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Abstract: This paper presents a conditional test for the overall significance of the re-

gression coefficients in ultrahigh-dimensional linear models, conditional on a subset

of predictors. We first propose a conditional U-statistic test (CUT) based on an es-

timated U-statistic for a moderately high-dimensional linear regression model, and

derive its asymptotic distributions under some mild assumptions. However, the em-

pirical power of the CUT is inversely affected by the dimensionality of the predictors.

To this end, we further propose a two-stage CUT with screening (CUTS) proce-

dure based on a random data-splitting strategy to enhance the empirical power. In

the first stage, we divide the data randomly into two parts and apply conditional

sure independence screening to the first part to reduce the dimensionality. In the

second stage, we apply the CUT to the reduced model using the second part of

the data. To eliminate the effect of data-splitting randomness and to further en-

hance the empirical power, we also develop a powerful ensemble CUTSM algorithm

based on multiple data-splitting. We then prove that the family-wise error rate is

asymptotically controlled at a given significance level. We demonstrate the excel-

lent finite-sample performance of the proposed conditional tests usig Monte Carlo

simulations and two real-data analysis examples.

Key words and phrases: Hypothesis testing, linear regression coefficients, random

data splitting, ultrahigh dimensionality, variable screening.

1. Introduction

Linear regression is commonly used to explore the relationship between a re-

sponse and many predictors for ultrahigh-dimensional data, where the predictor

dimension p is much larger than the sample size n. On the one hand, existing

studies or researchers’ beliefs may provide prior information that some subset of

predictors is important for the response. On the other hand, feature screening

approaches and regularization methods may identify significant predictors for the

response. A natural question is whether given the subset of identified predictors,

the remaining ultrahigh-dimensional variables are still able to contribute to the
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response. If the answer is no, it is adequate to consider the linear model based

only on the subset of identified predictors. For example, Scheetz et al. (2006)

analyzed gene expression microarray data on 120 12-week-old male rats to gain

a broad perspective of gene regulation in the mammalian eye. As a result, they

detected 22 gene probes (refer to Table 2 in Scheetz et al. (2006)) relevant to

human eye disease from 18,976 different gene probes. We consider a linear re-

gression model of the response gene TRIM32, which has been proven to cause

the retinal disease Bardet–Biedl syndrome, against the other 18,975 gene probes.

It is interesting to test the overall significance of the regression coefficients of the

remaining ultrahigh-dimensional gene probes, conditioning on the subset of 22

identified gene probes. If the null hypothesis is significantly rejected, we need

to search for additional important gene probes from the remaining ultrahigh-

dimensional candidates. This motivates us to explore a new conditional test

procedure for ultrahigh-dimensional linear regression coefficients.

We consider a linear regression model

Yi = α+ XT

0iβ0 + XT

1iβ1 + εi, (1.1)

where Yi ∈ R1 is the ith response variable, and Xi = (XT

0i,X
T

1i)
T ∈ Rp is the

associated p-dimensional predictor vector, for 1 ≤ i ≤ n. Based on some prior

information, we assume that a subset of the predictors, denoted by X0i ∈ Rq,
are known in the linear model, where X1i ∈ Rp−q represents the vector of all

remaining covariates for the ith observation. Here, α is a nuisance intercept

parameter, β0 ∈ Rq and β1 ∈ Rp−q denote vectors of the regression coefficients

corresponding to X0i and X1i, respectively, and εi is a random error with mean

zero and finite variance σ2. We assume that p is much greater than the sample

size n, and that q is smaller than n. Our main goal is to test, for a given parameter

vector β10 ∈ Rp−q,

H0 : β1 = β10 versus H1 : β1 6= β10. (1.2)

In particular, rejecting H0 : β1 = 0 indicates an overall significant effect of all

remaining predictors on the response variable, conditional on the subset of known

predictors.

In the literature, unconditional tests for the overall significance of linear re-

gression coefficients have been well studied. In a classic multivariate analysis,

the conventional F-test is generally used when the predictor dimension p is fixed

and less than the sample size n. However, the power of the F-test has been

shown by Zhong and Chen (2011) to be adversely affected by an increased di-



CONDITIONAL TEST WITH SCREENING 1383

mension, even when p < n − 1. Wang and Cui (2013) generalized the F-test

for moderately high-dimensional linear regression coefficients, but it still fails

when p > n, owing to the singular sample covariance matrix. Geoman, Van

de Geer and Van Houwelingen (2006) proposed an empirical Bayes test for a

high-dimensional linear regression. Zhong and Chen (2011) developed a novel

test statistic based on a U-statistic of order four, and derived its null asymp-

totic distribution under the pseudo-independence assumption to accommodate

high dimensionality. Moreover, Cui, Guo and Zhong (2018) suggested an es-

timated U-statistic of order two and enhance the test power using the refitted

cross-validation (RCV) approach. Wang and Cui (2015) proposed a test for part

of the regression coefficients in high-dimensional linear models based on the idea

of Zhong and Chen (2011). However, when the predictor dimension is much

larger than n in ultrahigh-dimensional data, the power of the aforementioned

significance tests for ultrahigh-dimensional sparse linear models might deterio-

rate remarkably. Here, sparsity means that only a small subset of predictors are

truly important to the response. This motivates us to study how to enhance the

power of the conditional significance test under the sparsity assumption.

In this study, we develop a conditional test procedure based on random data

splitting to test the overall significance of the remaining ultrahigh-dimensional

predictors, given a subset of predictors in the linear model. This study makes the

following three main contributions. First, we propose a conditional U-statistic

test (CUT) based on an estimated U-statistic for a high-dimensional linear re-

gression model, and show that its asymptotic null distribution is normal, and can

be used directly to compute the critical region and the p-value when n is suffi-

ciently large. Second, in order to handle the ultrahigh dimensionality, we propose

an efficient two-stage testing procedure based on random data splitting, called

the conditional U-statistic test with screening (CUTS), to enhance the testing

power under the sparsity condition. Data-splitting techniques have been used

for various applications in the literature. Wasserman and Roeder (2009) used a

data-splitting strategy to control the family-wise error rate, leading to a powerful

variable selection procedure. Fan, Guo and Hao (2012) proposed a consistent re-

fitted cross-validation estimator for the error variance in an ultrahigh-dimensional

linear model based on a data-splitting technique. Simulations show that the two-

stage testing procedure performs much better for ultrahigh-dimensional sparse

linear models. Third, to eliminate the effect of single random data splitting, and

to further enhance both the empirical power and the algorithm stability, we also

develop a powerful ensemble algorithm, CUTSM , based on a multiple splitting

strategy. Motivated by the idea of Meinshausen, Meier and Buhlmann (2009),
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we demonstrate that the family-wise error rate of the CUTSM testing procedure

is asymptotically controlled at a given significance level. Note that random data

splitting is crucial to eliminate the effect of spurious correlations due to ultrahigh

dimensionality, and to avoid an inflation of the type-I error.

This work is also partially related to works in the post-selection inference

literature. Lockhart et al. (2014) proposed a covariance test for testing the

significance of a variable that enters the active set in the Lasso solution path

(Tibshirani (1996)). Lee et al. (2016) developed an approach for constructing

valid confidence intervals for the selected coefficients after model selection by the

Lasso. Moreover, Zhang and Zhang (2014) constructed confidence intervals for

low-dimensional parameters in high-dimensional linear models with homoscedas-

tic variance using the low-dimensional projection and regularization methods.

Wang, Zhong and Cui (2018) further proposed empirical likelihood ratio tests

for low-dimensional parameters in high-dimensional heteroscedastic linear mod-

els. Compared with these existing methods, our proposed CUTS procedure has

several different features. First, we focus on testing the overall significance of

the remaining ultrahigh-dimensional predictors, conditional on a given subset of

predictors, whereas the aforementioned methods tend to form valid confidence

intervals for a single coefficient or for low-dimensional ones. Second, it is not

necessary for the conditioning set in our CUTS procedure to be the variable sub-

set selected by model selection using, for example, the Lasso. It can be a subset

of predictors based on researchers’ experience or a brief that are independent of

the current data. Third, we consider ultrahigh dimensionality in which spurious

correlations play an important and nonignorable role in the significance test.

The remainder of the paper is organized as follows. In Section 2, we develop

the new conditional test and study its asymptotic distributions. We introduce

the two-stage CUTS procedure in Section 3. Section 4 examines the finite-sample

performance of the proposed procedure using Monte Carlo simulations and real-

data examples. A brief discussion is given in Section 5. All technical proofs are

relegated to the Appendix.

2. A New Conditional Test

2.1. Test statistic

Let Y = (Y1, Y2, . . . , Yn)T, X0 = (X01, . . . ,X0n)T, X1 = (X11, . . . ,X1n)T,

and ε = (ε1, ε2, . . . , εn)T. The linear model (1.1) can be rewritten as
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Y = α+ X0β0 + X1β1 + ε. (2.1)

To motivate the test statistic, we first assume that β0 is known and α = 0,

and that the ordinary least squares estimator for β1 is β̂1 = (XT

1X1)
−1XT

1(Y −
X0β0). Note that β̂1 is infeasible for high-dimensional data where p − q > n,

because XT

1X1 is not invertible. To test H0 : β1 = β10, we naturally consider the

difference between β̂1 and β10. Because β̂1 = β10 implies that XT

1(Y −X0β0 −
X1β10) = 0, we can use E‖X1i(Yi −XT

0iβ0 −XT

1iβ10)‖2 as an effective measure

of the discrepancy between β1 and β10. Following Zhong and Chen (2011), we

first use a U-statistic with XT

1iX1j(Yi −XT

0iβ0 −XT

1iβ10)(Yj −XT

0jβ0 −XT

1jβ10),

for i 6= j, as the kernel to estimate E‖X1i(Yi −XT

0iβ0 −XT

1iβ10)‖2 when α = 0,

and the mean of X1i is µ1 =0. Then, we remove the effect of nonzero µ1 and α

by centralizing both X1i and Yi −XT

0iβ0 −XT

1iβ10. Define

∆i,j(X1) = (X1i −X1)
T(X1j −X1) +

‖X1i −X1j‖2

2n
(2.2)

∆i,j(Y
∗) = (Y ∗i − Y

∗
)(Y ∗j − Y

∗
) +
|Y ∗i − Y ∗j |2

2n
, (2.3)

where Y∗ = Y −X0β̂0 −X1β10 and β̂0 is the ordinary least squares estimator

after regressing Y −XT

1β10 against X0. Note that the second terms in (2.2) and

(2.3) are proposed to correct the bias due to centralization, which implies that

E[∆i,j(X1)] = 0 and E[∆i,j(Y
∗)] = 0. Then, we define a new test statistic as

Tn =

(
1− 2

n

)−2(n
2

)−1 n∑
i=2

i−1∑
j=1

∆i,j(X1)∆i,j(Y
∗). (2.4)

Because the conditional test statistic (2.4) is based on the estimated U-statistic

of order two, we call it the conditional U-statistic test (CUT). This extends the

work of Cui, Guo and Zhong (2018) to the conditional testing problem.

2.2. Asymptotic distributions

We let Σ, Σ00, and Σ11 be the covariance matrices of the covariate vectors

Xi, X0i, and X1i, respectively, and let Σ01 = ΣT

10 be the covariance matrix of

X0i and X1i. Next, we study the asymptotic null distribution of the test statistic

Tn,p under some technical assumptions.

(C1) (p− q)→∞ as n→∞; Σ11 > 0, tr(Σ4
11) = o{tr2(Σ2

11)}.

(C2) Suppose Xi follows a p-dimensional elliptical contoured distribution, Xi =

µ + ΓRiUi, where Γ is a p × p matrix, Ui is a random vector uniformly
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distributed on the unit sphere in Rp, Ri is a nonnegative random variable

independent of Ui, and E(R2
i ) = p, V ar(R2

i ) = O(p). We also denote

X1i = µ1 + Γ1RiUi and X0i = µ0 + Γ0RiUi.

(C3) q = O(nκ), for 0 ≤ κ < 1/3, and the eigenvalues of Σ00 are bounded.

(C4) tr(Σ01Σ11Σ10) = o(n−2κtr(Σ2
11)).

Condition (C1) assumes the dimensionality of X1i, p− q, goes to infinity as the

sample size increases to infinity. Thus, it can accommodate (at least moder-

ately) high-dimensional problems. The second part of (C1) assumes the positive

definiteness of Σ11 to ensure the identification of the regression coefficients of

X1i. (C1) is similar to Assumption (2.8) in Zhong and Chen (2011). The ellip-

tical countered distribution in (C2) is widely assumed in multivariate statistical

analysis, and includes the multivariate normal distribution and multivariate t-

distribution as special cases. Condition (C3) requires that the dimension of the

known covariates, q, should be small or cannot increase faster than n1/3. Con-

dition (C4) is a technical assumption on the dependency between X0i and X1i.

Theorem 1 presents the asymptotic null distribution of the new CUT statistic Tn
in (2.4).

Theorem 1. Assume conditions (C1)–(C4) hold. Then, under H0 in (1.2),

nTn

σ2
√

2tr(Σ2
11)

D−→ N(0, 1) (2.5)

as n→∞, where
D−→ denotes convergence in distribution.

The asymptotic null distribution of Tn can be used to compute the critical

region or empirical p-value when the sample size is relatively large. The null

hypothesis H0 : β1 = β10 is rejected at the significance level α if

nTn ≥ σ̂2
√

2 ̂tr(Σ2
11)zα, (2.6)

where zα is the α upper-tailed critical value of the standard normal distribu-

tion, and σ̂2 and ̂tr(Σ2
11) are estimators of σ2 and tr(Σ2

11), respectively. We

can also compute the p-value by P (Z > ntn/σ̂
2

√
2 ̂tr(Σ2

11)), where tn is the ob-

served test statistic, and Z is a standard normal random variable. In practice,

σ̂2 can be the sample variance of the response, as in Zhong and Chen (2011),

or the refitted cross-validation variance estimator of Fan, Guo and Hao (2012)
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and Cui, Guo and Zhong (2018). In addition, ̂tr(Σ2
11) can be estimated unbi-

asedly by S1n − 2S2n + S3n, where S1n = (n− 2)!(n!)−1
∑

i 6=j(X
T

1iX1j)
2, S2n =

(n− 3)!(n!)−1
∑

i 6=j 6=k(X
T

1iX1jX
T

1jX1k), and S3n = (n− 4)!(n!)−1
∑

i 6=j 6=k 6=l(X
T

1i

X1jX
T

1kX1l).

Next, we study the asymptotic distribution of Tn under a class of local al-

ternatives (2.7) that prescribe a small discrepancy between β1 and β10. Similar

local alternatives are also considered in Zhong and Chen (2011) and in Cui, Guo

and Zhong (2018).

(β1 − β10)
TΣ11(β1 − β10) = o

(
n−κ

)
,

(β1 − β10)
TΣ3

11(β1 − β10) = o
{
n−1−κtr(Σ2

11)
}
, (2.7)

(β1 − β10)
TΣ10Σ01(β1 − β10) = o(n−1+κ).

Theorem 2. Assume conditions (C1)–(C4) hold. Then under the local alterna-

tives (2.7),
n[Tn − (β1 − β10)

TΣ2
11(β1 − β10)]

σ2
√

2tr(Σ2
11)

D−→ N(0, 1) (2.8)

as n→∞, where
D−→ denotes convergence in distribution.

Theorem 2 implies that the asymptotic power under the local alternatives

(2.7) of the CUT is

ΨCUT

n = Φ

−zα +
n(β1 − β10)

TΣ2
11(β1 − β10)

σ2
√

2tr(Σ2
11)

 , (2.9)

where Φ(·) denotes the distribution function of the standard normal distribu-

tion. If the signal-to-noise ratio (β1 − β10)
TΣ2

11(β1 − β10)/σ
2
√

2tr(Σ2
11) has a

higher order than n−1, the asymptotic power tends to one as the sample size

increases to infinity, and thus the CUT is consistent. Its asymptotic power is

the same as that of the conditional test in Wang and Cui (2015). Let λ1 ≤
λ2 ≤ · · · ≤ λp−q be the eigenvalues of Σ11, and suppose all the eigenvalues

are bounded from zero and infinity. Similarly to Zhong and Chen (2011), we

find that a sufficient condition for ensuring nontrivial power of the CUT is

‖β1 − β10‖ = O(n−1/2λ−11 (
∑p−q

j=1 λ
2
j )

1/4) = O(n−1/2(p − q)1/4). If we further

define δβ
1

= ‖β1 − β10‖/
√
p− q as the average “signal strength,” then the pre-

vious sufficient condition becomes δβ
1

= O(n−1/2(p− q)−1/4).
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3. Conditional Test with Screening

3.1. A two-stage testing procedure

Although the CUT is able to accommodate moderately high-dimensional

problems, it performs unsatisfactorily for ultrahigh-dimensional sparse linear

models. The sparsity assumption means that only a small subset of predictors

are significant to the response. We denote the small set of predictors X1 by

M1 = {j : β1j 6= 0, j = 1, . . . , p − q}, which are truly relevant to the response.

Let s = |M1| be the cardinality of the significant subsetM1. Under the sparsity

assumption, we define δβ
1M1

= ‖β1M1
−β10M1

‖/
√
s =

√∑
j∈M1

(β1j − β10j)2/s
as the average “signal strength,” where β1M1

= {βj : j ∈M1}. A sufficient con-

dition for the CUT to have nontrivial power is δβ
1M1

= O(n−1/2s−1/2(p− q)1/4).
If p increases faster than O(n2s2), for example, if p = O(exp(na)) for some a > 0,

this sufficient condition is difficult to satisfy.

To reduce the unfavorable effect of the ultrahigh dimensionality and to en-

hance the testing power of the CUT, we propose the two-stage CUTS algorithm

based on a random data-splitting technique under the sparsity assumption. In

the first stage, we split the data randomly into two parts S1 and S2, and then

apply conditional sure independence screening (CSIS; Barut, Fan and Verhasselt

(2016)) to the first part S1 to select a submodel. In the second stage, we apply

the proposed CUT to test the significance of the selected submodel, conditional

on X0, based on the second sample S2. The CUTS algorithm is summarized in

Algorithm 1.

Algorithm 1 Conditional U-statistic Test with Screening (CUTS)

Step 1. (Random Data Splitting) Split the sample {(Yi,X0i,X1i), i = 1, 2, . . . , n}
randomly into two parts, S1 with sample size n1 and S2 with sample size n2. In
practice, we can let n1 = [n/2], the integer of n/2.

Step 2. (Conditional Sure Independence Screening) Regress Y against the union of
X0 and each predictor X1j of X1 using S1, i.e., Y = α+ X0β0 +β1jX1j + ξ, and

obtain the estimators β̂1j for each j = 1, . . . , p − q. Then, select the submodel

M̂1 = {j : |β̂1j | is among the top dn largest ones}, where dn is a prespecified
threshold, e.g., set dn = [n1/log(n1)].

Step 3. (Conditional U-statistic Test) Apply the CUT to test the significance of X
1M̂1

for the response conditional on X0 based on the rejection rule (2.6) in S2 at the

significance level α, where X
1M̂1

= {X1j : j ∈ M̂1}.

In Step 2, the CSIS proposed by Barut, Fan and Verhasselt (2016) is used
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to eliminate noisy variables and reduce the ultrahigh dimensionality. The sure

screening property of CSIS that demonstrates P (M1 ⊂ M̂1) → 1 as n → ∞
ensures the power enhancement of the CUTS under the sparsity assumption.

When M1 ⊂ M̂1 holds, the original hypothesis (1.2), H0 : β1 = β10 versus H1 :

β1 6= β10, is equivalent to H0 : β
1M̂1

= β
10M̂1

versus H1 : β
1M̂1
6= β

10M̂1
, where

β
1M̂1

= {β1j : j ∈ M̂1}. Therefore, the first-stage CSIS helps us to transform

an ultrahigh-dimensional testing problem into an asymptotically equivalent low-

dimensional testing one, which can be tested efficiently using the CUT in the

second stage.

Given the submodel M̂1 in the first stage, Theorem 2 implies that the asymp-

totic power in terms of n2 under the local alternatives (2.7) of the CUTS test

procedure is

ΨCUTS

n (M̂1) = Φ

−zα +
n2(β1M̂1

− β
10M̂1

)TΣ2
11M̂1

(β
1M̂1
− β

10M̂1
)

σ2
√

2tr(Σ2
11M̂1

)

 , (3.1)

where Σ2
11M̂1

denotes the covariance matrix of selected predictors, indexed by

M̂1. Assume that all eigenvalues of Σ11 satisfy c < λ1 ≤ λ2 ≤ · · · ≤ λp−q ≤ C,

where c, C are two constants. By Fatou’s lemma, the upper and lower limits of

the mean power function are controlled by

lim inf EΨCUTS

n (M̂1) ≥ E lim inf ΨCUTS

n (M̂1)

≥ lim inf Φ

(
−zα +

n2‖Σ11M1
(β1M1

− β10M1
)‖2

σ2
√

2Cdn

)
,

lim supEΨCUTS

n (M̂1) ≤ E lim sup ΨCUTS

n (M̂1)

≤ lim sup Φ

(
−zα +

n2‖Σ11M1
(β1M1

− β10M1
)‖2

σ2
√

2cdn

)
,

(3.2)

where the second and the fourth inequalities hold because P (M1 ⊂ M̂1) → 1

as n → ∞. We define δβ
1M1

= ‖β1M1
− β10M1

‖/
√
|M1| as the average “signal

strength.” Then, the sufficient condition for nontrivial power becomes δβ
1M1

=

O(n−1/2s−1/2d
1/4
n ). Furthermore, we can compare the asymptotic power of the

WC test (Wang and Cui (2015)) and that of the CUTS with n2/n = O(1) by

comparing their signal-to-noise (SNR) ratios:

SNRCUTS

SNRWC
= O(1)

‖Σ11M1
(β1M1

− β10M1
)‖2

‖Σ11(β1 − β10)‖2

√
p− q
dn

= O((p− q)1/2d−1/2n ).
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In the mean sense, the asymptotic power of the CUTS is greater than that of the

WC test if dn = o(p− q) and the sure screening property holds.

In addition, we add three remarks on the CUTS.

Remark 1. The goal of the first-stage screening is to reduce noisy signals and

to enhance the power of the test in the second-stage under the sparsity assump-

tion. Related noise reduction ideas have been investigated in the literature on

hypothesis testing. For example, Lan et al. (2016) introduced the key confounder

controlling (KFC) method, similar to the screening idea in Fan and Lv (2008), to

first control for predictors that are highly correlated with the target covariate be-

fore testing the significance of the single regression coefficient in high-dimensional

linear models. A related idea is the thresholding test in which sufficiently small

signals are truncated to zero. Fan (1996) proposed a wavelet thresholding test

for the mean of random vectors. Zhong, Chen and Xu (2013) and Chen, Li and

Zhong (2019) tested for a one-sample mean vector and two-sample mean vec-

tors, respectively, of high-dimensional populations using thresholding to remove

the nonsignal-bearing dimensions. Another idea is to only consider the maximum

signal component as the test statistic. For example, Cai, Liu and Xia (2014) pro-

posed a maximum-norm test statistic for comparing high-dimensional two-sample

means with sparsity. However, thresholding and maximum-norm tests may suffer

from size inflation due to spurious correlations in ultrahigh-dimensional data.

Remark 2. The sure screening property is not necessary for the nontrivial power

of the CUTS procedure. To ensure nontrivial power, we require a less restrictive

necessary condition that at least one truly relevant predictor is selected, that is,

M1 ∩ M̂1 6= ∅. We suppose that the eigenvalues of Σ11 are bounded from zero

and infinity. It can be shown that given M̂1, if ‖β
1(M1∩M̂1)

− β
10(M1∩M̂1)

‖2 is

not less than O(
√
dn/(p− q))‖β1 − β10‖2, the asymptotic power of the CUTS in

terms of n2 is no less than that of the WC test. In other words, when H1 is true,

once the first-stage screening is able to identify some important predictors, the

second-stage test could be statistically significant to reject H0.

Remark 3. Note that random data splitting is useful to eliminate the effect

of spurious correlation due to the ultrahigh dimensionality and to control the

type-I error rates. Fan, Guo and Hao (2012) pointed out that spurious correla-

tions are inherent in ultrahigh-dimensional data analysis. That is, the maximum

sample correlation between the response and irrelevant predictors increases as

the predictor dimension increases. Some irrelevant predictors may be detected

as significant owing to spurious correlations, even under H0 : β1 = 0. If we do

not split the data, the type-I error rates of the second-stage testing procedure
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will be severely inflated, because the submodel M̂1 contains spuriously signifi-

cant predictors. However, the random data splitting prevents the inflation of the

type-I error rates. To appreciate why, we suppose that the sample correlation

between an irrelevant predictor and the response is high over the first half of the

data and, thus, this predictor is selected by the screening procedure. Because the

two halves of the data are independent, it is unlikely that this predictor is also

highly correlated with the response over the second half of the data, and thus

has a negligible influence on the testing result.

3.2. An ensemble testing procedure

Although the random data splitting is useful to avoid type-I error rates, the

testing power may be affected by the randomness and the sample reduction. As

Lockhart et al. (2014) mentioned, sample splitting can result in a loss of power

in significance testing. To this end, we introduce a more powerful ensemble

CUTS algorithm based on multiple random data splitting to further enhance

both the empirical power and the algorithm stability. This idea is motivated by

Meinshausen, Meier and Buhlmann (2009), who proposed aggregating inference

results across multiple random splits to control both the family-wise error rate

and the false discovery rate. The ensemble CUTS algorithm based on multiple

random data splitting, denoted by CUTSM , is summarized in Algorithm 2. In

Proposition 1, we demonstrate that the family-wise error rate of the CUTSM is

asymptotically controlled at a given significance level α ∈ (0, 1).

Proposition 1. For a significance level α ∈ (0, 1), the family-wise error rate of

the CUTSM is asymptotically controlled at level α. That is,

lim sup
n→∞

P (Q∗ ≤ α|H0) ≤ α. (3.3)

4. Numerical Studies

4.1. Simulations

This section investigates the finite-sample performance of the WC test (Wang

and Cui (2015)), CUTS, and CUTSM for ultrahigh-dimensional linear regression

coefficients using Monte Carlo simulations. In the simulations, we set M = 20

times for the CUTSM .

Example 1. We generate the predictors (X1, X2, . . . , Xp)
T from two distri-

butions: (i) a multivariate normal distribution N (0,Σ), or (ii) a multivari-

ate t-distribution
√

1− 2/qtq(0,Σ, q) with q = 5, where Σ = (σij)p×p with
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Algorithm 2 CUTSM Algorithm based on multiple random data splitting.

Step 1. (Conditional U-statistic Test with Screening) Split the sample {(Yi,X0i,
X1i), i = 1, 2, . . . , n} randomly into two equal parts, S1 and S2, and apply Algo-
rithm 1 to obtain a p-value, denoted by p1.

Step 2. (Multiple Data Splitting) Repeat Step 1 m times and obtain m p-values,
denoted by {p1, . . . , pm}.

Step 3. (Compute Adjusted P-value) Compute the adjusted p-value

Q∗ = min

{
1, (1− logγmin) inf

γ∈(γmin,1)
Q(γ)

}
,

where Q(γ) = min [1, qγ({pk/γ; k = 1, . . . ,m})] for a constant γ ∈ (γmin, 1),
qγ({pk/γ}) is the γth quantile of {pk/γ; k = 1, . . . ,m}, and γmin is a prespecified
constant in (0,1).

Step 4. (Rejection) The null hypothesis H0 (1.2) is rejected at the significance level
α if Q∗ ≤ α.

σij = 0.5|i−j|. The regression model is set as

Y = 0.7X1 + 0.8X2 + 0.6X3 −X4 + β11X11 + β12X12 + β13X13 + β14X14 + ε,

where the error term ε is independently generated from two distributions: (i) a

standard normal distribution N (0, 1), or (ii) a standard log-normal distribution

(lnorm(0, 1)− e1/2)/
√
e(e− 1). Assume that the known conditional set isM0 =

{1, 2, 3, 4, 5}. We want to test the overall significance of the remaining regression

coefficients, given the subsetM0, that is, H0 : β1 = 0 versus H1 : β1 6= 0, where

β1 = (β6, . . . , βp)
T. We set βj = c/2, j = 11, . . . , 14, where the signal strength

c2 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}, and c = 0 corresponds to the null hypothesis H0.

The sample size n = 100 and the predictor dimension p = 1,000 or 2,000. We

run the simulations 500 times and compare the empirical size or power of the

three tests, WC, CUTS, and CUTSM , at the significance level α = 0.05. All

simulation results are summarized in Table 1. We observe that the two-stage

testing procedures enhance the empirical power substantially based on random

data splitting under sparsity. In particular, the CUTSM approach based on the

multiple splitting strategy is more powerful and algorithmically stable than is the

single-splitting CUTS. The family-wise error rate of the CUTSM approach is also

favorably controlled under the significance level α = 0.05.

Example 2. We further consider the power performance for dense signals. We

generate the predictors from the same multivariate normal distribution as that
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Table 1. Empirical size and power of WC, CUTS, CUTSM in Example 1.

(n, p) c2
ε ∼Normal ε ∼Log-normal

WC CUTS CUTSM WC CUTS CUTSM

(1) Xi ∼ Np(µ,Σ)

(100, 1,000) 0.0 0.062 0.058 0.034 0.044 0.028 0.038

0.1 0.172 0.252 0.400 0.242 0.424 0.596

0.2 0.326 0.604 0.844 0.366 0.664 0.836

0.3 0.410 0.838 0.968 0.494 0.836 0.944

0.4 0.550 0.918 0.994 0.580 0.910 0.962

0.5 0.620 0.970 0.996 0.616 0.938 0.988

(100, 2,000) 0.0 0.054 0.054 0.046 0.040 0.040 0.038

0.1 0.118 0.168 0.278 0.146 0.308 0.466

0.2 0.196 0.506 0.768 0.256 0.626 0.794

0.3 0.260 0.784 0.946 0.344 0.778 0.884

0.4 0.348 0.892 0.990 0.370 0.884 0.950

0.5 0.412 0.960 0.998 0.388 0.908 0.978

(2) Xi ∼
√

1− 2/qtq(µ,Σ, q)

(100, 1,000) 0.0 0.042 0.048 0.024 0.038 0.058 0.030

0.1 0.176 0.168 0.300 0.220 0.296 0.520

0.2 0.278 0.462 0.682 0.368 0.576 0.790

0.3 0.336 0.656 0.892 0.458 0.716 0.884

0.4 0.470 0.832 0.970 0.476 0.818 0.938

0.5 0.508 0.904 0.992 0.522 0.870 0.966

(100, 2,000) 0.0 0.038 0.052 0.046 0.054 0.046 0.042

0.1 0.130 0.128 0.250 0.126 0.214 0.378

0.2 0.190 0.346 0.612 0.254 0.524 0.734

0.3 0.260 0.580 0.876 0.296 0.678 0.856

0.4 0.336 0.760 0.950 0.352 0.776 0.918

0.5 0.364 0.852 0.976 0.398 0.846 0.954

in Example 1. Consider the linear regression

Y = 0.7X1 + 0.8X2 + 0.6X3 −X4 + X1β1 + ε,

where β1 = (β6, . . . , βp)
T, βj = c/2 for j = 11, . . . , 20, βj = c/

√
6 for j =

21, . . . , 30, βj = c/2
√

2 for j = 31, . . . , 40, βj = 0.01 for j = 41, . . . , p/2, and

βj = 0 otherwise, where the signal strength c2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The other

settings are as in Example 1. Table 2 shows the empirical power of each test at

α = 0.05. The WC test performs generally well in terms of detecting the weak

and dense signals. Although the CUTS with the single data split has nontrivial

power, it performs worse than the WC test under the dense signal settings. This

result is consistent with Remark 2. However, the ensemble CUTSM procedure
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Table 2. Empirical power of WC, CUTS, CUTSM in Example 2.

(n, p) c2
ε ∼Normal ε ∼Log-normal

WC CUTS CUTSM WC CUTS CUTSM
(100, 1,000) 0.1 0.880 0.558 0.816 0.856 0.628 0.806

0.2 0.956 0.796 0.954 0.934 0.802 0.926

0.3 0.968 0.862 0.986 0.966 0.892 0.968

0.4 0.984 0.926 0.992 0.982 0.928 0.986

0.5 0.992 0.918 0.996 0.986 0.936 0.990

(100, 2,000) 0.1 0.664 0.420 0.658 0.678 0.486 0.656

0.2 0.812 0.628 0.852 0.808 0.612 0.832

0.3 0.854 0.728 0.932 0.860 0.706 0.912

0.4 0.886 0.768 0.950 0.862 0.804 0.940

0.5 0.890 0.826 0.968 0.894 0.858 0.976

with multiple data splitting enhances the power when the signals are not small.

Example 3. We consider a linear model similar to that of Fan and Lv (2008):

Y = k0X1 + k0X2 + k0X3 − 3k0
√
ρX4 + ε,

where each Xj is generated from a standard normal distribution, all Xj for

j = 1, 2, 3, 5, . . . , 10 are equally correlated with the correlation coefficient ρ, and

the correlation between X4 and each other predictor Xj for j = 1, 2, 3, 5, . . . , 10

is
√
ρ. All other predictors are independent and ε follows an independent stan-

dard normal distribution. It can be demonstrated that the marginal correlation

between X4 and Y is zero and that the sure independence screening (SIS) can-

not detect X4. Fan and Lv (2008) proposed the iterative SIS (ISIS) to identify

X4. In our simulations, we aim to test the overall significance of the regression

coefficients of the remaining predictors, given a subset of important predictors

M0 = {1, 2, 3} or {1, 2, 3, 4}. When M0 = {1, 2, 3, 4}, H0 : β1 = 0 is true. We

set the sample size n = 200, the dimension p = 2,000 or 5,000, and the signal

strength k0 = 1, 2, 3. Table 3 shows that all tests retain the nominal size α = 0.05

well when M0 = {1, 2, 3, 4}. If M0 = {1, 2, 3} and there is only one important

variable X4 left in the remaining high-dimensional variables, both the CUTS and

the CUTSM perform much better in terms of rejecting H0. Thus, the result

shows that the ISIS is necessary to recruit additional important variables. This

example illustrates that the conditional test is useful for checking whether the

variable screening procedures adequately identify all important variables in the

selected submodel under the sparsity assumption.
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Table 3. Empirical size and power of WC, CUTS, CUTSM in Example 3.

M0 k0
p = 2,000 p = 5,000

WC CUTS CUTSM WC CUTS CUTSM
{1, 2, 3, 4} 3 0.050 0.058 0.044 0.044 0.048 0.038

{1, 2, 3} 1 0.630 0.986 1.000 0.408 0.980 1.000

2 0.658 0.992 1.000 0.416 0.988 1.000

3 0.666 0.998 1.000 0.420 0.994 1.000

4.2. Real-data analysis

Example 4. Scheetz et al. (2006) used expression quantitative trait locus map-

ping to gain a broad perspective of gene regulation in the mammalian eye of 120

12-week-old male rats. They identified 22 of 18,976 gene probes as important in

regulating mammalian eye gene expression. Among them, seven genes showed

evidence of contiguous regulation alone, four had both contiguous and noncon-

tiguous linkages, and 11 had evidence of only noncontiguous linkages (refer to

Table 2 in Scheetz et al. (2006)). We consider a linear regression model of the

response gene TRIM32, which relates to the retinal disease called Bardet–Biedl

syndrome, against the remaining 18,975 probes. A natural question is whether

the remaining ultrahigh-dimensional variables still contribute to the response,

given a subset of the identified significant genes.

We apply the WC test, the CUTS test with single data splitting, and the

CUTSM algorithm with M = 50 to test the overall significance of the regression

coefficients of the remaining ultrahigh-dimensional gene probes, conditional on

various subsets of the 22 genes identified in Scheetz et al. (2006). We delete

one outlier (the 58th observation) in our analysis and report the p-values in

Table 4. If the conditioning set contains all 22 identified genes (M0(1 : 22)), the

tests are all nonsignificant and conclude that the remaining ultrahigh-dimensional

genes may not contribute to the response, given these 22 genes. Conditional on

the seven genes with only contiguous regulation (M0(1 : 7)) or the four genes

with both contiguous and noncontiguous linkages (M0(8 : 11)), all three tests

are statistically significant at the level α = 0.01, implying that there are more

important genes for the response in the remaining ones. However, when the

conditioning set includes the first 11 genes with contiguous linkages (M0(1 : 11))

or the last 11 genes with only noncontiguous linkages (M0(12 : 22)), only CUTSM
rejects the null H0. In addition, we also report the adjusted R2 of the linear

regressions of the response against various subsets of the 22 genes in Table 4.

The linear model with all 22 genes produces the largest adjusted R2. This data
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Table 4. P-values of WC, CUTS, CUTSM in Example 4.

Conditioning Set M0(1 : 7) M0(8 : 11) M0(1 : 11) M0(12 : 22) M0(1 : 22)

P-value (WC) 0.0011 <0.0001 0.3006 0.0781 0.7016

P-value (CUTS) 0.0046 <0.0001 0.1371 0.1314 0.9410

P-value (CUTSM ) <0.0001 <0.0001 0.0002 <0.0001 1

Adjusted R2 0.291 0.231 0.354 0.270 0.417

Notes: M0(1 : 7) denotes the subset of seven genes with only contiguous linkages; M0(8 : 11) denotes
the subset of four genes with both contiguous and noncontiguous linkages; M0(1 : 11) is the union of
M0(1 : 7) andM0(8 : 11);M0(12 : 22) denotes the subset of 11 genes with only noncontiguous linkages.
The number of random data splits for the CUTSM is M=50.

Table 5. P-values and power of WC and CUTSM in Example 5.

Conditioning Set Top 1 Top 1:2 Top 1:3 Top 1:4 Top 1:5 Random 4 Genes

P-value Power

WC <0.0001 0.0034 0.0093 0.0084 0.1630 0.795

CUTSM <0.0001 0.0045 0.0003 0.0053 0.0752 0.820

Adjusted R2 0.584 0.776 0.781 0.773 0.778 0.168(0.157)

Notes: Top 1:k denotes the subset of top k genes ranked by the DC-SIS. Random 4 Genes denotes the
subset of four genes selected randomly from all genes except the top 40 genes ranked by the DC-SIS.
The last column is based on 200 repetitions, and 0.168(0.157) denotes the average adjusted R2 and its
standard deviation. The number of random data splits for the CUTSM is M=50.

analysis supports the power enhancement of the CUTSM .

Example 5. Li, Zhong and Zhu (2012) used distance correlation (DC-SIS) to

rank the most influential genes for the expression level of a G protein-coupled

receptor (Ro1) in a cardiomyopathy microarray data set (Segal, Dahlquist and

Conklin (2003)). In this data set, we have only 30 observations, but the di-

mension of the genes as predictors is 6,319. We set the conditioning set as the

subset of the top k genes ranked by the DC-SIS, and test the overall significance

of the remaining ultrahigh-dimensional genes using the WC test and the CUTSM
with M = 50. We do not include the CUTS with a single data split because

the sample size is only 30 and the result of the CUTS is not stable and depends

heavily on the data splits. This drawback can be addressed by using the ensem-

ble CUTSM procedure, as discussed before. For the power comparison, we set

the conditioning set as a subset of four genes randomly selected from all genes

except the top 40 genes ranked by the DC-SIS. In this case, the null hypothesis

is not true because the top 40 genes should contain important genes for the re-

sponse Ro1. We repeat this 200 times and compute the empirical power of the

WC and CUTSM tests at the significance level α = 0.05. In addition, we report

the adjusted R2 of the linear regressions of the response against the conditioning
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sets of genes. Table 5 summarizes the results. WC and CUTSM have similar

results, implying that conditional on the top four genes selected by the DC-SIS,

the remaining 6315 genes are not statistically significant in the linear regression.

Moreover, the CUTSM has better empirical power in terms of rejecting the null

hypothesis conditional on the four random genes.

5. Discussion

We have proposed a two-stage conditional U-statistic test with screening

(CUTS) procedure for testing the overall significance of the regression coeffi-

cients of the remaining ultrahigh-dimensional predictors, given a subset of known

predictors. The procedure reduces the dimensionality under the sparsity assump-

tion and enhances the empirical power using a random data-splitting strategy.

The ensemble CUTSM algorithm based on a multiple splitting strategy is demon-

strated to be powerful in simulations. This two-stage testing procedure can be

applied directly to unconditional tests of ultrahigh-dimensional linear regression

coefficients by setting the conditional set as an empty set, and is able to improve

the power performance of the tests in Zhong and Chen (2011) and Cui, Guo and

Zhong (2018) under the sparsity condition.

It is also interesting to extend the thresholding tests of Zhong, Chen and

Xu (2013) and Chen, Li and Zhong (2019) to test a high-dimensional linear

regression. We let

∆i,j(X
(k)
1 ) = (X

(k)
1i −X

(k)
1 )T(X

(k)
1j −X

(k)
1 ) +

|X(k)
1i −X

(k)
1j |2

2n
.

Then, the test statistic in (2.4) can be written as Tn =
∑p−q

k=1 T
(k)
n , where

T (k)
n =

(
1− 2

n

)−2(n
2

)−1 n∑
i=2

i−1∑
j=1

∆i,j(X
(k)
1 )∆i,j(Y

∗).

To remove nonsignal bearing T
(k)
n and keep those with signals, we define the

thresholding test statistic as

Ln(λn) =

p−q∑
k=1

nT (k)
n I{nT (k)

n ≥ λn},

where I(·) is the indicator function, and λn is the thresholding level. It is worth

investigating the power performance and theoretical properties of the threshold-
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ing test for high-dimensional sparse linear regressions in future research. We

will also study how to determine the thresholding level and check how spurious

correlations affect the thresholding test for ultrahigh-dimensional cases.
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Appendix

A. Technical Proofs

The test statistic (2.4) is invariant to location shifts in both Xi and Yi, so we

assume, without loss of generality, that α = 0 and µ = 0 in the rest of the article.

For convenience, we denote δβ0
= β0 − β̂0, δβ1

= β1 − β10, Bi = δT

β1
Σi

11δβ1
,

and ci, i = 1, 2, 3, . . . are some positive constants which are independent of the

samples. We first present two lemmas which have been shown in Cui, Guo and

Zhong (2018).

Lemma 1. Let U = (U1, . . . , Up)
T be a random vector uniformly distributed on

the unit sphere in Rp. Then E(U) = 0, V ar(U) = p−1Ip, E(U4
j ) = 3/p(p+ 2), ∀

j = 1, . . . , p, and E(U2
j U

2
k ) = 1/(p(p+ 2)) for j 6= k.

Lemma 2. Suppose condition (C2) holds, then we have E(U1UT

1MU1UT

1) =

1/(p(p+ 2)) (2M + tr(M)Ip) , where M is a p× p symmetric matrix.

Lemma 3. Suppose conditions (C2)–(C3) hold, then we have ‖β̂0 − β0‖2 =

OP (n−1+κ) under the local alternatives (2.7).
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Proof of Lemma 3. The ordinary least squared estimator of β0 implies that

β̂0 = (XT

0X0)
−1XT

0(Y −X1β10)

= β0 +

(
1

n
XT

0X0

)−1 1

n
XT

0X1(β1 − β10) +

(
1

n
XT

0X0

)−1 1

n
XT

0ε

=: β0 +W1 +W2.

Under condition (C3), it is obtained that ((1/n)XT

0X0)
−1 converges to Σ−100 in

probability. Write W ∗1 = (1/n)XT

0X1(β1 − β10) and W ∗2 = (1/n)XT

0ε. Then

we have E‖W ∗1 ‖2 = (n+ 1/n)δT

β1
Σ10Σ01δβ1

+ (1/n)tr(Σ00)δ
T

β1
Σ10Σ01δβ1

and

E‖W ∗2 ‖2 = (1/n)σ2tr(Σ00), which imply that ‖W1‖2 = OP (n−1+κ) and ‖W1‖2 =

OP (n−1+κ) under condition (C3) and the local alternatives (2.7). Then this

lemma follows.

Proof of Theorems 1 and 2.

It is easy to see that the local alternatives (2.7) is satisfied naturally under

the null hypothesis. Then Theorem 1 could be considered as a special case of

Theorem 2. Therefore it is just needed to prove Theorem 2. In order to simplify

the calculation, we re-formulate 4i,j as follows:

n

n− 2
4i,j(X1)

=

(
1− 1

n

)
XT

1iX1j −
1

2n

(
XT

1iX1i + XT

1jX1j − 2E(XT

11X11)
)

−
(

1− 2

n

)
X

(i,j)T

1 (X1i + X1j) +

(
1− 2

n

)[
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

n− 2

]
=: M

(1)
ij +M

(2)
ij +M

(3)
ij +M

(4)
ij , (A.1)

where X
(i,j)
1 = 1/(n− 2)

∑
−(i,j)X1k, that is the average of Xk

′s with deleting the

i-th and j-th samples respectively. Let H = Y −X1β10 −X0β0 = α+ X1(β1 −
β10) + ε, and thus Y∗ = Y −X0β̂0 −X1β10 = H + X0(β0 − β̂0). Furthermore,

we obtain that

∆i,j(Y
∗)−∆i,j(H)

= (1− n−1)(X0i −X0)
Tδβ0

(Hj −H) + (1− n−1)(Hi −H)(X0j −X0)
Tδβ0

+ (1− n−1)δT

β0
(X0i −X0)(X0j −X0)

Tδβ0
+ n−1(Hi −H)(X0i −X0)

Tδβ0

+ n−1(Hj −H)(X0j −X0)
Tδβ0

+ (2n)−1δT

β0
(X0i −X0)(X0i −X0)

Tδβ0
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+ (2n)−1δT

β0
(X0j −X0)(X0j −X0)

Tδβ0
=:

7∑
k=1

Kk.

Write T0 = 2/(n(n− 1))
∑

i>j4i,j(X1)4i,j(H), and by Theorem 3.2 and 3.4

in Cui, Guo and Zhong (2018), we obtain that

n[T0 − (β1 − β10)
TΣ2

11(β1 − β10)]

σ2
√

2tr(Σ2
11)

D−→ N(0, 1) (A.2)

hold under conditions (C1) and (C2) together with the local alternatives (2.7).

Then, the proof is complete if we prove that Tk = 2/(n(n− 1))
∑

i>j ∆i,j(X1)Kk

= o(n−1
√
tr(Σ2

11)), for k = 1, 2, . . . , 7 under the conditions given in this theorem.

In the following, we often simply write the constant coefficients with the order of

n−k as O(n−k). Firstly, we may rewrite

T1 = O(n−2)
∑
i>j

∆i,j(X1)(X0i −X0)
Tδβ0

(X1j −X1)
Tδβ1

+O(n−2)
∑
i>j

∆i,j(X1)(X0i −X0)
Tδβ0

(εj − ε) =: T11 + T12.

Then, by the expression in (A.1), we can write

T11

= O(n−2)
∑
i>j

XT

1iX1j(X1j −X1)
Tδβ1

(X0i −X0)
Tδβ0

+O(n−3)
∑
i>j

[XT

1iX1i + XT

1jX1j− 2E(XT

11X11)](X1j−X1)
Tδβ1

(X0i−X0)
Tδβ0

+O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)(X1j −X1)
Tδβ1

(X0i −X0)
Tδβ0

+O(n−2)
∑
i>j

[
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

]
(X1j −X1)

Tδβ1
(X0i −X0)

Tδβ0

=: T111 + T112 + T113 + T114.

Denote T
(1)
111 := O(n−2)

∑
i>j XT

1iX1jX
T

1jδβ1
X0i, T

(2)
111 := O(n−2)

∑
i>j XT

1iX1jX
T

1

δβ1
X0i, T

(3)
111 := O(n−2)

∑
i>j XT

1iX1jX
T

1jδβ1
X0 and T

(4)
111 := O(n−2)

∑
i>j XT

1iX1j

X
T

1δβ1
X0. Then, using Lemmas 1–2, we can obtain that

E[‖T (1)
111‖

2] = O(1)E(δT

β1
X12X

T

12X11X
T

01X03X
T

13X14X
T

14δβ1
)
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+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X01X
T

11X13X
T

13δβ1
)

+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X03X
T

13X12X
T

12δβ1
)

+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X02X
T

12X13X
T

13δβ1
)

+O(n−2)E(δT

β1
X12X

T

12X11X
T

01X01X
T

11X12X
T

12δβ1
)

≤ c1B3 + c2
q

n
B3 + c3

1

n
tr(Σ2

11)B1 + c4

√
q

n
B3

+c5
1

n

√
qtr(Σ2

11)B1B3 + c6
q

n2
tr(Σ2

11)B1,

where the inequality follows by simple calculation and Cauchy-Schtwarz inequal-

ity. As for the term T
(2)
111, we have

E‖T (2)
111‖

2

= E‖O(n−3)
∑
i>j

[XT

1iX1jX
T

1iδβ1
X0i + XT

1iX1jX
T

1jδβ1
X0i

+
∑

k/∈{i,j}

XT

1iX1jX
T

1kδβ1
X0i]‖2

≤ O(n−2)E(XT

01X01)E(δT

β1
X11X

T

11X12X
T

12X11X
T

11δβ1
)

+
[
O(n−1)E(δT

β1
X12X

T

12X11X
T

01X
T

03X
T

13X14X
T

14δβ1
)

+ O(n−2)E(XT

01X01)E(δT

β1
X11X

T

11X12X
T

12X11X
T

11δβ1
)
]

+O(n−2)E(XT

01X01)E(δT

β1
X13X

T

12X11X
T

11X12X
T

13δβ1
)

≤ O(n−2)tr(Σ00)(2B3 + tr(Σ2
11)B1) +O(n−1)B3

≤ c1
q

n2
B3 + c2

q

n2
B1tr(Σ

2
11) + c3

1

n
B3,

With the same methods, similar results can be obtained for T
(k)
111, k = 3, 4. Com-

bining with Lemma 3, T111 = oP (n−1
√

tr(Σ2
11)) follows under the local al-

ternatives (2.7). As for T112, write T
(1)
112 := O(n−3)

∑
i>j [X

T

1iX1i + XT

1jX1j −
2E(XT

11X11)]X
T

1jδβ1
X0i, T

(2)
112 := O(n−3)

∑
i>j [X

T

1iX1i + XT

1jX1j − 2E(XT

11X11)]

X
T

1δβ1
X0i, T

(3)
112 := O(n−3)

∑
i>j [X

T

1iX1i + XT

1jX1j − 2E(XT

11X11)]X
T

1jδβ1
X0 and

T
(4)
112 := O(n−3)

∑
i>j [X

T

1iX1i+XT

1jX1j−2E(XT

11X11)]X
T

1δβ1
X0. Then, we obtain

that

E‖T (1)
112‖

2 ≤ E‖O(n−3)
∑
i>j

[XT

1iX1i + XT

1jX1j − 2E(XT

11X11)]X
T

1jδβ1
X0i‖2

≤ O(n−2)V ar(XT

11X11)E(δT

β1
X11X

T

11δβ1
XT

02X02)

= O(n−2)tr(Σ00)tr(Σ
2
11)B1 = o(n−2tr(Σ2

11)),
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E‖T (2)
112‖ ≤ O(n−1)

[
V ar(XT

11X11)E(δT

β1
X1X

T

1δβ1
XT

01X01)
]1/2

= O(n−3/2)
[
tr(Σ00)tr(Σ

2
11)B1 +O(n−1)tr(Σ2

11)B1

]1/2
= o(n−1

√
tr(Σ2

11)).

Similar results can be obtained for T
(k)
112, k = 3, 4. Then using Lemma 3, it is

obtained that T112 = oP (n−1
√
tr(Σ2

11)) under the local alternatives (2.7). Simi-

larly, for T113, denote T
(1)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)X
T

1jδβ1
X0i, T

(2)
113 :=

O(n−2)
∑

i>j X
(i,j)T

1 (X1i + X1j)X
T

1δβ1
X0i, T

(3)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i +

X1j)X
T

1jδβ1
X0, and T

(4)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)X
T

1δβ1
X0. Then,

calculating the expectations of ‖T (k)
113‖ or ‖T (k)

113‖2, we have

E‖T (1)
113‖

2 = E‖O(n−2)
∑
i>j

(X
(i,j)T

1 X1iX
T

1jδβ1
X0i + X

(i,j)T

1 X1jX
T

1jδβ1
X0i)‖2

≤ O(n−1)[E‖X(1,2)T

1 X11X
T

12δβ1
X01‖2 + E‖X(1,2)T

1 X12X
T

12δβ1
X01‖2]

≤ 2O(n−1)E(X
(1,2)T

1 X11X
T

11X
(1,2)
1 )E(δT

β1
X12X

T

12δβ1
XT

01X01)

= O(n−2)tr(Σ00)tr(Σ
2
11)B1 = o(n−2tr(Σ2

11)),

under the local alternatives (2.7). Rewrite

T
(2)
113 = O(n−3)

∑
i>j

X
(i,j)T

1 (X1i + X1j)(X1i + X1j)
Tδβ1

X0i

+O(n−3)
∑
i>j

X
(i,j)T

1 X1i

( ∑
k/∈{i,j}

X1k

)
T

δβ1
X0i

+O(n−3)
∑
i>j

X
(i,j)T

1 X1j

( ∑
k/∈{i,j}

X1k

)
T

δβ1
X0i,

then we obtain that

E‖T (2)
113‖

2 ≤ O(n−2)tr(Σ2
11)B1 +O(n−2)tr(Σ00)tr(Σ

2
11)B1

+O(n−2)B3 +O(n−2)tr(Σ2
11)B1 +O(n−2)tr(Σ00)tr(Σ

2
11)B1

+O(n−3)tr(Σ00)tr(Σ
2
11)B1 +O(n−4)tr(Σ00)B3 = o(n−2tr(Σ2

11)).

Similar results can be obtained for T
(k)
113, k = 3, 4. Thus, we have T113 = o(n−1
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tr(Σ2

11)). As for T114, write

T
(1)
114 = O(n−2)

∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
XT

1jδβ1
X0i,

T
(2)
114 = O(n−2)

∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
X

T

1δβ1
X0i,

T
(3)
114 = O(n−2)

∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
XT

1jδβ1
X0,

T
(4)
114 = O(n−2)

∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
X

T

1δβ1
X0

Then, we have

E‖T (1)
114‖ ≤ [V ar(X

(1,2)T

1 X
(1,2)
1 )E(δT

β1
X12X

T

12δβ1
XT

01X01)]
1/2

= [O(n−2)tr(Σ00)tr(Σ
2
11)B1]

1/2 = o

(
n−1

√
tr(Σ2

11)

)
,

and E‖T (k)
114‖ = o(n−1

√
tr(Σ2

11)), for k = 2, 3, 4. Thus, we have T114 = oP (n−1√
tr(Σ2

11)). For the term T12, write

T121 = O(n−2)
∑
i>j

XT

1iX1j(X0i −X0)
Tδβ0

(εj − ε),

T122 = O(n−3)
∑
i>j

[XT

1iX1i + XT

1jX1j − 2E(XT

11X11)](X0i −X0)
Tδβ0

(εj − ε),

T123 = O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)(X0i −X0)
Tδβ0

(εj − ε),

T124 = O(n−2)
∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
(X0i −X0)

Tδβ0
(εj − ε)

Re-formulate T121 as T
(1)
121 := O(n−2)

∑
i>j XT

1iX1jεjX0i, T
(2)
121 := O(n−2)∑

i>j XT

1iX1jεX0i, T
(3)
121 := O(n−2)

∑
i>j XT

1iX1jεjX0, and T
(4)
121 := O(n−2)

∑
i>j

XT

1iX1jεX0. Then, we have

E‖T (1)
121‖

2 = O(n−4)
∑
i>j

∑
k>l

E(εjεlX
T

1iX1jX
T

0iX0kX
T

1kX1l)

≤ O(n−2)(qtr(Σ2
11) + tr(Σ2

11)) +O(n−1)tr(ΓT

1Γ1Γ
T

0Γ0Γ
T

1Γ1)
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E‖T (2)
121‖

2 = O(n−4)
∑
i>j

∑
k>l

E(XT

1iX1jε
2XT

0iX0kX
T

1kX1l)

≤ O(n−2)tr(Σ2
11) +O(n−3)qtr(Σ2

11),

and also E‖T (k)
121‖2 = o(n−1−κtr(Σ2

11)), for k = 3, 4. Thus, using Lemma 3,

we have T121 = oP (n−1
√
tr(Σ2

11)) under conditions (C3)–(C4). For T122, write

T
(1)
122 = O(n−3)

∑
i>j [X

T

1iX1i + XT

1jX1j − 2E(XT

11X11)](εj − ε)X0i and T
(2)
122 =

O(n−3)
∑

i>j [X
T

1iX1i + XT

1jX1j − 2E(XT

11X11)](εj − ε)X0. Then using lemmas

1–2, we have

E‖T (1)
122‖ ≤ O(n−1)[V ar(XT

11X11)E(XT

01X01)]
1/2 ≤ O(n−1/2)

√
qtr(Σ2

11)

n
,

E‖T (2)
122‖ ≤ O(n−1)

√
qtr(Σ2

11)

n
= o

(
n−1

√
tr(Σ2

11)

)
.

Therefore, we obtain that T122 = oP (n−1
√
tr(Σ2

11)). Similarly, for the term T123,

denote T
(1)
123 = O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)εjX0i, T
(2)
123 = O(n−2)

∑
i>j X

(i,j)T

1

(X1i + X1j)εX0i, and T
(3)
123 = O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)X
T

0(εj − ε). Then,

under conditions given in this theorem, we obtain that

E‖T (1)
123‖

2 = O(n−4)
∑
i>j

∑
k>l

E[εjεlX
(i,j)T

1 (X1i + X1j)X
T

0iX0kX
(k,l)T

1 (X1k + X1l)]

≤ O(n−1)E[X
(1,2)T

1 (X11 + X12)X
T

01X01X
(1,2)T

1 (X11 + X12)]

≤ O(n−2)[tr(Σ2
11) + qtr(Σ2

11)],

E‖T (2)
123‖ ≤ O(n−1/2)[E(X

(1,2)T

1 (X11 + X12)(X11 + X12)
TX

(1,2)
1 )E(XT

01X01)]
1/2

≤ O(n−1/2)

[
qtr(Σ2

11)

n

]1/2
,

E(‖T (3)
123‖) ≤ O(1)[E(X

(1,2)T

1 (X11 + X12)(X11 + X12)
TX

(1,2)
1 )E(X

T

0X0)]
1/2

≤ O(n−1/2)

[
qtr(Σ2

11)

n

]1/2
.

Thus, by the definition of T123, condition (C3) and Lemma 3, T123 = oP (n−1√
tr(Σ2

11)) follows. Denote

T ∗124 = O(n−2)
∑
i>j

(
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

)
(εj − ε)(X0i −X0),
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Then calculate the expectation of the absolute value of T124,

E‖T ∗124‖ ≤ O(1)[V ar(X
(1,2)T

1 X
(1,2)
1 )E(X0i −X0)

T(X0i −X0)]
1/2

≤ O
(√

qn−2tr(Σ2
11)

)
.

Then T124 = oP (n−1
√
tr(Σ2

11)) follows by Lemma 3.

Write T ∗3 = O(n−2)
∑

i>j ∆i,j(X1)(X0i − X0)(X0j − X0)
T. Write T ∗31 =

O(n−2)
∑

i>j ∆i,j(X1)X0iX
T

0j , T
∗
32 = O(n−2)

∑
i>j ∆i,j(X1)X0X

T

0j and T ∗33 =

O(n−2)
∑

i>j ∆i,j(X1)X0X
T

0 . For T ∗31, reconstruct it as

T ∗311 = O(n−2)
∑
i>j

XT

1iX1jX0iX
T

0j ,

T ∗312 = O(n−3)
∑
i>j

[XT

1iX1j + XT

1jX1j − E(XT

11X11)]X0iX
T

0j ,

T ∗313 = O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)X0iX
T

0j ,

T ∗314 = O(n−2)
∑
i>j

[
X

(i,j)T

1 X
(i,j)
1 − E(XT

11X11)

(n− 2)

]
X0iX

T

0j .

Then using Lemmas 1–2, we obtain that

E‖T ∗311‖2 = O(n−4)
∑
i>j

∑
k>l

E(XT

1iX1jX
T

0jX0kX
T

1kX1lX
T

0lX0i)

≤ O(1)tr[(Σ10Σ01)
2] +O(n−1)tr(Σ00)tr(Γ

T

1Σ10Σ01Γ1),

E‖T ∗312‖ = O(n−1)[V ar(XT

11X11)tr(Σ
2
00)]

1/2

≤ O(n−1)[tr(Σ2
00)]

1/2[tr(Σ2
11)]

1/2

E‖T ∗313‖ ≤ O(n−1/2)[tr(Σ2
11)tr(Σ

2
00)]

1/2,

E‖T ∗314‖ ≤ O(n−1)[tr(Σ2
11)tr(Σ

2
00)]

1/2.

By condition (C3) and Lemma 3, we have T31 = OP (n−1
√
tr(Σ2

11)).

E‖T ∗32‖ ≤ O(1)[V ar(∆1,2(X1))E(X
T

0X01X
T

01X0)]
1/2 = O

(
1

n
tr(Σ2

11)tr(Σ
2
00)

)
where V ar(∆1,2(X1)) = O(tr(Σ2

11)). Furthermore, we have

E‖T ∗33‖ ≤ O(1)[V ar(∆1,2(X1))E(X
T

0X0X
T

0X0)]
1/2

≤ [O(n−2)(tr(Σ2
00) + tr2(Σ00))tr(Σ

2
11)]

1/2.
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Using Lemma 3 and condition (C3), T3 = oP (n−1
√
tr(Σ2

11)) is true. By similar

analysis, write T ∗4 = O(n−3)
∑

i>j ∆i,j(X1)(Hi−H)(X0i−X0) and rewrite is with

T ∗41 = O(n−3)
∑

i>j ∆i,j(X1)(X1i −X1)
Tδβ1

(X0i −X0) and T ∗42 = O(n−3)
∑

i>j

∆i,j(X1)(εi − ε)(X0i −X0). Using Lemmas 1–2, we obtain that

E‖T ∗41‖ ≤ O(n−1){V ar(∆1,2(X1))E[δT

β1
(X11 −X1)(X11 −X1)

T

×δβ1
(X01 −X0)

T(X01 −X0)]}1/2

≤ O(n−1)[tr(Σ00)tr(Σ
2
11)B1]

1/2

and

E‖T ∗42‖ ≤ O(n−1)[V ar(∆1,2(X1))E(X01 −X0)
T(X01 −X0)]

1/2

≤ O(n−1)[tr(Σ00)tr(Σ
2
11)]

1/2.

Combine the last two results, we have T4 = oP (n−1
√
tr(Σ2

11)) under condition

(C3) and the local alternatives (2.7). For T6, write T ∗6 = O(n−3)
∑

i>j ∆i,j(X1)

(X0i−X0)(X0i−X0)
T, and then calculate the expectation of the absolute value

E‖T ∗6 ‖
≤ O(n−1)[V ar(∆i,j(X1))E(X0i −X0)

T(X0i −X0)(X0i −X0)
T(X0i −X0)]

1/2

≤ O(n−1)[(tr(Σ2
00) + tr(Σ00)

2)]1/2[tr(Σ2
11)]

1/2 ≤ O(n−1+κ[tr(Σ2
11)]

1/2).

Then by Lemma 3, T6 = oP (n−1
√
tr(Σ2

11)) follows. Finally, notice that the

analysis of the terms T5 and T7 are quite similar to that of T4 and T6 respectively.

This completes the proof.

Proof of Proposition 1. As discussed in Meinshausen, Meier and Buhlmann

(2009), we also omit the function min{1, ·} from the definition of Q(γ) and Q∗.

Then it is sufficient to show that

P

{
(1− logγmin) inf

γ∈(γmin,1)
Q(γ) ≤ α

}
≤ α.

Define π(u) as the fraction of samples of pk satisfying pk ≤ u, that is π(u) =

m−1
∑m

k=1 I(pk ≤ u). Then, the two events {Q(γ) ≤ α} and π(αγ) ≥ γ are

equivalent. Therefore,

P (Q(γ) ≤ α) = P (π(αγ) ≥ γ) = P

{
m−1

m∑
k=1

I(pk ≤ αγ) ≥ γ

}
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≤ (γm)−1
m∑
k=1

P (pk ≤ αγ),

where the last inequality is applied by Markov’s inequality. Using the fact that

the obtained p-values pk’s follow a uniform distribution conditional under the

null hypothesis H0, we have P (pk ≤ αγ|H0) = αγ, which implies that P (Q(γ) ≤
α|H0) ≤ α.

Since pk’s follow a uniform distribution under the null hypothesis H0,

E

{
sup

γ∈(γmin,1)
γ−1I(pk ≤ αγ)

}
=

∫ αγmin

0
γ−1mindu+

∫ α

αγmin

α

u
du = α(1− logγmin).

Again using Markov’s inequality,

E

(
sup

γ∈(γmin,1)
I(π(αγ) ≥ γ)

)
= E

(
sup

γ∈(γmin,1)
I

(
m−1

m∑
k=1

I(pk ≤ αγ) ≥ γ

))
≤ α(1− logγmin).

It implies that P (infγ∈(γmin,1)Q(γ) ≤ α) ≤ α(1 − logγmin) holds. by replacing

α(1− logγmin) with α, we obtain lim sup
n→∞

P (Q∗ ≤ α|H0) ≤ α. This completes the

proof.
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