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DYNAMIC PENALIZED SPLINES

FOR STREAMING DATA

Dingchuan Xue and Fang Yao
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Abstract: We propose a dynamic version of the penalized spline regression designed

for streaming data that allows for the insertion of new knots dynamically based on

sequential updates of the summary statistics. A new theory using direct functional

methods rather than the traditional matrix analysis is developed to attain the opti-

mal convergence rate in the L2 sense for the dynamic estimation (also applicable for

standard penalized splines) under weaker conditions than those in existing works

on standard penalized splines.
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data.

1. Introduction

A penalized spline regression is a computationally efficient method for recon-

structing smooth functions from noisy data. The method usually starts with a

sequence of knots prior to having knowledge of about the data. Then it finds the

spline with given knots that minimizes the total squared error plus a penalty on

its qth derivative. Specifically, suppose data {(xi, yi)}i=1,...,n are sampled from a

nonparametric model

yi = f0(xi) + εi,

for some unknown function f0 : [0, 1] → R contaminated with an independent

error εi. The penalized spline estimate of f0 is given by

f̂n = argmin
f∈Sκn,p+1

n∑
i=1

{yi − f(xi)}2 + λn

∫ 1

0
f (q)

2

(x)dx, (1.1)

where p ≥ q are positive integers, κn = {0 = κn,1 ≤ · · · ≤ κn,kn = 1} ⊆ [0, 1] is

the set of chosen knots,

Sκn,p+1 = {f ∈ Cp−1([0, 1]) : f |[κn,i,κn,i+1] ∈ Pp, i = 1, . . . , kn − 1} (1.2)
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is the space of splines of order p, Pp is the set of polynomial functions of degree

not exceeding p, and λn is a positive tuning parameter depending on n. By taking

a proper basis of Sκn,p+1, the calculation is reduced to performing a ridge-type

regression. This formulation was originally proposed in O’Sullivan (1986) with

q = 2 and p = 3; see Claeskens, Krivobokova and Opsomer (2009) for an explicit

formulation. The generalized cross-validations proposed by Golub, Heath and

Wahba (1979) and Wahba (1990) are often used to choose λn. In particular,

if λn = 0, the method is called a regression spline. If κn = {x1, . . . , xn} and

p = 2q − 1, it is called a smoothing spline (Craven and Wahba (1978)). de Boor

(1978) and Eubank (1999) offer a general guidance on how to fit smoothing

splines; see the formulations for the case q = p in Ruppert (2002), Hall and

Opsomer (2005), and Yao and Lee (2008), among others. Our main contribution is

to propose a dynamic version of the penalized spline estimation with a theoretical

guarantee and a specifically designed algorithm for streaming data that allows

for an adaptive choice of knot sequence.

Note that to reach a consistent estimation that approximates a function in

an infinite-dimensional space, we need to have the number of summary statistics

grow as the samples stream in, which differs from the usual online algorithms.

For example, Schifano et al. (2016) proposed online updating techniques for para-

metric regression problems with a constant memory size, and Yang et al. (2010)

focused on the online learning of a group lasso by updating from a previous esti-

mation. By comparison, our approach tackles a nonparametric problem using a

sequential updating method, where the memory consumption grows much more

slowly than the sample size does.

Owing to its technical challenge, there is no existing work on a penalized

spline approach oriented toward streaming data. To fill this gap, we propose a

dynamic version of the penalized spline estimation, making a sensible modifica-

tion to the target function by adding a projection to the function space of f in

the goodness-of-fit term on the right side of (1.1). Our algorithm requires only

a single iteration of data, and allows for an adaptive insertion of knots at the

cost of a slight precision loss. We show that under certain conditions, the inte-

grated squared error (i.e., L2-error) of the dynamic estimation converges at the

same rate as the standard penalized spline estimation, Op
{
n−2q/(2q+1)

}
, which

has not previously been established for the dynamic penalized spline method.

This result is derived from a novel technique that lifts the spline space to an

infinite-dimensional one, which can be adopted seamlessly into the proposed dy-

namic estimation. By the definition in Stone (1982) or Stone (1980), this rate

is asymptotically optimal if p = q and f0 ∈ Cq([0, 1]). Speckman (1985) showed
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this to be the optimal rate of the average mean squared error in an empirical

sense. Golubev and Nussbaum (1990) note that this is the minimax rate for f0 in

Sobolev balls, and Huang (2003) obtained similar results for regression splines.

If f0 ∈ Cp+1([0, 1]) and p ≤ 2q − 1, with a nearly equi-spaced knots condition

on κn, it is also the convergence rate of the average/empirical mean squared er-

ror for a “large” number of knots in the standard penalized spline method, as

shown in Claeskens, Krivobokova and Opsomer (2009). This indicates that the

size of κn makes little contribution to the result once it is sufficiently large, that

is, exceeding a lower bound depending on f0 and n. Xiao (2019) extended this

result to C l([0, 1]), for q ≤ l ≤ p, to obtain L2 and L∞ rates, while Schwarz and

Krivobokova (2016) established an equivalent kernel theory for penalized splines.

Note that we require weaker conditions to attain the optional rate for the

proposed dynamic estimation than those in existing works on standard penalized

splines (or the “the large number of knots scenario”); see, for example, Claeskens,

Krivobokova and Opsomer (2009); Xiao (2019), whose works also include theories

when the number of knots κn and the penalty strength λn are small, where the

estimation behaves like a regression spline.

Nevertheless, in practice, it is still meaningful to control the size and location

of κn for computational efficiency. Various methods have been proposed to choose

κn based on knowledge of the data. For instance, Spiriti et al. (2013) suggested

a blind search with a golden section adjustment or genetic algorithm for knot

selection. Lindstrom (1999) proposed free-knot regression splines with a penalty

on the knots. This type of method usually involves iterative computations over

full data, and is not applicable when the data come in a streaming manner. Thus,

a proper choice of κn with dynamic updates becomes relevant. It is natural to

expect the size of κn to grow slowly with n to improve the estimation. Intuitively,

we may insert new knots into existing κn as the sample size n grows, behaving like

we have a new regressor in a ridge-type regression. Hence, we propose modifying

the target function by adding a projection operator that sequentially elevates the

model dimension.

The rest of the article is organized as follows. We present the proposed

dynamic penalized spline estimation with its updating algorithm in Section 2,

and offer the corresponding theory that outlines the new technique in Section

3. Numerical studies, including simulated and real-data examples, are provided

in Section 4, while technical proofs are provided in the online Supplementary

Material.
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2. Proposed Methodology and Algorithm

2.1. Dynamic penalized spline estimation

Our goal is to develop a dynamic version of the penalized spline estimation

that is easy to implement using a sequential updating algorithm with a theoretical

guarantee. The general setting is that the data are collected in a streaming

manner, where the ith incoming data cluster consists of mi pairs of observations,

{(xj , yj) : j =
∑i−1

k=1mk+1, . . . ,
∑i

k=1mk}, for i = 1, 2, . . .. Because our proposed

method and theory remain virtually unchanged for each cluster mi = 1, we

present this setting for notational convenience. Now, suppose that we observe

data {(xi, yi)}i=1,2,... in a streaming fashion (i.e., one by one), following the model

yi = f0(xi) + εi,

for some unknown function f0 : [0, 1] → R and an error εi. For each n, we

denote a knot set κn = {κn,1 ≤ · · · ≤ κn,kn} ⊆ [0, 1], depending on x1, . . . , xn−1,

y1, . . . , yn−1, and κn−1, such that κn−1 ⊆ κn. Let p and q be positive integers

satisfying p ≥ q, and let Sκn,p+1 be as in (1.2). Let H1((0, 1)) be the Sobolev

space equipped with the inner product

〈g1, g2〉H1 =

∫ 1

0

{
g1(x)g2(x) + g′1(x)g′2(x)

}
dx.

Let Pn be the orthogonal projection from H1(0, 1) to Sκn,p+1 with respect to this

norm. We propose the following modification of the standard penalized spline

regression in (1.1):

f̃n = argmin
f∈Sκn,p+1

n∑
i=1

{yi − Pif(xi)}2 + λn

∫ 1

0
f (q)

2

(x)dx. (2.1)

Note that the projections {Pi}ni=1 serve as a bridge linking the full spline space

Sκn,p+1 and the partial space Sκi,p+1, where the squared errors of (xi, yi) are

evaluated in their own reduced spline spaces in the target function (2.1). Using

this modification, we show that the current penalized spline estimate depends on

the previous summary statistics using the same tuning parameter and knots, as

well as the newly added data. This provides an algorithm for streaming data and

is referred to as a dynamic penalized spline estimation. The asymptotic theory

shows that the approximation error introduced by this modification is negligible.

For theoretical convenience, we let Pi be H1 projections rather than the L2 type

to guarantee the boundedness of the derivative of Pif , without loss of generality.
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Now, we describe how the estimation is updated dynamically.

Choose a basis bi = (bi1, . . . , bili)
T of Sκi,p+1, for i = 1, 2, . . . For i, j ≥ 1, let

Cij be the li× lj matrix with the value in the uth row and the vth column being

Cij,uv = 〈biu, bjv〉H1 , and let Qji = CjiC
−1
ii . Then,

(Pibj1, . . . , Pibjlj )
T = Qji(bi1, . . . , bili)

T, i ≤ j.

For i ≤ j ≤ k, because Pi = PiPj , we have

(Pibk1, . . . , Pibklk)
T = Qkj(Pibj1, . . . , Pibjlj )

T = QkjQji(bi1, . . . , bili)
T.

Thus,

Qki = QkjQji. (2.2)

Suppose f̃n = a1bn1 + · · · + alnbnln . Then, we have the following numerical

representation for f̃n:

(a1, . . . , aln)T = Un(λn)Tn,

where Un(λn) = (Sn +λnDn)−1, Sn =
∑n

i=1Qnibi(xi)bi(xi)
TQT

ni, Dn =
∫ 1
0 b

(q)
n (x)

b
(q)
n (x)Tdx, and Tn =

∑n
i=1 yiQnibi(xi). Despite its complicated expression, it is

simple to calculate Sn+1, and Tn+1 given Sn, Tn, xn+1 and yn+1. If κn+1 = κn
(no new knots), we may choose bn+1 = bn, in which case,

Sn+1 = Sn + bn+1(xn+1)bn+1(xn+1)
T, Tn+1 = Tn + yn+1bn+1(xn+1).

If a new knot is inserted, that is, κn+1 % κn, by (2.2), we have

Sn+1 = Qn+1,nSnQ
T

n+1,n + bn+1(xn+1)bn+1(xn+1)
T,

Tn+1 = Qn+1,nTn + yn+1bn+1(xn+1).

Using these equations, we are able to update Sn and Tn in a sequential manner.

When κn+1 = κn and λn+1 = λn, Un(λn) can be updated using the Sherman–

Morrison formula,

Un+1(λn) = Un(λn)− Un(λn)bn+1(xn+1)bn+1(xn+1)
TUn(λn)

1 + bn+1(xn+1)TUn(λn)bn+1(xn+1)
.

Note that both κn and λn grows much slower than n, thus in most cases we

may update λn only when κn is changed, which greatly reduces the calculation

of matrix inversions.

In terms of the computational complexity, when not inserting a new knot

or updating λn, our update procedure involves only a few matrix-vector multi-
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plications of scale |κn|, that is, O(|κn|2). The insertion of knots and updating

of λn involve complexity O(|κn|3), which occurs on average O(|κn|/n) times.

Thus, the overall computational complexity of the proposed update procedure

is O(|κn|2m + |κn|4m/n) for a block of m data points, which is generally much

smaller than the complexity O(|κn|2n) of the standard method, where n is the

sample size.

2.2. Implementation and dynamic knots insertion

When the tuning parameter λn is updated (often together with updating

κn), it can be tuned by minimizing the generalized cross-validation score. Sup-

pose (f̃n(y1), . . . , f̃n(yn))T = An(λn)(y1, . . . , yn)T, the generalized cross-validation

score as in Golub, Heath and Wahba (1979), is

V (λn) =
n ‖{I −An(λn)}(y1, . . . , yn)T‖2

Tr{I −An(λn)}2
.

This can be rewritten as

n {Rn + T T

nUn(λn)SnUn(λn)Tn − 2T T

nUn(λn)Tn}
[n− Tr{SnUn(λn)}]2

, (2.3)

where Rn =
∑n

i=1 y
2
i .

The set of knots κn+1 can be updated using various algorithms. As an

example, we use the following method in our implementation; other methods are

also viable, as long as they can be updated dynamically for streaming data. The

theory in Theorem 2 suggests that we may let κn+1 = κn for most n, which

agrees with the intuition that the number of knots grows slowly relative to the

sample size. We introduce a parameter ν that reflects the spanning of κn, that

is, E∆n = O(n−ν), with ∆n = maxj |κn,j − κn,j+1|. Our theory implies that,

given ν > (2q − 1)/{(2q + 1)(2q − 3)} and α > 0, we may add new knots when

n > α|κn−1|1/ν . If we are to insert a new knot x into κn such that κn+1 = κn∪{x},
we insert x in a similar way to that in Yuan and Zhou (2012). According to

Proposition 6, Section 1.5.3.2 in Kunoth et al. (2017),

inf
s∈Sκn,p+1

‖f0 − s‖L2([κn,i,κn,i+1])
≤ K (κn,i+p+1 − κn,i−p)q

∥∥∥f (q)0

∥∥∥
L2([κn,i−p,κn,i+p+1])

,

for some constant K. We suggest inserting the new point where this bound is

large, with f0 replaced by f̃n. Let

j = argmax
j

(κn,j+p+1 − κn,j−p)q
∥∥∥f̃ (q)n

∥∥∥
L2([κn,j−p,κn,j+p+1])

, . (2.4)
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Then a new knot is placed at (κn,i + κn,i+1)/2, where

i = argmax
j−p≤i≤j+p

(κi+1 − κi). (2.5)

This is a light-weight algorithm compared to the matrix algebraic computations.

This way of selecting new knots tends to place more knots where the curve changes

sharply. The limiting behavior of the algorithm has a density of knots roughly

proportional to |f (q)0 (x)|1/q.
We summarize the proposed dynamic penalized spline estimation algorithm

as follows. Given an initial knot sequence κ0, the spline order p and the penalty

order q, the values of ν and α for knot insertion, let {b0,1, . . . , b0,l0} be a basis of

Sκ0,p+1. Let S0, T0, and R0 be zeros in Rl0×l0 , Rl0 , and R, and let Rn =
∑n

i=1 y
2
i .

Algorithm 1:

for n = 1, 2, . . . do

if n > max{α|κn−1|1/ν , p} then
Let κ∗ be the new knot as defined in (2.4) and (2.5) and

κn = κn−1 ∪ {κ∗};
Choose a basis bn = (bn,1, . . . , bn,ln)T for Sκn,p+1;

Let Cn−1,n−1 be the matrix that Cn−1,n−1,uv = (bn−1,u, bn−1,v)H1
;

Let Cn,n−1 be the matrix that Cn,n−1,uv = (bn,u, bn−1,v)H1
;

Let Qn,n−1 = Cn,n−1C
−1
n−1,n−1;

Let Sn = Qn,n−1Sn−1Q
T

n,n−1 + bn(xn)bn(xn)T,

Tn = Qn,n−1Tn−1 + ynbn(xn) and Rn = Rn−1 + y2n;

else

Let κn = κn−1 and bn = bn−1;

Let Sn = Sn−1 + bn(xn)bn(xn)T, Tn = Tn−1 + ynbn(xn) and

Rn = Rn−1 + y2n;

end

Let Dn =
∫ 1
0 b

(q)
n (x)b

(q)
n (x)Tdx and λn be the minimizer of (2.3);

Let f̃n(x) = bn(x)T(Sn + λnDn)−1Tn;

end

In practice, the parameter ν can be chosen to be slightly larger than its theo-

retical bound (2q−1)/{(2q+1)(2q−3)} given in Theorem 2. Furthermore, α can

be tuned using the first batch of samples to achieve a balance between the number

of knots and the generalized cross-validation scores, as shown in our numerical
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studies. Moreover, after one chooses α in this way, the resulting estimates are

fairly stable when varying the value of ν under the constraint α|κn−1|1/ν < n.

This provides practical guidance on choosing ν and α, given the penalty order q.

We conclude this section by noting that the proposed method and algorithm, as

well as the theory in the next section, can be extended straightforwardly to the

case of multivariate covariates, with a slight modification.

3. Theoretical Results

Before stating the main result, we give a corresponding result on the L2

convergence of the standard penalized spline that is novel in the literature. The

proof is deferred to the Supplementary Material, in which the techniques are

useful in analyzing the dynamic penalized splines. A standard condition below is

imposed for the penalized spline estimation defined in (1.1).

Assumption 1. f0 ∈ C l([0, 1]) for some l ≥ q, or f0 ∈ H l([0, 1]) for some

l ≥ q + 1, p ≥ q ≥ 2, where H l([0, 1]) is the Sobolev space slightly larger than C l.

Recall that∆i = max1≤j≤ki |κi,j+1−κij |. Let Fi(x) =
∑i

j=1 1x≥xj/i, Ej(x) =∑i
j=1 1x≥xjεj , and Mj = max0≤x≤1Ej(x), where 1x≥xj is one when x ≥ xj , and

zero otherwise. We suppose Fn converges to some differentiable function F .

Assumption 2. F is a continuously differentiable probability distribution func-

tion on [0, 1], such that 0 < minx F
′(x) ≤ maxx F

′(x) <∞.

Assumption 3. ‖Fn − F‖∞ = Op
(
n−1/2

)
and Mn = Op

(
n1/2

)
.

When x1, x2, . . . are independent and identically distributed (i.i.d.) from the

distribution F , it is well known that ‖Fn − F‖∞ = Op
(
n−1/2

)
. Furthermore,

when ε1, ε2, . . . are zero-mean and independent (also independent of x1, x2, . . . )

with a second moment uniformly bounded by M , from Doob’s martingale in-

equality, one has P (Mn ≥ α) ≤ (nM)1/2/α, for all α > 0, which implies

Mn = Op
(
n1/2

)
. For nonrandom x1, x2, . . . , this assumption simply corresponds

to its nonrandom version ‖Fn − F‖∞ = O
(
n−1/2

)
and Mn = O

(
n1/2

)
. When

working with a large number of knots, that is, the “smoothing spline” scenario

in Claeskens, Krivobokova and Opsomer (2009), unlike existing theories for the

penalized spline, we impose neither an explicit assumption on the distributions

of xi or yi, nor a lower bound on the distance between adjacent knots in κn (e.g.,

Claeskens, Krivobokova and Opsomer (2009)).

Theorem 1. Given Assumptions 1 and 2, there exist constants C1 and C2 de-
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pending on l, p, q, f0, and F . When the following holds,

‖Fn − F‖∞ λ
−1/2q
n n1/2q ≤ C1, λn ≤ C1n, (3.1)

we have∥∥∥f0 − f̂n∥∥∥2
2
≤ C2∆

2min{l,p+1}
n +

C2λn
n

+ C2M
2
nλ
−1/2q
n n−(4q−1)/2q, (3.2)

where f̂n is the standard penalized spline estimation defined in (1.1).

If we additionally impose Assumption 3, then for D1n
1/(2q+1) ≤ λn ≤ D2

n1/(2q+1), D1, D2 ∈ (0,∞), and ∆n = Op{(λn/n)1/(2min{l,p+1})}, we have∥∥∥f0 − f̂n∥∥∥2
2

= Op

(
n−2q/(2q+1)

)
.

The inequality (3.2) reveals the relation between λn/n and ∆
2min{l,p+1}
n . For

instance, if (λn/n)−1/(2min{l,p+1}) ≥ C|κn|, for some C, the first term ∆
2min{l,p+1}
n

dominates, which is usually not desired.

Compared to the conditions assumed in Claeskens, Krivobokova and Op-

somer (2009), this L2 convergence rate does not require a lower bound of mini |
κn,i+1−κn,i| . In the second part of the theorem, Assumption 3 and D1n

1/(2q+1) ≤
λn ≤ D2n

1/(2q+1) together imply (3.1) by noting

‖Fn − F‖∞ λ
−1/2q
n n1/2q = Op

(
n(1−2q)/(4q+2)

)
, λn = o(n).

Stone (1982) has shown that under certain conditions, if (xi, yi) are simple

random samples with Eyi = f0(xi) and l = q, the rate Op
{
n−2q/(2q+1)

}
is op-

timal for the integrated squared error. With stronger assumptions, Claeskens,

Krivobokova and Opsomer (2009) showed the convergence rate of the average

mean squared error (in an empirical sense)
∑n

i=1{f0(xi) − f̂n(xi)}2/n = Op{
n−2q/(2q+1)} for a large number of knots, and Op

{
n−(2p+2)/(2p+3)

}
for a small

number of knots. These results were attained under a stronger condition that,

roughly speaking, the knots in κn are not far from being equi-spaced.

Next, we present the result for the proposed dynamic penalized spline esti-

mation, which requires several additional assumptions.

Assumption 4. supi=1,2,...Eε
2
i <∞, Eεi = 0, for i = 1, 2, . . . Either {εi}i=1,2,...

are pairwise uncorrelated and independent of {κi}i=1,2,... and {xi}i=1,2,..., or

{εi}i=1,2,... are pairwise independent and εj is independent of κi and xi, for i ≤ j.

Assumption 5. D1n
1/(2q+1) ≤ λn ≤ D2n

1/(2q+1) for some D1, D2 ∈ (0,∞),
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E∆n = O (n−ν), ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)
, and

∑
j≤n:κj+1 6=κj ‖Fj − F‖

2
∞ =

op
(
nξ
)

for some ν > (2q− 1)/{(2q+ 1)(2q− 3)} and ξ = (2q− 2)ν+ 2q/(2q+ 1).

Assumption 4 is a rather mild condition and is apparently satisfied by most

situations where xi and κi are commonly assumed to be independent of εi. As-

sumption 5 imposes conditions on the distribution of xi and the growth of κn,

where the spanning ∆n is assumed at a polynomial order of n, on average. The

conditions ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)

and
∑

j≤n:κj+1 6=κj ‖Fj − F‖
2
∞ = op

(
nξ
)

are actually implied by the stronger condition, D3n
ν ≤ |κn| ≤ D4n

ν , which is

adopted in most existing works on standard spline estimation (e.g., Claeskens,

Krivobokova and Opsomer (2009); Wang, Shen and Ruppert (2011); Schwarz and

Krivobokova (2016); Xiao (2019)). Note that the condition ‖Fn − F‖2∞ |κ2n+1| =
oP (nξ) differs from ‖Fn − F‖2∞ |κn| = oP (nξ). Roughly speaking, this assumption

requires that the distribution patterns of later samples do not differ dramatically

from those of earlier ones.

Theorem 2. Suppose that Assumptions 1–5 hold. Then, we have∥∥∥f0 − f̃n∥∥∥2
2

= Op

(
n−2q/(2q+1)

)
,

where f̃n is the dynamic penalized spline, as defined in (2.1).

Note that the results holding in probability is a consequence of the random

design points {xi}. Our assumptions on Fn are in the form of OP or oP , which

is the usual case for i.i.d. design points. Replacing those assumptions with non-

random uniform bounds, we arrive at similar results for E‖f0 − f̃n‖2.
Hall and Opsomer (2005), Claeskens, Krivobokova and Opsomer (2009), and

Xiao (2019) built their arguments on the analyses of matrices. In contrast, our

proof deals directly with function spaces, which provides a new and general tech-

nique.

Our theory stems from the work of Munteanu (1973), and is adopted for

penalized splines. Let Z be the Hilbert space L2 × Rn, with the inner product

defined by

〈(g1, z11, . . . , z1n), (g2, z21, . . . , z2n)〉Z = λn

∫ 1

0
g1(x)g2(x)dx+

n∑
i=1

z1iz2i.

Let L : Hq → Z be the bounded linear map given by

Lg =
(
g(q), P1g(x1), . . . , Png(xn)

)
.
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We show that

sup
g

‖g‖22
‖Lg‖2Z

= Op
(
n−1

)
(3.3)

and ∥∥∥Lf0 − Lf̃n∥∥∥2
Z

= Op

{
n1/(2q+1)

}
. (3.4)

The first part (3.3) is done by showing that

sup
g

n ‖g‖22 + λn
∥∥g(q)∥∥2

2
− ‖Lg‖2Z

n ‖g‖22 + λn
∥∥g(q)∥∥2

2

= op(1).

For (3.4), let h = (0, y1, . . . , yn) ∈ Z, and let Q1 : Z → LHq and Q2 : Z →
LSκn,p+1 be orthogonal projection; then, Lf̃n = Q2h and Q2 = Q2Q1. We have

that ∥∥∥Lf0 − Lf̃n∥∥∥2 = ‖Lf0 −Q2Lf0‖2 +
∥∥∥Q2Lf0 − Lf̂n

∥∥∥2
≤ ‖Lf0 −Q2Lf0‖2 + ‖Q1Lf0 −Q1h‖2 .

From the theory of splines in Schumaker (2007), there exists s ∈ Sκn,p+1 and

C > 0 such that∥∥∥f (r)0 − s(r)
∥∥∥
q
≤ C∆l−r

∥∥∥f (l)n ∥∥∥
q
, 0 ≤ r ≤ l − 1;

thus,

‖Lf0 −Q2Lf0‖2 ≤ {1 + op(1)}
(
n ‖f0 − s‖22 + λn

∥∥∥f (q)0 − s(q)
∥∥∥2
2

)
= Op

{
n1/(2q+1)

}
.

We may also show ‖Q1Lf0 −Q1h‖2 = Op
{
n1/(2q+1)

}
from the fact that

‖Q1Lf0 −Q1h‖ = sup
g∈Hq

〈Lg,Lf0 − h〉Z
‖Lg‖

.

A detailed proof is given in the online Supplementary Material. To prove

the standard penalized spline estimation, we replace the definition of L with

Lg =
(
g(q), g(x1), . . . , g(xn)

)
.
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Table 1. Results of our first simulated example with the total sample size 5 × 104.
The abbreviation DS stands for the proposed dynamic penalized estimation, PS1 for the
standard penalized spline estimation with λn tuned by generalized cross-validation and
the knots equi-spaced on [0, 1] with the size equal to |κn| of the dynamic method, and
PS2 for the standard penalized spline estimation with the knots κn from the dynamic
method. Shown are the Monte Carlo averages over 1,000 runs for L2

bias = ‖f0 − Ef̃n‖22,

L2
var = E‖f̃n − Ef̃n‖22, and L2

err = E‖f0 − f̃n‖22, all multiplied by 104 for visualization.

p, q, ν α
L2
bias L2

var L2
err

DS PS1 PS2 DS PS1 PS2 DS PS1 PS2

3, 2, 2/3

1 2.25 2.26 2.26 18.9 18.9 18.9 21.1 21.2 21.2

2 2.13 2.16 2.16 18.7 18.6 18.6 20.9 20.8 20.8

4 2.29 2.36 2.36 18.8 18.5 18.5 21.1 20.9 20.9

4, 3, 1/3

0.02 1.38 1.39 1.39 17.2 17.2 17.1 18.6 18.6 18.5

0.04 1.29 1.28 1.27 17.1 17.1 17.1 18.4 18.4 18.3

0.08 1.24 1.27 1.23 17.4 17.3 17.3 18.6 18.6 18.5

4. Numerical Study

4.1. Simulated examples

We generate independent x1, x2, . . . and ε1, ε2, . . . in simulation studies. For

the first example, let xi be uniformly distributed on [0, 1], εi follow the standard

normal distribution N(0, 1), and f0(x) = 50(x− 0.5) exp
{
−100(x− 0.5)2

}
.

We consider fitting this model with two smoothness/penalty settings, p =

3, q = 2 or p = 4, q = 3. Starting with an initial κ1 = {0, 0.2, 0.4, 0.6, 0.8, 1}, we

take ν = 2/3 for the former setting, and ν = 1/3 for the latter. We evaluate

the performance of the dynamic and standard penalized spline estimations with

various values of α, and the total sample size is 5 × 104. We calculate the bias,

variance, and total mean squared error, denoted by L2
bias = ‖f0 −Ef̃n‖22, L2

var =

E‖f̃n − Ef̃n‖22, and L2
err = E‖f0 − f̃n‖22, respectively, by averaging over 1,000

Monte Carlo runs. The results are shown in the Table 1, and show that the

dynamic penalized estimation performs as well as the standard method, regardless

of whether one uses the common equi-spaced knots or the knots chosen by the

dynamic method (the knot size is equal to |κn|). This provides empirical support

that the potential precision loss caused by modifying the target function (1.1) is

numerically negligible. Note that we fixed ν slightly larger than (2q − 1)/{(2q +

1)(2q−3)} in each smooth/penalty setting, and that the estimation with different

values of α appears fairly stable. Note too that the dynamic updates need only

the previous-step estimates when using newly added data.

To see the influence of α and ν, we first fix ν slightly larger than its theo-
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Figure 1. Generalized cross-validation scores of the first batch of samples in one Monte
Carlo run with various values of α. For the left panel, p = 3, q = 2, and ν = 2/3; for the
right panel, p = 4, q = 3, and ν = 1/3.
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1.09

generalized 
cross-validation

ν = 1/1.6
α= 1.4

ν = 1/1.5
α= 2

ν = 1/1.4
α= 2.5 ν = 1/1.3

α= 3
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α=0.6

ν = 1/2.5
α=0.15ν = 1/3
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ν = 1/3.5
α=0.015

ν = 1/4
α=0.005

Figure 2. Generalized cross-validation scores of the first 1500 samples in one Monte Carlo
run with various values of ν, where the parameter α is tuned as in Fig. 1. For the left
panel, p = 3 and q = 2, where ν is subject to a lower bound constraint at 3/5. For the
right panel, p = 4 and q = 3, where the lower bound constraint is 5/21.

retical lower bound, as above, and tune α with the first batch of samples. Fig. 1

shows the generalized cross-validation scores versus different values of α for the

first 500, 1000, and 1500 samples. We see that α = 2 appears to reasonably

balance the knot size and performance for p = 3, q = 2, and ν = 2/3, because

a larger α encourages fewer knots and potentially elevates the estimation error.

Analogously, we may choose α = 0.04 for the case of p = 4, q = 3, and ν = 1/3.

Furthermore, the number of samples has little impact on the choice of α when

it is adequate. Moreover, with this selected α, the influence on the generalized

cross-validation score from the choice of ν is fairly minor, as shown in Fig. 2.

This provides empirical support on how to choose ν and α in practice, and the

performance is relatively stable in a wide range of α (and ν).
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Table 2. Computation time comparison in various settings with sample size n = 1,500,
for illustration. The table shows the average time of a single update on a computer with
an Intel i5-6500 CPU, and the time of a full computation of the standard penalized spline
estimation, both in milliseconds.

p, q, ν α Avg. update time(ms) Std. method(ms)

3, 2, 2/3
1 0.8 24

2 0.5 19

4 0.3 6

4, 3, 1/3
0.02 0.2 19

0.04 0.2 14

0.08 0.2 13

Our method and theory can be extended naturally to modeling multi-dimen-

sional yi; the algorithm for choosing new knots remains unchanged. In the second

example, we let yi be a bivariate response. With f0(x) = (g(x) sinx, g(x) cosx)T,

where g(x) = (2πx + 20πx3)/(1 + x3), εi follows the bivariate standard normal

distribution, and the other parameters are as in the first example. The penalized

spline estimation is performed in two fittings, where the smoothness/penalty

parameters (and the associated values of ν and α) are given by p = 3, q = 2, ν =

2/3, α = 100 and p = 4, q = 3, ν = 1/3, α = 0.4, respectively, and the total

sample size is 5× 104. To appreciate the influence of the knot placement offered

by the dynamic estimation, we compare the proposed method to the standard

method using equi-spaced knots, with the same knot size equal to |κn|. For the

first setting, L2
err averaged over 1,000 Monte Carlo runs for the proposed and

standard methods are 1.563 × 10−3 and 1.530 × 10−3, respectively, where both

the bias and the variance are similar. For the second setting, we have an L2
err

of 1.51 × 10−3 from the dynamic estimation (L2
bias = 2.46 × 10−4 and L2

var =

1.26× 10−3), and 2.59× 10−3 from the standard estimation (L2
bias = 1.48× 10−3

and L2
var = 1.11 × 10−3, respectively). As shown in Fig. 3, for the first setting,

the dynamic estimation is close to the standard estimation. For the second, our

method seems to put more knots at large values of x with high curvature, which

reduces the approximation bias substantially, but at the cost of a slightly larger

variance. We also report in Table 2 the average computation time of each single

update of our algorithm on our computer with an Intel i5-6500 CPU. This time

is much faster than that of the standard penalized spline estimation using a full

sample of n = 1,500 for empirical illustration.
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Figure 3. A Monte Carlo run of the second simulated example. The left panel is under
the setting p = 3, q = 2, ν = 2/3, α = 100, and the right one is under the setting
p = 4, q = 3, ν = 1/3, α = 0.4. The solid line is the proposed dynamic estimation, the
dash line is the estimation of the standard penalized spline estimation with equi-spaced
knots of size |κn|, and the dotted line is the underlying f0.

4.2. A real example

We present an application to a regression of power plant output. The data

set comes from Tüfekci (2014), and contains 9,568 data points collected from a

combined cycle power plant over six years, 2006–2011, when the power plant was

set to work with a full load. The features include the ambient temperature (AT),

measured in whole degrees Celsius, and the full load electrical power output (PE),

measured in megawatts; see Fig 4(a).

We perform a penalized spline regression using the proposed dynamic method

and the standard method measuring E(PE|AT ), where xi is the AT of the ith

observation, scaled to [0, 1], and yi is the PE of the ith observation. We perform

the regression with two settings, q = 2, p = 3, ν = 2/3 and q = 3, p = 4,

ν = 1/3. We first obtain estimations with various α on 500 data points, shown

in (b) and (d) of Fig 4. From the generalized cross-validation scores, we see

that α = 2 (or 0.125) is an adequate choice for adding knots in the first (or the

second) setting. Then, we carry out the proposed and standard methods on the

full data set, denoting the estimates by f̃ and f̂ (with the same number of knots

as the proposed method, but equi-spaced on [0, 1]), respectively. We measure the

relative L2 difference between f̃ and f̂ , ‖f̃ − f̂‖2/‖f̂‖2, which is 1.268 × 10−4

for the first setting and 8.478 × 10−5 for the second. This suggests there is

little difference between using the dynamic updates in a streaming manner and

performing a standard estimation using the full data. We also performed a 10-fold

cross-validation measuring average mean squared prediction error, finding nearly
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Figure 4. Illustration of the power plant data set. Panels (b) and (d) are plotted under
the setting q = 2, p = 3, and ν = 2/3, while (c) and (e) are plotted under the setting
q = 3, p = 4, and ν = 1/3. (a): Scatter plot of the data set. (b) and (c): The solid line
obtained by the proposed method and the dashed line by the standard estimation are
visually indistinguishable. (d) and (e): Generalized cross-validation scores of our method
performed on 500 of 9,568 sample points with various α, suggesting α = 2 and α = .125,
respectively.

identical results for the dynamic and standard estimations in both settings (not

reported for conciseness) . This empirically supports our theory for the dynamic

penalized splines. Fig. 4 (c) and (e) show that the estimates obtained by the two

methods are visually indistinguishable.

5. Supplementary Material

The auxiliary lemmas and proofs of the main theorems are deferred to the

online Supplementary Material.
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