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Abstract: Large-scale data are common when the sample size n is large, and these

data are often stored on k different local machines. Distributed statistical learning

is an efficient way to deal with such data. In this study, we consider the binary clas-

sification problem for massive data based on a linear discriminant analysis (LDA) in

a distributed learning framework. The classical centralized LDA requires the trans-

mission of some p-by-p summary matrices to the hub, where p is the dimension of the

variates under consideration. This can be a burden when p is large or the commu-

nication costs between the nodes are expensive. We consider two distributed LDA

estimators, two-round and one-shot estimators, which are communication-efficient

without transmitting p-by-p matrices. We study the asymptotic relative efficiency

of distributed LDA estimators compared to a centralized LDA using random matrix

theory under different settings of k. It is shown that when k is in a suitable range,

such as k = o(n/p), these two distributed estimators achieve the same efficiency as

that of the centralized estimator under mild conditions. Moreover, the two-round

estimator can relax the restriction on k, allowing kp/n → c ∈ [0, 1) under some

conditions. Simulations confirm the theoretical results.

Key words and phrases: Deterministic equivalent, distributed learning, linear dis-

criminant analysis (LDA), random matrix, relative efficiency.

1. Introduction

With the rapid development of information technology, modern statistical

inferences often need to deal with massive data. In many cases, the data are

too large to be handled conveniently by a single data hub. Moreover, individual

agents (e.g., local governments, hospitals, research labs) collect data indepen-

dently and have communication constraints resulting from costs, privacy, owner-

ship, security, and so on. Consequently, data have to be stored and processed on

many local computers connected to a central server, thus forming a distributed

system. In this way, researchers break large-scale computation problems into

many small pieces, solve them using divide-and-conquer procedures, and then
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communicate only certain summary statistics. Distributed statistical inference

has received considerable attention, covering topics including M-estimation (Chen

and Xie (2014); Rosenblatt and Nadler (2016); Lee et al. (2017); Battey et al.

(2018); Shi, Lu and Song (2018); Jordan, Lee and Yang (2019); Banerjee, Durot

and Sen (2019); Fan, Guo and Wang (2021)), hypothesis tests (Lalitha, Sarwate

and Javidi (2014); Battey et al. (2018)), confidence intervals (Jordan, Lee and

Yang (2019); Chen, Liu and Zhang (2021); Dobriban and Sheng (2018); Wang

et al. (2019)), principal component analysis (Garber, Shamir and Srebro (2017);

Fan et al. (2019)), Bayesian methods (Xu et al. (2014); Jordan, Lee and Yang

(2019)), quantile regression (Volgushev, Chao and Cheng (2019); Chen, Liu and

Zhang (2019)), nonparametric regression (Chang, Lin and Zhou (2017); Shang

and Cheng (2017); Han et al. (2018); Szabó and Van Zanten (2019)), and boot-

strap inference (Kleiner et al. (2014); Han and Liu (2016)), among others.

Linear discriminant analysis (LDA) is a classical method for classification in

statistics, and implementing LDA in distributed systems has begun attracting the

attention of researchers. Suppose that {(Xi, Ci), 1 ≤ i ≤ n} are independent and

identically distributed (i.i.d.) observations, where Xi = (Xi1, . . . , Xip)
> is the

p-dimensional covariate and Ci is the label. For ease of description, the classical

LDA estimator is referred to as centralized LDA. In distributed systems, data are

stored on k local machines; for simplicity, we assume that the size of the subsam-

ple for each machine is the same, denoted as n(l) ≡ n/k, for l = 1, . . . , k. For a

distributed LDA estimator, one can consider its relative efficiency by comparing

its classification accuracy with that of centralized LDA. Macua, Belanovic and

Zazo (2011) developed a distributed algorithm for LDA on a single-hop network

in the classical regime with fixed dimension p, but the relative efficiency of their

algorithm is unknown. Tian and Gu (2017) proposed a communication-efficient

distributed sparse LDA estimator in a high-dimensional regime, where the dimen-

sion p can be much larger than the sample size n. To ensure that their distributed

estimator attained the same efficiency as the centralized one, the authors showed

that k has the order k = O(
√
n/ log p/max(s, s′)), where s and s′ represent the

sparsity of some parameters.

In this study, we focus on a distributed LDA for binary classification, under

the setting of p/n → 0, without the sparsity assumption on the parameters.

When p/n→ 0, we show in Section 3 that a centralized LDA can still be effective

under mild conditions. However, a centralized LDA needs the transmission of

local summary matrices of size p-by-p, which can be a burden when p is large

or the communication costs between nodes are expensive. In response to this

problem, we propose two communication-efficient distributed LDA estimators, a
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two-round estimator and a one-shot estimator, according to their communication

costs, without transmitting p-by-p summary matrices. We study the relative

efficiency of each of these two estimators. It is shown that both estimators achieve

the same efficiency as the centralized one when k is in a suitable range, such as k =

o(n/p). Moreover, under some conditions, the two-round estimator can relax the

restriction on k, allowing kp/n→ c ∈ [0, 1). When c > 0, the sample covariance

matrix constructed from data on a local machine only is not a consistent estimator

of the true covariance matrix, which brings challenges for the theoretical analysis.

We successfully establish the efficiency of the two-round estimator using random

matrix theory. Interestingly, when the prior probabilities of two classes are equal

(i.e., both are 1/2), the two-round estimator still has the same efficiency as the

centralized one, even if c > 0.

The rest of this paper is organized as follows. In Section 2, we give the

distributed LDA estimators and calculate their corresponding classification ac-

curacies. Section 3 studies their relative efficiencies and derives their asymptotic

properties. Section 4 provides numerical experiments that support the devel-

oped theory. In Section 5, we discuss our results, together with potential future

directions.

Here, we summarize the notation used throughout the paper. We adopt the

common convention of using boldface letters for vectors only, while a regular font

is used for both scalars and matrices. For a vector x = (x1, . . . , xp)
> ∈ Rp and

0 < q <∞, define the `q norm by ‖x‖q = (
∑p

i=1 |xi|q)1/q. For a symmetric matrix

M ∈ Rp×p, tr(M) denotes the trace of M , and λmax(M) and λmin(M) represent

the maximal and the minimal eigenvalues, respectively. For a matrix M ∈ Rn×p,

the nuclear norm is defined by ‖M‖∗ = tr[(M>M)1/2] =
∑min{n,p}

i=1 σi(M), and

the matrix `2 norm is defined as ‖M‖2 =
√
λmax(M>M) = σ1(M), where σi(M)

represents the ith largest singular value. In addition, for two sequences of real

numbers {an} and {bn}, write an = O(bn) if there exists a constant C such

that |an| ≤ C|bn|, for all n ≥ 1, and write an = o(bn) if limn→∞ an/bn = 0.

For two sequences of random variables {Xn} and {Yn} and a random variable

X, write Xn →a.s. X if {Xn} converges to X almost surely, and Xn →p X if

{Xn} converges to X in probability. In addition, write Xn = Op(Yn) if Xn/Yn is

bounded in probability.

2. Communication-Efficient Distributed LDA

2.1. Centralized LDA in a distributed system
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We focus on binary classification problems, assuming that the two classes fol-

low normal distributions with the same covariance matrix, specifically, Np(µ1,Σ)

for class 1 and Np(µ2,Σ) for class 2, where µ1 and µ2 are p-dimensional mean

vectors, and the covariance matrix Σ ∈ Rp×p is a positive symmetrical matrix.

Denote µa = (µ1 + µ2)/2, µd = µ1 − µ2, and Θ = Σ−1 as the precision ma-

trix (i.e., the inverse covariance matrix). For a new observation H ∈ Rp with

prior probabilities π1 and π2 from class 1 and class 2, respectively, Fisher’s linear

discriminant rule takes the form

ψ(H) = 1

{
(H − µa)>Θµd > log

(
π2
π1

)}
, (2.1)

where 1(·) represents the indicator function. A new observation H is classified

into class 1 if ψ(H) = 1, and class 2 otherwise. Clearly, there are two types of

errors. Specifically, H is from class 1, but is classified into class 2, and vice versa,

with their probabilities denoted as follows:

p21 = P (ψ(H) = 0 |H ∈ class 1) , p12 = P (ψ(H) = 1 |H ∈ class 2) .

Then, the efficiency of the LDA rule measured by classification accuracy is defined

as

Acen = 1− π1p21 − π2p12.

When H ∼ Np(µ1,Σ), it holds that (H − µa)>Θµd ∼ N(δ2/2, δ2), where δ2 =

µ>d Θµd is the squared Mahalanobis distance between two populations. Thus,

p21 = Φ

(
−δ

2
+

log(π2/π1)

δ

)
, p12 = Φ

(
−δ

2
− log(π2/π1)

δ

)
,

where Φ(·) is the cumulative distribution function of standard normal. Then, it

follows that

Acen = π1Φ

(
δ

2
− log(π2/π1)

δ

)
+ π2Φ

(
δ

2
+

log(π2/π1)

δ

)
. (2.2)

In particular, when π1 = π2 = 1/2, we have p21 = p12 = Φ(−δ/2), and then

Acen = Φ(δ/2).

In practice, µ1, µ2, Σ, π1, and π2 are unknown and can be estimated from

the data. Suppose {Xi : 1 ≤ i ≤ n1} and {Yi : 1 ≤ i ≤ n2} are i.i.d. observations

from Np(µ1,Σ) and Np(µ2,Σ), respectively, where n1 + n2 = n. We do not

impose sparsity assumptions on the parameters. The centralized estimators of



DISTRIBUTED LINEAR DISCRIMINANT ANALYSIS 1347

µ1, µ2, and Θ are

µ̂1 =
1

n1

n1∑
i=1

Xi, µ̂2 =
1

n2

n2∑
i=1

Yi, Θ̂ = Σ̂−1, (2.3)

respectively, where

Σ̂ =
1

n

[
n1∑
i=1

(Xi − µ̂1)(Xi − µ̂1)
> +

n2∑
i=1

(Yi − µ̂2)(Yi − µ̂2)
>

]

is the pooled sample covariance matrix, with n = n1 + n2. Then, π1 and π2 can

be simply estimated by π̂1 = n1/n and π̂2 = n2/n, respectively. Plugging these

estimators into (2.1) yields the empirical version of ψ(H), as follows:

ψ̂(H) = 1

{
(H − µ̂a)>Θ̂µ̂d > log

(
n2
n1

)}
, (2.4)

where µ̂a = (µ̂1 + µ̂2)/2 and µ̂d = µ̂1 − µ̂2. For H ∼ Np(µj ,Σ), j = 1, 2, it

holds that

(H − µ̂a)>Θ̂µ̂d ∼ N
(

(µj − µ̂a)>Θ̂µ̂d, (Θ̂µ̂d)>ΣΘ̂µ̂d

)
.

Then, given the samples {Xi} and {Yi}, the conditional misclassification rates

of (2.4) are given as follows (Cai and Liu (2011)):

p̂12 =1− Φ

(µ̂a − µ2)
>Θ̂µ̂d + log(n2/n1)√

(Θ̂µ̂d)>ΣΘ̂µ̂d

 ,

p̂21 =1− Φ

−(µ̂a − µ1)
>Θ̂µ̂d + log(n2/n1)√

(Θ̂µ̂d)>ΣΘ̂µ̂d

 .

Thus, the classification accuracy of the centralized LDA is given by

Âcen = 1− π̂1p̂21 − π̂2p̂12

=
n1
n

Φ

−(µ̂a − µ1)
>Θ̂µ̂d + log(n2/n1)√

(Θ̂µ̂d)>ΣΘ̂µ̂d

 (2.5)

+
n2
n

Φ

(µ̂a − µ2)
>Θ̂µ̂d + log(n2/n1)√

(Θ̂µ̂d)>ΣΘ̂µ̂d

 .
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When the data are stored on k machines, implementing a centralized LDA is

still feasible, albeit with considerable communication costs. Let X(l) be the data

from class 1 stored on the lth local machine (i.e., the collection of Xi stored on

the lth machine). Similarly, let Y(l) be the data from class 2 stored on the lth

machine, for l = 1, . . . , k. For clarity, we denote

X(l) = {X(l)
i , i = 1, . . . , n1l}, Y(l) = {Y (l)

i , i = 1, . . . , n2l}, l = 1, . . . , k, (2.6)

where n1l > 0 and n2l > 0 are the cardinalities of X(l) and Y(l), respectively.

Thus, the lth machine (or worker) has access to only a subset of n(l) = n1l + n2l
observations out of the total n observations. Obviously, it holds that

n =

k∑
l=1

n(l) = n1 + n2, nj =

k∑
l=1

njl, j = 1, 2. (2.7)

Denote Bx =
∑n1

i=1(Xi − µ̂1)(Xi − µ̂1)
> and By =

∑n2

i=1(Yi − µ̂2)(Yi − µ̂2)
>.

Then, Σ̂ = n−1(Bx + By). Let B
(l)
x =

∑n(l)

i=1X
(l)
i X

(l)
i and µ̂

(l)
1 be the sample

mean obtained from the data X(l). It is easy to see that

µ̂1 =
1

n1

k∑
l=1

n1lµ̂
(l)
1 , Bx =

n1∑
i=1

XiX
>
i − n1µ̂1µ̂

>
1 =

k∑
l=1

B(l)
x − n1µ̂1µ̂

>
1 .

Because both B
(l)
x and µ̂

(l)
1 are computed locally from data on the lth machine,

we see that Bx can be obtained by transmitting some summary matrices and

vectors (i.e., B
(l)
x and µ̂

(l)
1 ) to the hub. Computing By similarly, one can obtain

Σ̂, and consequently Θ̂. Then, µ̂a and µ̂d can be computed in a similar fashion

by transmitting µ̂
(l)
j , for j = 1, 2. However, the centralized estimator requires the

transmission of p-dimensional mean vectors µ̂
(l)
1 and µ̂

(l)
2 , and p-by-p matrices

B
(l)
x and B

(l)
y , where l = 1, . . . , k. When p and k are large, transmitting these

p-by-p matrices to the central hub can be a burden in terms of communication,

while transmitting p-dimensional mean vectors is much easier. In the following

section, we propose two distributed estimators without transmitting these p-by-p

matrices.

2.2. Distributed LDA by averaging

In this subsection, we consider communication-efficient LDA estimators. Re-

call that X(l) = {X(l)
i , i = 1, . . . , n1l} and Y(l) = {Y (l)

i , i = 1, . . . , n2l} are

the data on the lth local machine, where njl satisfy (2.7), for j = 1, 2 and

l = 1, . . . , k. Suppose that {X(l)
i , i = 1, . . . , n1l, l = 1, . . . , k} are i.i.d. obser-
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vations from Np(µ1,Σ), and that {Y (l)
i , i = 1, . . . , n2l, l = 1, . . . , k} are i.i.d.

observations from Np(µ2,Σ). Assume that njl ≥ 2, for j = 1, 2 and all l. Denote

the estimators of µ1 and µ2 using the data on the lth machine as follows:

µ̂
(l)
1 =

1

n1l

n1l∑
i=1

X
(l)
i , µ̂

(l)
2 =

1

n2l

n2l∑
i=1

Y
(l)
i .

As argued at the end of Section 2.1, we prefer an estimator without transmitting

the p-by-p matrices. We consider two types of distributed LDA estimators. The

first is called the two-round distributed LDA estimator, which estimates the mean

vectors using the full data with two rounds of communication. The second is

called the one-shot estimator, which estimates the means based on local data

with just one round of communication.

(1) We introduce the two-round distributed LDA estimator. By aggregating

the local estimators, we estimate µ1, µ2, and Θ as follows:

µ̂1 =
1

n1

k∑
l=1

n1lµ̂
(l)
1 , µ̂2 =

1

n2

k∑
l=1

n2lµ̂
(l)
2 , Θ̄ =

1

n

k∑
l=1

n(l)Θ̂
(l)
two, (2.8)

where Θ̂
(l)
two = (Σ̂

(l)
two)

−1, and

Σ̂
(l)
two =

1

n(l)

[
n1l∑
i=1

(X
(l)
i − µ̂1)(X

(l)
i − µ̂1)

> +

n2l∑
i=1

(Y
(l)
i − µ̂2)(Y

(l)
i − µ̂2)

>

]
.

It is easy to see that Θ̂
(l)
two can be obtained using data on the lth machine

after giving µ̂1 and µ̂2. Recall that µ̂a = (µ̂1 + µ̂2)/2 and µ̂d = µ̂1 − µ̂2.

Then, we define the discriminant rule of the two-round distributed LDA as

ψ̄two(H) = 1
{

(H − µ̂a)>Θ̄µ̂d > log(n2/n1)
}
. (2.9)

As shown in the following Algorithm 1, ψ̄two(H) can be computed in a

communication-efficient way, with only the p-dimensional mean vectors be-

ing transmitted for two rounds. Comparing ψ̄two(H) with its centralized

counterpart ψ̂(H), one can see that the only difference between these two

estimators lies in the different estimation of Θ. For the centralized estima-

tor, Θ is estimated by Θ̂ = Σ̂−1, with Σ̂ being obtained by transmitting the

p-by-p matrices B
(l)
x and B

(l)
y to the hub.

There are two rounds of communication in Algorithm 1. First, the local

estimators µ̂
(l)
1 and µ̂

(l)
2 are transmitted to the hub to compute µ̂1, µ̂2, µ̂a,
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Algorithm 1 Two-Round Distributed LDA.

Input: Observation H and data matrices X(l),Y(l) on the lth machine, for l ∈
{1, . . . , k}.
1: Compute local sample means µ̂

(l)
1 and µ̂

(l)
2 on local machines, and then transmit

them to the hub.
2: Compute on the hub the estimator µ̂j by (2.8), for j ∈ {1, 2}, and then compute µ̂a

and µ̂d.

3: Broadcast µ̂1, µ̂2, µ̂d, and µ̂a to each local machine. Compute Θ̂
(l)
two by (2.8), and

obtain Vl = µ̂>a Θ̂
(l)
twoµ̂d and Ul = Θ̂

(l)
twoµ̂d from the data on the lth machine, for

l ∈ {1, . . . , k}.
4: Send Vl andUl to the hub, and compute their averages Ū = n−1

∑k
l=1 n

(l)Ul and V̄ =

n−1
∑k

l=1 n
(l)Vl. Then, define the distributed LDA estimator ψ̄two(H) = H>Ū − V̄ .

5: return Classification result ψ̄two(H)

and µ̂d, and then the vector (µ̂>1 , µ̂
>
2 , µ̂

>
a , µ̂

>
d )> ∈ R4p is broadcast to each

local node. The second round sends Ul and Vl to the central hub. Note that

in each round, we only transmit vectors with dimension no more than 4p,

avoiding the transmission of p-by-p matrices in the centralized estimator.

Thus, the estimator is computationally efficient.

Similarly to the centralized estimator, we define the conditional misclassifi-

cation rates of the two-round distributed LDA as follows. Let

p̄12 =1− Φ

(µ̂a − µ2)
>Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)>
ΣΘ̄µ̂d

 ,

p̄21 =1− Φ

−(µ̂a − µ1)
>Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)>
ΣΘ̄µ̂d

 ,

which are the counterparts of p̂12 and p̂21, respectively. Hence, the classifi-

cation accuracy of the two-round estimator is equal to

Âtwo = 1− π̂1p̄21 − π̂2p̄12

=
n1
n

Φ

−(µ̂a − µ1)
>Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)>
ΣΘ̄µ̂d

 (2.10)

+
n2
n

Φ

(µ̂a − µ2)
>Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)>
ΣΘ̄µ̂d

 .
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Define the relative efficiency of the two-round estimator as R̂two = Âtwo/Âcen.

(2) When communication between nodes is prohibitively expensive, we consider

a one-shot estimator, where only one round of communication is required.

Denote the estimator of Θ from the data on the lth machine as

Θ̂(l) = (Σ̂(l))−1,

where

Σ̂(l) =
1

n(l)

[
n1l∑
i=1

(X
(l)
i − µ̂

(l)
1 )(X

(l)
i − µ̂

(l)
1 )> +

n2l∑
i=1

(Y
(l)
i − µ̂(l)

2 )(Y
(l)
i − µ̂(l)

2 )>

]
.

In contrast to Σ̂
(l)
two, which estimates the means by µ̂1 and µ̂2, Σ̂(l) here uses

the estimators µ̂
(l)
1 and µ̂

(l)
2 . The discriminant rule of the one-shot estimator

is defined as follows:

ψ̄one(H) = 1

{
1

n

k∑
l=1

n(l)
(
H − µ̂(l)

a

)>
Θ̂(l)µ̂

(l)
d > log(n2/n1)

}
, (2.11)

where µ̂
(l)
a = (µ̂

(l)
1 + µ̂

(l)
2 )/2, µ̂

(l)
d = µ̂

(l)
1 − µ̂

(l)
2 . Note that

1

n

k∑
l=1

n(l)
(
H − µ̂(l)

a

)>
Θ̂(l)µ̂

(l)
d

= H

(
1

n

k∑
l=1

n(l)Θ̂(l)µ̂
(l)
d

)
− 1

n

k∑
l=1

n(l)µ̂(l)>
a Θ̂(l)µ̂

(l)
d ,

and that the p-dimensional vector Θ̂(l)µ̂
(l)
d and the scalar µ̂

(l)>
a Θ̂(l)µ̂

(l)
d can

be computed directly using the data on the lth machine. Thus, we need

only transmit vectors of dimension p + 1 to the hub in one round of com-

munication. For H ∼ Np(µj ,Σ), j = 1, 2, it holds that n−1
∑k

l=1 n
(l)(H −

µ̂
(l)
a )>Θ̂(l)µ̂

(l)
d follows a normal distribution with mean n−1

∑k
l=1 n

(l)(µj −
µ̂
(l)
a )>Θ̂(l)µ̂

(l)
d and variance(

k∑
l=1

n(l)

n
Θ̂(l)µ̂

(l)
d

)>
Σ

(
k∑

l=1

n(l)

n
Θ̂(l)µ̂

(l)
d

)
.

Thus, the corresponding classification accuracy of the one-shot distributed

LDA is equal to
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Âone =
n1
n

Φ

− n−1
∑k

l=1 n
(l)(µ̂

(l)
a − µ1)

>Θ̂(l)µ̂
(l)
d + log(n2/n1)√

(n−1
∑k

l=1 n
(l)Θ̂(l)µ̂

(l)
d )>Σ(n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )


+
n2
n

Φ

 n−1
∑k

l=1 n
(l)(µ̂

(l)
a − µ2)

>Θ̂(l)µ̂
(l)
d + log(n2/n1)√

(n−1
∑k

l=1 n
(l)Θ̂(l)µ̂

(l)
d )>Σ(n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )

 .

Define R̂one = Âone/Âcen as the relative efficiency of the one-shot estimator.

In Section 3, we study the conditions under which the distributed estimators

reach the same efficiency as that of the centralized one. It is shown that the

two-round estimator requires a weaker assumption on k, compared with the

one-shot case.

3. Theoretical Properties

3.1. Deterministic equivalent of the sample covariance matrix

In this section, we compare the efficiency of the distributed and centralized

LDAs. Denote γp = p/n, γ
(l)
p = p/n(l), for l = 1, . . . , k. For simplicity, we assume

the data are evenly distributed to each machine; that is,

n11 = · · · = n1k =
n1
k
, n21 = · · · = n2k =

n2
k
. (3.1)

From (3.1), it follows that n(l) ≡ n/k and γ
(l)
p ≡ kp/n = kγp, for all l. Here,

assumption (3.1) is assumed to reduce the complexity of the notation. The re-

sults in this section can be extended without difficulty to the case where njl are

different, but have the same order, for j = 1, 2.

In this paper, we consider the case of γp → 0, but γ
(l)
p → c ∈ [0, 1). For

distributed estimators, when c 6= 0, the sample covariance matrix constructed

from the data on the lth machine is not a consistent estimator of Σ. Consequently,

Θ̂
(l)
two and Θ̂(l) are not consistent estimators of Θ, which introduces challenges

into the theoretical analysis. We study the asymptotic properties of Âtwo, Âone,

and Âcen based on random matrix theory. Specifically, we use the technique of

deterministic equivalents (Couillet and Debbah (2011, Chap. 6)) to obtain the

limits of some random quantities. The notion of equivalence is defined as follows.

Definition 1. (Dobriban and Sheng (2018)). The (deterministic or random)

matrix sequences An, Bn of growing dimensions are equivalent, and write An �
Bn if

lim
n→∞

|tr [Cn (An −Bn)]| = 0,
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almost surely, for any sequence Cn of not necessarily symmetric matrices with a

bounded nuclear norm, that is, such that limn→∞ sup ‖Cn‖∗ <∞.

Dobriban and Sheng (2018) studied the deterministic equivalent of the sample

covariance matrix in elliptical models, which is a consequence of the generalized

Marchenko–Pastur theorem (Rubio and Mestre (2011)). For the elliptical model,

observations take the form {zi = g
1/2
i Σ1/2ui, 1 ≤ i ≤ m}, where ui ∈ Rp is

a vector with i.i.d. entries, gi is a datapoint-specific scale parameter allowing

observations to have different scales, and Σ ∈ Rp×p is the covariance matrix of zi.

A special case of the elliptical model is zi following a normal distribution, where

we have gi = 1. Arrange the samples as rows of a matrix Z, which has the form

Z = Γ1/2UΣ1/2 ∈ Rm×p, (3.2)

where Γ = diag(g1, . . . , gm) ∈ Rm×m is the diagonal scaling matrix containing the

scales gi of samples, and U = (u1, . . . ,um)> ∈ Rm×p has i.i.d. entries. Suppose

that E(U) = 0 and let Σ̃∗ = m−1Z>Z be the sample covariance matrix. Under

some conditions, the random matrix Σ̃−1∗ has a deterministic equivalent

Σ̃−1∗ � epΘ. (3.3)

Here, ep = ep(m, p,Γ) > 0 is the unique solution of the fixed-point equation

1 =
1

m
tr
[
epΓ(Im + γpepΓ)−1

]
. (3.4)

To study our problem, define the following pooled sample covariance matrices

with known µ1 and µ2:

Σ̃ =
1

n

[
n1∑
i=1

(Xi − µ1)(Xi − µ1)
> +

n2∑
i=1

(Yi − µ2)(Yi − µ2)
>

]
,

Σ̃(l) =
1

n(l)

[
n1l∑
i=1

(X
(l)
i − µ1)(X

(l)
i − µ1)

> +

n2l∑
i=1

(Y
(l)
i − µ2)(Y

(l)
i − µ2)

>

]
,

where l = 1, . . . , k. To give the deterministic equivalents of Σ̃−1 and (Σ̃(l))−1, we

first introduce the following conditions.

(C1) Assume that (i) 0 < c1 < λmin(Σ) ≤ λmax(Σ) < c2, and (ii) γp = p/n→ 0,

where c1 and c2 are constants independent of p.

(C2) As n → ∞, k = kn satisfies the following conditions: (i) n(l) ≡ n/k → ∞;

and (ii) γ
(l)
p ≡ pk/n→ c ∈ [0, 1), for l ∈ {1, . . . , k}.
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Condition (i) of (C1) is commonly assumed in the literature. Condition

γp → 0 implies that the sample covariance matrix obtained using the full data

is a consistent estimator of Σ (Wainwright (2019, Chap. 11)). Thus, the inverse

sample covariance matrix can be a consistent estimator of Θ, which guarantees

the effectiveness of the centralized LDA. However, for the distributed system, as

the number k of local machines increases, namely k → ∞, it may occur that

γ
(l)
p = kp/n → c > 0. The local sample covariance matrix Σ̂

(l)
two and its inverse

Θ̂
(l)
two based on the data on the lth machine will be inconsistent (Bai and Silverstein

(2010, Chap. 3)).

Proposition 1. Under condition (C1), for the sample covariance matrix Σ̃ with

known µ1 and µ2, we have

Σ̃−1 � Θ. (3.5)

Under condition (i) of (C1) and condition (C2), for the sample covariance matrix

Σ̃(l) with known µ1 and µ2 on the lth machine, we have

(Σ̃(l))−1 � 1

1− γ(l)p

Θ, l = 1, . . . , k. (3.6)

In particular, if taking c = 0 in (C2), we have (Σ̃(l))−1 � Θ, for l = 1, . . . , k.

This important conclusion will serve as the basis of the following theorems.

3.2. Relative efficiency

As defined at the end of Section 2.2, the relative efficiency of the distributed

LDA compared with that of the centralized case is the ratio of their classification

accuracies. Then, the relative efficiency of the two-round distributed LDA is

equal to

R̂two =(
n1Φ

(
−(µ̂a−µ1)

> Θ̄µ̂d+log (n2/n1)

∆̄p

)
+n2Φ

(
(µ̂a−µ2)

> Θ̄µ̂d+log (n2/n1)

∆̄p

))/
(
n1Φ

(
−(µ̂a−µ1)

> Θ̂µ̂d+log (n2/n1)

∆̂p

)
+n2Φ

(
(µ̂a−µ2)

> Θ̂µ̂d+log (n2/n1)

∆̂p

))
,

(3.7)

where ∆̄2
p = (Θ̄µ̂d)>ΣΘ̄µ̂d and ∆̂2

p = (Θ̂µ̂d)>ΣΘ̂µ̂d. To study the properties of

R̂two, we define its population version as
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Rtwo =
Atwo

Acen
,

where Acen is defined in (2.2), and

Atwo = π1Φ

(
δ

2
− (1− c) log(π2/π1)

δ

)
+ π2Φ

(
δ

2
+

(1− c) log(π2/π1)

δ

)
, (3.8)

with δ2 = µ>d Θµd. It is easy to see that Rtwo ≤ 1, for any c ∈ [0, 1). In particular,

we have 
Rtwo = 1, c = 0;

Rtwo = 1, c ∈ (0, 1), π1 =
1

2
;

Rtwo < 1, c ∈ (0, 1), π1 6=
1

2
.

(3.9)

The following Theorem 1 establishes the properties of the two-round distributed

LDA.

Theorem 1. Under (C1) and (C2), as n→∞, it holds that Âtwo →p Atwo and

Âcen →p Acen. Consequently, R̂two →p Rtwo.

According to (3.9), we discuss Theorem 1 in three cases: (1) c = 0; (2)

c ∈ (0, 1) and π1 = 1/2; and (3) c ∈ (0, 1) and π1 6= 1/2. For Case (1), when

c = 0, or equivalently k satisfies k = o(n/p), the two-round estimator has the

same efficiency as the centralized estimator. This coincides with our expectation,

because Σ̂
(l)
two is a good estimator of Σ when k is small. Case (2) is an interesting

result, and is contrary to our expectation. When c ∈ (0, 1), we see that k has the

order n/p. By the well-known results of random matrices (Bai and Silverstein

(2010, Chap. 3)), the local sample covariance matrix Σ̂
(l)
two is not a consistent

estimator of Σ. However, Theorem 1 shows that, as long as π1 = 1/2, the

distributed estimator has the same efficiency as the centralized one, regardless of

the value of c. In other words, even if each local estimator Σ̂
(l)
two of the sample

covariance matrix is inconsistent, the distributed estimator loses no information

when π1 = 1/2. For Case (3), when k has the same order as n/p, but π1 6= 1/2,

the two-round distributed LDA loses efficiency. The following Theorem 2 gives

the results on R̂one.

Theorem 2. Suppose that (C1) and (C2) hold, but with c = 0 in (C2). As

n→∞, both Âone and Âcen converge to Acen in probability. Consequently, R̂one

converges to one in probability.

Condition c = 0 in (C2) in Theorem 2 implies that k = o(n/p); that is, when

k is small, the one-shot estimator achieves the same efficiency as the centralized
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one. We briefly discuss the difference between the two-round estimator and the

one-shot one. The two-round estimator replaces the local sample means µ̂
(l)
i with

global sample means µ̂i using an extra round of communication. This relaxes the

restriction on k, allowing k to be of the same order as n/p. In particular, when

π1 = 1/2, the two-round estimator loses no information, even if k is the same

order of n/p (i.e., c ∈ (0, 1)). However, we do not have similar results for the

one-shot estimator. In fact, when γ
(l)
p → c ∈ (0, 1), µ̂

(l)
i are no longer consistent

estimators of µi in terms of the `2 norm. In this case, from the proof of Theorem

2 (see Section S4 in the Supplementary Material), it is easy to see that Âone

converges to the quantity

π1Φ

(
δ2(1 + E1)− 2(1− c) log(π2/π1)

2
√
δ2(1 + E2)

)

+π2Φ

(
δ2(1 + E3) + 2(1− c) log(π2/π1)

2
√
δ2(1 + E2)

)
,

where Ei are random variables representing the addition bias caused by the local

estimators µ
(l)
i , satisfying Ei = Op(c), for i = 1, 2, 3. When c > 0, Âone may not

have a constant limit as n→∞.

4. Simulations

In this section, we compare the performance of the distributed LDA methods

with that of the centralized LDA. To begin with, we introduce the setup in the

simulation study. The training data are generated as follows. We first withdraw

i.i.d. observations of size n from normal distributions Np(µ1,Σ) (class 1) and

Np(µ2,Σ) (class 2), with each class having n/2 observations, and then distribute

the samples in each class equally at random on k machines. Moreover, we generate

N/2 observations in each class as the testing set. In the following simulation, we

set N = 1,000, µ1 = (0, . . . , 0)> ∈ Rp, and µ2 = (0.2, . . . , 0.2)> ∈ Rp. The

covariance matrix Σ ∈ Rp×p is generated as follows:

Example 1. (Toeplitz matrix) Σ = (σij), with σij = (2− |i− j|)+, for 1 ≤ i, j ≤
p.

Example 2. (Approximately sparse matrix) Σ = (σij), with σij = 0.8|i−j|, for

1 ≤ i, j ≤ p.

We consider the following four cases:

Case 1a. Σ is from Example 1. Fix k = 5 and set p = dn1/2e, where dae
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denotes the integral part of a constant a. It is seen that γp = p/n→ 0 and

γ
(l)
p = pk/n→ 0. Then, we set n ∈ {100 + (i− 1)× 103, i = 1, . . . , 11}.

Case 1b. Σ is from Example 1. Set k = dcn3/5e and p = dn2/5e, where c ∈
{0.1, 0.3, 0.6}. It is seen that γp = p/n→ 0 and γ

(l)
p = pk/n→ c. Then, we

let n ∈ {100 + (i− 1)× 103, i = 1, . . . , 11}.

Case 2a. Σ is from Example 2. The other settings are the same as those in Case

1a.

Case 2b. Σ is from Example 2. The other settings are the same as those in Case

1b.

For each case, we perform a distributed LDA and a centralized LDA on the

training set to estimate the classification rule, and compute the relative efficiency

based on the testing set. Then, we repeat the procedure 100 times to calculate

the average relative efficiency. In Figure 1, we report the average values of R̂two

for the two-round distributed LDA, and those of R̂one for the one-shot distributed

LDA.

For Case 1a and Case 2a, where c = 0, as n and p increase, both R̂two and

R̂one converge quickly to one, coinciding with our theoretical findings, showing

that both distributed estimators perform as well as the centralized one. Then,

we turn to Case 1b and Case 2b, where c > 0. When c is small (e.g., c = 0.1),

the values of R̂two and R̂one are very close to one, even when n is small, such as

100, and there is no significant difference between the two estimators. However,

when c is large (e.g., c = 0.3 or 0.6), we see that R̂two is still very close to one for

large n, but the performance of R̂one is much worse than that of R̂two, especially

when c = 0.6. This supports our theoretical findings.

5. Discussion

We have examined Fisher’s LDA in distributed systems for binary classi-

fication, proposing two communication-efficient estimators. The classification

accuracy is calculated for the distributed LDA. Using the technique of determin-

istic equivalents from random matrix theory, we show that the relative efficiency

compared with that of centralized LDA can reach one; that is, the proposed dis-

tributed methods can achieve the same classification accuracy as the centralized

case under suitable conditions. The numerical results support the theoretical

findings. In future research, we will consider using a multi-class LDA to solve

more general classification problems. In addition, it is possible to relax the nor-

mality assumption on the sample distributions. Cai and Liu (2011) considered the
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Figure 1. Relative efficiency of the distributed LDA, where the horizontal dotted line is
the theoretical limit of the relative efficiency of the distributed LDA.
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classification accuracy for the elliptical distribution (Fang and Anderson (1990,

Chap. 1)). Borrowing from this idea, one can extend our results to the case of

the elliptical distribution, which is also left to future work.

Supplementary Material

The online Supplementary Material contains proofs of the theoretical results

stated within this paper.
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