method to analyze the motivating

carotid plaque data, NOMAS, presented in Section 1, to examine how various

risk factors affect carotid atherosclerosis. The risk factors considered include

high-density lipoprotein, triglyceride, low-density lipoprotein, race and ethnicity,
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Table 2. Summary of the average estimate, bias, coverage rate (%) of the 90% bootstrap
percentile confidence interval, and the average length of the interval for the AQTE of
male on the τth quantile of echodensity.

Proposed Proposed Direct ZIP Hurdle CPG

τ AQTE Measure (smooth) (nonsmooth)

Estimate 0.04 0.04 0.00 0.35 0.35 -1.42

0.10 0.0036 Bias 0.04 0.04 0.00 0.35 0.35 -1.42

Coverage 85.80 85.80 0.00 86.70 86.70 86.30

Length 0.67 0.77 0.00 4.36 4.36 15.23

Estimate 6.52 6.51 5.94 13.72 13.72 -0.81

0.25 7.5189 Bias -1.00 -1.01 -1.58 6.20 6.20 -8.33

Coverage 89.10 89.30 89.00 89.80 89.80 34.30

Length 36.34 39.49 39.47 64.37 64.37 8.89

Estimate -6.48 -6.53 -7.00 -4.36 -4.36 -1.19

0.50 -6.6304 Bias 0.15 0.10 -0.37 2.27 2.27 5.44

Coverage 90.60 90.70 91.60 82.10 82.10 62.40

Length 15.86 15.49 14.11 11.16 11.16 13.12

Estimate -3.22 -3.26 -3.23 -5.14 -5.14 -1.57

0.75 -2.9669 Bias -0.25 -0.29 -0.26 -2.17 -2.17 1.40

Coverage 91.60 92.60 93.10 81.10 81.10 83.50

Length 11.73 11.33 11.74 10.58 10.58 16.75

Estimate -1.38 -1.55 -1.57 -5.46 -5.46 -1.88

0.90 -0.9258 Bias -0.45 -0.62 -0.64 -4.53 -4.53 -0.95

Coverage 90.20 93.40 93.80 60.10 60.10 89.20

Length 13.21 16.55 17.03 10.89 10.89 19.86

diabetes, blood pressure, smoking status, higher education, and body mass index.

We present the estimated AQEs of the risk factors in Section 4.1, the model fitness

in Section 4.2, and the prediction performance in Section 4.3.

4.1. Estimated AQEs

We apply the proposed quantile regression (without smoothing) to study

the carotid plaque echodensity (plaqden) and to estimate the risk factors’ AQEs

following (2.12) in Section 2.3.1. The estimated AQEs for individual covariates

are plotted in Figure 3. The black solid and red dashed lines represent the quantile

functions of echodensity given two distinctive covariate values of interest. The

gray area indicates the range of quantile levels where the corresponding AQE

reaches the 95% pointwise significance. As shown in Figure 3, race and ethnicity,

diabetes, systolic and diastolic blood pressure, smoking status, body mass index,

and glomerular filtration rate significantly impact echodensity across all quantile
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Figure 3. Estimated AQEs of selected covariates by the proposed method (without
smoothing) on all quantiles of echodensity, which are presented as the differences between
the dashed and solid lines. Significant AQEs are highlighted by the shaded area.

levels. Moreover, the effects vary with the quantile level.

For example, although it is well known that a higher systolic blood pressure

is associated with a higher value of plaque echodensity, the quantile-specific ef-

fects provide a better understanding of how systolic blood pressure affects the

texture of the plaque. The most significant difference between the two levels (120

mmHg vs. 170 mmHg) is around the median. For patients with a systolic blood

pressures of 120 mmHg, 50% have their echodensity controlled below 20, while

50% of the patients with a systolic blood pressure of 170 mmHg have echodensity
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over 80. The difference becomes smaller as the quantile level increases, suggesting

that the risk of an extreme plaque burden is comparable between the two levels.

Our analysis also reveals that the risk of having a positive echodensity is differ-

ent between the two levels. Among individuals with a systolic blood pressure

of 170 mmHg, there is a substantial likelihood of having positive plaque, while

20% of those with a systolic blood pressure of 120 mmHg are expected to have

zero plaque. The direct quantile regression would miss this difference. To illus-

trate, we plot the estimated AQEs of systolic blood pressures using the proposed

method and the direct quantile method (Figure S2 in the Supplementary Ma-

terial). As expected, the direct quantile method shows no difference in the risk

of positive plaque and, consequently, underestimates the risk of a plaque burden

among patients with a systolic blood pressure of 170 mmHg. On the other hand,

though the parametric methods distinguish the risk of taking positive plaque,

they provide a biased approximation of the tail events. As presented in Figure

S2, the ZIP and hurdle models underestimate the risk of systolic blood pressure

for severe patients with more accumulated plaque than 70% of individuals in the

120 and 170 mmHg groups, while the CPG model consistently overestimates the

risk. To validate the inference by the proposed method, we check the model

fitness in the next section.

4.2. Goodness-of-fit

To measure the goodness-of-fit of a model, we simulate the outcomes based

on the estimated model, and compare the simulated outcomes with those ob-

served from the data using histograms and Q-Q plots. If a model fits the data

well, we expect the distributions of the simulated and the observed outcomes to

be comparable. Such a visual goodness-of-fit assessment has been used in Hey-

man, Tabatabai and Lakshman (1992), and is an effective way to illustrate the

goodness-of-fit of quantile models.

Figure S3a in the Supplementary Material shows that the proposed meth-

ods, with and without smoothing, provide the best fit to the echodensity data.

The distributions of the simulated outcomes under parametric models are very

different from the observed outcomes. Although the direct quantile regression

provides a proper fit at the upper tail of the outcome distribution, it misses the

lower tail (where the outcome tends to take the zero value). Interestingly, when

the plaque area is the outcome (Figure S3b in the Supplementary Material), the

direct quantile regression also misses the higher tail. This difference indicates that

the two features, plaque echodensity and plaque area, have quite different distri-

butions, and that the proposed method is robust and advantageous, regardless of
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the outcome distributions.

4.3. Prediction

In this section, we use five-fold cross-validation to compare the prediction

performance of the various methods. As outlined in Section 2.3.2, we predict an

outcome using the estimated conditional median given the covariate profile, and

construct the 95% prediction upper bound using the 0.95th conditional quantile.

We use three measures to assess the prediction performance: (1) the correctly

predicted rate for zero outcomes, (2) the coverage rate of the 95% prediction

upper bound, and (3) its average length for positive outcomes. Because of the

small perturbation added to the zero values, the direct quantile regression may

predict negative values. We then treat the negative predictions as zeros.

As shown by Table S2 in the Supplementary Material, the proposed methods

outperform the direct quantile regression in terms of predicting the zero out-

comes of the two plaque burden features. The performance of the parametric

approaches strongly relies on how well the parametric assumptions hold for the

data. Although ZIP and hurdle regressions work as well as the proposed methods

in predicting zeros, their 95% upper bounds have actual coverages of 82% and

84% for echodensity and plaque area, respectively. The CPG model correctly

predicts most of the zeros for plaque area (Table S2, bottom), but it demon-

strates poor performance in predicting the zeros for echodensity (Table S2, top).

In conclusion, the proposed methods deliver reasonably good predictions for both

zero and positive outcomes of echodensity and plaque area.

5. Conclusion

We have developed a model-based estimation algorithm, proposed a condi-

tional quantile inference tool, and derived theoretical results of the estimation

and inference for a two-part quantile regression model addressing zero-inflated

outcomes. Although the model has been used previously in several applications,

this study provides the first effort to investigate its theoretical properties and

develop valid inference tools.

The piecewise estimation of the conditional quantile proposed in this paper

involves a data-driven interpolation window around the change point from zero

to positive. It is capable of handling features that are either zero or greater

than a certain value. If that threshold T is known by some domain knowledge,

we can interpolate to connect the endpoint value T and the estimated quantile

x>β̂n ◦ Γ(1− π(γ̂n,x) + n−δ;x, γ̂n). If T is unknown, it is robust to regard the
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value at the left end as zero for interpolation, and the resulting estimator in (2.6)

is asymptotically consistent at any fixed quantile level, by Theorem 1. When

the τ of interest is close to the problematic change point where the conditional

quantile changes from zero to positive, the limiting distribution is a zero-inflated

half-normal, and the inference requires special care. If the target τ is beyond the

change point, the estimated conditional quantile is asymptotically normal, and

the inference can be made using standard methods. While it is not straightfor-

ward to make inferences about covariate effects in a two-part model, our AQE

provides an effective way of quantifying the quantile treatment effects, conduct-

ing corresponding hypothesis testing, and constructing confidence intervals. In

addition, we have provided tools for model-based predictions.

Using simulation studies and an analysis of carotid plaque data, we have

shown that the proposed methods provide more accurate and robust estimations,

better goodness-of-fit, more accurate predictions, and more accurate and com-

prehensive inferences than those of the direct quantile regression and existing

parametric zero-inflated methods.

With a limited sample size, one possible concern is that the estimated condi-

tional quantile function XTβ(τ) could be negative or nonmonotone for some X

values and some quantile levels, especially when they are outlying in the covariate

space, contradicting the fact that Y is nonnegative. In this case, one could follow

a similar approach to that of Chernozhukov, Fernández-Val and Galichon (2010)

to “rearrange” the estimated quantiles to ensure monotonicity and nonnegativity.

Chernozhukov, Fernández-Val and Galichon (2010) has shown that, owing to the

root-n convergence of the quantile estimates, such post-estimation rearrangement

does not affect the asymptotic behaviors of the quantile estimations under fairly

mild conditions. In applications where nonnegativity must be ensured for all X,

one could assume a linear quantile regression model on log(Y ). However, the

theories need to be carefully re-derived for such transformation quantile regres-

sions. To ensure connectivity between zero and positive quantiles for any X,

β(τ) should go to negative infinity around the change point, making the infer-

ence challenging. In fact, with adequate samples, even though one does not use

a post-estimation rearrangement or model log(Y ), the proposed model ensures

that the resulting conditional quantile function is nonnegative almost surely. We

have shown theoretically and numerically that the estimated quantile function

converges to the true value as the sample size increases.

There are various interesting directions in which to extend the proposed

methods. Although the main focus of this study is zero-inflated outcomes, the

proposed methods can be easily extended to model outcomes with point masses at
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multiple values. In addition, while the inference tools developed here are based on

the parametric logistic model and the linear quantile model for the positive part,

it would be interesting to examine inferences with the two models being replaced

with semiparametric or nonparametric models. Finally, the interval estimation in

this study is based on a pointwise inference. However, a simultaneous inference is

possible by incorporating a minimum p-value procedure (Lee, Wu and Lin (2012))

that determines statistical significance based on the smallest p-value across all

quantile levels and uses a resampling procedure to derive the threshold. One can

also construct a joint χ2 test statistic to test whether the logistic coefficients and

quantile coefficients at multiple quantile levels are simultaneously equal to zero.

Supplementary Material

The online Supplementary Material contains the proofs of Theorems 1 and

2 and additional figures and tables.
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