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Abstract: We investigate two important properties of M-estimators, namely, ro-

bustness and tractability, in a linear regression setting, when the observations are

contaminated by some arbitrary outliers. Specifically, robustness is the statistical

property that the estimator should always be close to the true underlying param-

eters, regardless of the distribution of the outliers, and tractability refers to the

computational property that the estimator can be computed efficiently, even if the

objective function of the M-estimator is nonconvex. In this article, by examining the

empirical risk, we show that under some sufficient conditions, many M-estimators

enjoy nice robustness and tractability properties simultaneously when the percent-

age of outliers is small. We extend our analysis to the high-dimensional setting,

where the number of parameters is greater than the number of samples, p� n, and

prove that when the proportion of outliers is small, the penalized M-estimators with

the L1 penalty enjoy robustness and tractability simultaneously. Our research pro-

vides an analytic approach to determine the effects of outliers and tuning parameters

on the robustness and tractability of some families of M-estimators. Simulations

and case studies are presented to illustrate the usefulness of our theoretical results

for M-estimators under Welsch’s exponential squared loss and Tukey’s bisquare loss.

Key words and phrases: Computational tractability, gross error, high-dimensionality,

nonconvexity, robust regression, sparsity.

1. Introduction

M-estimation plays an essential role in linear regression, owing to its robust-

ness and flexibility. From a statistical viewpoint, it has been shown that many

M-estimators enjoy desirable robustness properties in the presence of outliers,

and asymptotic normality when the data are normally distributed without out-

liers. Some general theoretical properties and reviews of robust M-estimators

can be found in Bai, Rao and Wu (1992), Huber and Ronchetti (2009), Cheng

and Huang (2010), Hampel et al. (2011), and El Karoui et al. (2013). In the

high-dimensional setting, where the dimensionality is greater than the number of
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samples, penalized M-estimators have been widely used to tackle the challenges

of outliers, and have been used for sparse recovery and variable selection; see

Lambert-Lacroix and Zwald (2011), Li, Peng and Zhu (2011), Wang et al. (2013),

and Loh (2017). However, it is often not easy to compute the M-estimators from a

computational tractability perspective, because optimization problems over non-

convex loss functions are usually involved. Moreover, the tractability issue may

become more challenging when the data are contaminated by some arbitrary out-

liers, which is essentially the situation that robust M-estimators are designed to

address.

This study simultaneously investigates two important properties of M-estima-

tors, robustness and tractability, simultaneously under the gross error model.

Specifically, we assume the data-generation model is yi = 〈θ0, xi〉 + εi, where

yi ∈ R, xi ∈ Rp, for i = 1, . . . , n, and the noise term εi is from Huber’s gross error

model (Huber (1964)): εi ∼ (1− δ)f0 + δg, for i = 1, . . . , n. Here, f0 denotes the

probability density function (pdf) of the noise of the normal samples, which has

desirable properties such as a zero mean and a finite variance; g denotes the pdf

of the outliers (contaminations), which can be arbitrary, and may also depend

on the explanatory variable xi, for i = 1, . . . , n. Note that we do not require

the mean of g to be zero. The parameter δ ∈ [0, 1] denotes the percentage of

contaminations, also known as the contamination ratio in the robust statistics

literature. The gross error model indicates that for the ith sample, the residual

term εi is generated from the pdf f0 with probability 1 − δ, and from the pdf g

with probability δ. Note that the residual εi is independent of xi and other xjs

when it is from the pdf f0, but can be dependent on the variable xi when it is

from the pdf g.

In the first part of this paper, we start with the low-dimensional case when

the dimension p� n. We consider the robust M-estimation with a constraint on

the `2 norm of θ. Mathematically, we study the following optimization problem:

Minimize:
θ

R̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉), (1.1)

subject to: ‖θ‖2 ≤ r.

Here, ρ : R → R is the loss function, and is often nonconvex. We consider

the problem with the `2 constraint for three reasons. First, it is well known

that the constrained optimization problem in (1.1) is equivalent to the uncon-

strained optimization problem with an `2 regularizer. Therefore, it is related to

the ridge regression, which alleviates multicollinearity among the regression pre-
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dictors. Second, considering the problem of (1.1) in a compact ball with radius

r guarantees the existence of the global optimal, which is necessary for estab-

lishing the tractability properties of the M-estimator. Finally, by working on a

constrained optimization problem, we avoid technical complications and establish

the uniform convergence theorems of the empirical risk and population risk. Note

that constrained M-estimators are widely used and studied in the literature; see

Geyer (1994), Mei, Bai and Montanari (2018), and Loh (2017) for more details.

To be consistent with the assumptions used in the literature, in the current work,

we assume r is a constant and the true parameter θ0 is inside the ball.

In the second part, we extend our research to the high-dimensional case,

where p � n and the true parameter θ0 is sparse. To achieve sparsity in the

resulting estimator, we consider the penalized M-estimator with the `1 regularizer:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (1.2)

subject to: ‖θ‖2 ≤ r.

Note that the corresponding penalized M-estimator with the `2 constraint is re-

lated to the elastic net, which overcomes the limitations of the lasso-type regu-

larization (Zou and Hastie (2005)).

In both parts, we show that (in the finite-sample setting) the M-estimator

obtained from (1.1) or (1.2) is robust in the sense that all stationary points of

the empirical risk function R̂n(θ) or L̂n(θ) are bounded in the neighborhood of

the true parameter θ0 when the proportion of outliers is small. In addition,

we show that with a high probability, there is a unique stationary point of the

empirical risk function that is the global minimizer of (1.1) or (1.2) for some

general (possibly nonconvex) loss functions ρ. This implies that the M-estimator

can be computed efficiently. To illustrate our general theoretical results, we study

some specific M-estimators, namely, Welsch’s exponential squared loss (Dennis Jr

and Welsch (1978)) and Tukey’s bisquare loss (Beaton and Tukey (1974)), and

explicitly discuss how the tuning parameter and the percentage of outliers affect

the robustness and tractability of the corresponding M-estimators.

Our research makes several fundamental contributions to the field of robust

statistics and nonconvex optimization. First, we demonstrate the uniform conver-

gence results for the gradient and Hessian of the empirical risk to the population

risk under the gross error model. Second, we provide a nonasymptotic upper

bound of the estimation error for general M-estimators that nearly achieves the

minimax error bound in Chen, Gao and Ren (2016). Third, we investigate the
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computational tractability of general nonconvex M-estimators under the gross

error model. The results show that when the contamination ratio δ is small,

there is only one unique stationary point of the empirical risk function. There-

fore, efficient algorithms such as gradient descent or proximal gradient descent

can be guaranteed to converge to a unique global minimizer, irrespective of the

initialization. Our general results also imply the following interesting statement:

the percentage of outliers impacts the tractability of nonconvex M-estimators.

In essence, the estimation and the corresponding optimization problem become

more complicated in terms of the solution quality and computational efficiency

when more outliers appear. While the former is expected, that more outliers

make M-estimators more difficult to compute numerically is an interesting and

somewhat surprising discovery. Our simulation results and case study also verify

this phenomenon.

Related works

Since Huber’s pioneering work on robust M-estimators (Huber (1964)), many

M-estimators with different choices of loss functions have been proposed, includ-

ing Huber’s loss (Huber (1964)), Andrew’s sine loss (Andrews et al. (1972)),

Tukey’s bisquare loss (Beaton and Tukey (1974)), and Welsch’s exponential squared

loss (Dennis Jr and Welsch (1978)), among others. From a statistical perspective,

several works have investigate the robustness of M-estimators, for example, the

large breakdown point (Donoho and Huber (1982); Mizera and Müller (1999);

Alfons, Croux and Gelper (2013)), finite influent function (Hampel et al. (2011))

and asymptotic normality (Maronna and Yohai (1981); Lehmann and Casella

(2006); El Karoui et al. (2013)). Recently, regularized M-estimators have re-

ceived much attention in high-dimensional contexts. Lambert-Lacroix and Zwald

(2011) proposed a robust variable selection method by combing Huber’s loss and

the adaptive lasso penalty. Li, Peng and Zhu (2011) show that the nonconcave

penalized M-estimation method can perform parameter estimation and variable

selection simultaneously. Welsch’s exponential squared loss combined with the

adaptive lasso penalty is used by Wang et al. (2013) to construct a robust esti-

mator for sparse estimation and variable selection. Chang, Roberts and Welsh

(2018) proposed a robust estimator by combining Tukey’s bisquare loss with the

adaptive lasso penalty. Loh and Wainwright (2015) proved that under mild con-

ditions, any stationary point of the nonconvex objective function is close to the

true underlying parameters. However, these statistical works do not discuss the

computational tractability of the M-estimators, even though many of the loss

functions are nonconvex.
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During the last several years, nonconvex optimization has attracted fast-

growing interests owing to its ubiquitous applications in machine learning and

deep learning, such as dictionary learning (Mairal et al. (2009)), phase retrieval

(Candes, Li and Soltanolkotabi (2015)), orthogonal tensor decomposition (Anand-

kumar et al. (2014)), and training deep neural networks (Bengio (2009)). It is

well known that there is no efficient algorithm that can guarantee finding a global

optimal solution for general nonconvex optimization.

Fortunately, in the context of estimating nonconvex M-estimators for high-

dimensional linear regression (without outliers), under some mild statistical as-

sumptions, Loh (2017) establishes the uniqueness of the stationary point of the

nonconvex M-estimator when using some nonconvex bounded regularizers instead

of the `1 regularizer. By investigating the uniform convergence of gradient and

Hessian of the empirical risk, Mei, Bai and Montanari (2018) prove that with

a high probability, there exists one unique stationary point of the regularized

empirical risk function with the `1 regularizer. Thus, regardless of the initial

points, many computationally efficient algorithms, such as the gradient descent

or proximal gradient descent algorithms, can be applied, and are guaranteed to

converge to the global optimizer, which implies the high tractability of the M-

estimator. However, their analysis is restricted to the standard linear regression

setting without outliers. In particular, they assume that the distribution of the

noise terms in the linear regression model should have some desirable properties,

such as have a zero mean, be sub-Gaussian, and be independent of the feature

vector x, which might not hold when the data are contaminated by outliers. To

the best of our knowledge, no studies have analyzed the computational tractabil-

ity properties of nonconvex M-estimators when the data are contaminated by

arbitrary outliers, despite M-estimators having being developed to handle out-

liers in the linear regression. Our research is the first to fill this significant gap in

the tractability of nonconvex M-estimators. We prove that under mild assump-

tions, many M-estimators can tolerate a small number of arbitrary outliers in the

sense of keeping the tractability, even if the loss functions are nonconvex.

Notation. Given µ, ν ∈ Rp, their standard inner product is defined by 〈µ, ν〉 =∑p
i=1 µiνi. The `p norm of a vector x is denoted by ||x||p. The p-by-p identity

matrix is denoted by Ip×p. Given a matrix M ∈ Rm×m, let λmax(M) and λmin(M)

denote the largest and smallest eigenvalues of M , respectively. The operator norm

of M is denoted by ||M ||op, which is equal to max(λmax(M),−λmin(M)) when

M ∈ Rm×m. Let Bp
q (a, r) = {x ∈ Rp : ||x−a||q ≤ r} be the `q ball in the Rp space

with center a and radius r. Moreover, let Bp
q (r) be the `q ball in the Rp space
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with center 0 and radius r. Given a random variable X with pdf f, we denote the

corresponding expectation by Ef . We often omit the density function subscript

f when it is clear from the context, and the expectation is taken for all variables.

The rest of this paper is organized as follows. In Section 2, we present the

theorems about the robustness and tractability of general M-estimators under the

low-dimensional setup, when the dimension p is much smaller than n. Then, in

Section 3, we consider the penalized M-estimator with the `1 regularizer in a high-

dimensional regression when p� n. The `2 error bounds of the estimation and the

scenario in which the M-estimator has nice tractability are provided. In Section

4, we discuss two special families of robust estimators, constructed using Welsch’s

exponential loss and Tukey’s bisquare loss as examples, to illustrate our general

theorems of robustness and tractability of M-estimators. Simulation results and

a case study are presented in Section 5 and Section 6, respectively, to illustrate

the robustness and tractability properties when the data are contaminated by

outliers. Concluding remarks are given in Section 7. We relegate all proofs and

supporting lemmas to the Supplementary Material.

2. M-estimators in the Low-Dimensional Regime

In this section, we investigate two critical properties of M-estimators, namely

robustness, and tractability, in the setting of a linear regression with arbitrary

outliers in a low-dimensional regime, where the dimension p is much smaller than

the number of samples n. In terms of robustness, we show that under some mild

conditions, any stationary point of the objective function in (1.1) is well bounded

in a neighborhood of the true parameter θ0. Moreover, the neighborhood shrinks

when the proportion of outliers decreases. In terms of tractability, we show that

when the proportion of outliers is small and the sample size is large, with a high

probability, there is a unique stationary point of the empirical risk function, which

is the global optimum (and hence the corresponding M-estimator). Consequently,

many first-order methods are guaranteed to converge to the global optimum,

irrespective of the initialization. In particular, we show that the gradient descent

algorithm converges to the global optimum exponentially, for any initializations.

Before presenting our main theorems, we make the following mild assump-

tions on the loss function ρ, explanatory or feature vectors xi, and idealized noise

distribution f0. We define the score function ψ(z) := ρ′(z).

Assumption 1.

(a) The score function ψ(z) is twice differentiable and odd in z with ψ(z) ≥ 0, for

all z ≥ 0. Moreover, we assume max{||ψ(z)||∞, ||ψ′(z)||∞, ||ψ′′(z)||∞} ≤ Lψ.
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(b) The feature vector xi is independent and identically distributed with zero mean

and is τ2-sub-Gaussain; that is, E[e〈λ,xi〉] ≤ exp((1/2)τ2||λ||22), for all λ ∈
Rp.

(c) The feature vector xi spans all possible directions in Rp; that is, E[xix
T
i ] �

γτ2Ip×p, for some 0 < γ ≤ 1.

(d) The idealized noise distribution f0(ε) is symmetric. Define h(z) :=
∫∞
−∞ f0(ε)

ψ(z + ε)dε, and h(z) satisfies h(z) > 0, for all z > 0 and h′(0) > 0.

Assumption (a) requires the smoothness of the loss function in the objective

function, which is crucial to study the tractability of the estimation problem.

Assumption (b) assumes a sub-Gaussian design of the observed feature matrix.

Assumption (c) assumes that the covariance matrix of the feature vector is pos-

itive semidefinite. Note that the condition on h(z) is mild. It is not difficult to

show that it is satisfied if the idealized noise distribution f0(ε) is strictly positive

for all ε and decreasing for ε > 0, for example, if f0 = pdf of N(0, σ2).

Before presenting our main results, we first define the population risk as

follows:

R(θ) = ER̂n(θ) = E[ρ(Y − 〈θ,X〉)]. (2.1)

Conceptually, we analyze the population risk first, and then build a link

between the population risk and the empirical risk, which solves the original

estimation problem. Theorem 1 summarizes the results for the population risk

function R(θ) in (2.1).

Theorem 1. Assume that Assumption 1 holds and that the true parameter θ0
satisfies ||θ0||2 ≤ r/3.

(a) There exists a constant η0 = (δ/(1− δ))C1 such that any stationary point θ∗

of R(θ) satisfies ||θ∗ − θ0||2 ≤ η0, where δ is the contamination ratio, and

C1 is a positive constant that depends only on γ, r, τ, ψ(z), and the pdf f0,

but does not depend on the outlier pdf g.

(b) When δ is small, there exists a constant η1 = C2−C3δ > 0, where C2, C3 are

two positive constants that depend only on γ, r, τ, ψ(z), and the pdf f0, but

do not depend on the outlier pdf g, such that

λmin(∇2R(θ)) > 0, (2.2)

for every θ with ||θ0 − θ||2 < η1.
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(c) There is a unique stationary point of R(θ) in the ball Bp
2(0, r), as long as

η0 < η1, for a given contamination ratio δ.

It is useful to add some remarks to better understand Theorem 1. First, recall

that the noise term εi follows the gross error model: εi ∼ (1−δ)f0+δg, where the

outlier pdf g may also depend on xi. While the true parameter θ0 may no longer

be the stationary point of the population risk function R(θ), Theorem 1 implies

that the stationary points of R(θ) will always be bounded in a neighborhood of

the true parameter θ0 when the percentage of contamination δ is small. This

indicates the robustness of M-estimators in the population case.

Second, Theorem 1 asserts that when there are no outliers, that is, δ = 0,

the stationary point is indeed the true parameter θ0. In addition, because the

constant η0 in (a) is an increasing function of δ, whereas the constant η1 in (b) is

a decreasing function of δ, stationary points of R(θ) may disperse from the true

parameter θ0, and the strongly convex region around θ0 will be decreasing, as the

contamination ratio δ increases. This indicates the difficulty of optimization for

cases with large contamination ratios.

Third, part (c) follows directly from part (a) and (b). Note that η0(δ =

0) = 0 < η1(δ = 0) = C2. Thus there exists a positive δ∗ such that η0 < η1,

for any δ < δ∗. A simple lower bound on δ∗ is C3/(C1 + C2 + C3), because

C1δ < (1− δ)(C2 − C3δ) whenever 0 ≤ δ ≤ C3/(C1 + C2 + C3).

Our next step is to link the empirical risk function (and the corresponding

M-estimator) to the population version. To this end, we introduce Lemma 1,

which shows the global uniform convergence theorem of the sample gradient and

Hessian. For brevity, it is presented in the Supplementary Material.

We are now ready to present our main result about M-estimators by investi-

gating the empirical risk function R̂n(θ).

Theorem 2. Assume Assumption 1 holds and ||θ0||2 ≤ r/3. We use the same

notation η0 and η1 as in Theorem 1. Then, for any π > 0, there exist constants

C, Cπ = C0(Ch ∨ log(rτ/π) ∨ 1), where C is a constant greater than Cπ, C0 is a

universal constant, Ch is a constant depending on γ, r, τ, ψ(z), and h(z), but is

independent of π, p, n, δ, and g, such that as n ≥ Cp log n, the following statements

hold with probability at least 1− π :

(a) for all ||θ − θ0||2 > η0 + (1/(1− δ))ζ,

〈θ − θ0,∇R̂n(θ)〉 > 0, (2.3)

where ζ is a constant that does not depend on δ.
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(b) for all ||θ − θ0||2 < η1,

λmin(∇2R̂n(θ)) > 0. (2.4)

Thus, as long as η0 + (1/(1− δ))ζ < η1, R̂n(θ) has a unique stationary point,

which lies in the ball Bp
2(θ0, η0 + (1/(1− δ))ζ). This is the unique global optimal

solution of (1.1); denote this unique stationary point by θ̂n.

(c) There exists a positive constant κ that depends on π, γ, r, ψ, δ, and f0, but is

independent of n, p, and g, such that

||θ̂n − θ0||2 ≤ η0 +
4τ

κ

√
Cπp log n

n
. (2.5)

(d) There exist constants C1, C2, hmax that depend on π, γ, r, ψ, δ, and f0, but that

are independent of n, p, and g, such that the gradient descent with fixed step

size h ≤ hmax converges exponentially fast to the global minimizer; that is,

for any initialization θn(0) ∈ Bp
2(0, r),

‖θn(k)− θ̂n‖22 ≤ C1(1− C2h)k‖θn(0)− θ̂n‖22. (2.6)

A few remarks are in order. First, the constant Cπ is the same constant in

Lemma 1, which gauranntees the uniform convergence of the sample gradient and

Hessian when n ≥ Cπp log n. C is a constant that depends on Cπ and is larger

than Cπ, which means additional samples are required to ensure the results in

Theorem 2 compared to the sample size in Lemma 1. Second, because η0, ζ

are independent of n, p, and g, Theorem 2(a) asserts that the M-estimator that

minimizes R̂n(θ) is always bounded in the ball Bp
2(θ0, η0+(1/(1− δ))ζ), regardless

of g (and hence the outliers observed). This indicates the robustness of the M-

estimator; that is, the estimates are not severely skewed by a small number of

“bad” outliers. Next, when the contamination ratio δ is small such that η0 +

(1/(1− δ))ζ < η1, there is a unique stationary point of R̂n(θ). In fact, as shown

in the Supplementary Material, when δ = 0, we always have η0 + ζ < η1, which

implies that the condition η0+(1/(1− δ))ζ < η1 always holds for some small value

of δ. Therefore, although the original optimization problem (1.1) is nonconvex and

the sample contains some arbitrary outliers, the optimal solution of R̂n(θ) can

be computed efficiently using most off-the-shelf first-order algorithms, such as

the gradient descent or stochastic gradient descent. Specifically, in Theorem 2,

we show with high probability that the gradient descent algorithm converges to

the global optimal solution exponentially, regardless of the initializations. This

indicates the tractability of the M-estimator. Interestingly, as in the population
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risk case, the tractability is closely related to the number of outliers; the problem

is easier to optimize when the data contain fewer outliers. Finally, when the

number of samples n� p log n, the estimation error bound is O(δ+
√
p log n/n),

which nearly achieves the minimax lower bound of O(δ +
√
p/n) in Chen, Gao

and Ren (2016).

3. Penalized M-estimator in the High-Dimensional Regime

In this section, we investigate the tractability and robustness of the penalized

M-estimator in the high-dimension region, where the dimension of the parameter

p is much greater than the number of samples n. Specifically, we consider the same

data-generation model yi = 〈θ0, xi〉 + εi, where yi ∈ R, xi ∈ Rp, and the noise

term εi is from Huber’s gross error model (Huber (1964)): εi ∼ (1 − δ)f0 + δg.

Moreover, we assume p� n and that the true parameter θ0 is sparse.

We consider the `1-regularized M-estimator under an `2-constraint on θ:

Minimize:
θ

L̂n(θ) :=
1

n

n∑
i=1

ρ(yi − 〈θ, xi〉) + λn||θ||1, (3.1)

subject to: ‖θ‖2 ≤ r.

Before presenting our main theorem, we need additional assumptions on the

feature vector x.

Assumption 2. The feature vector x has a pdf in Rp. In addition, there exists a

constant M > 1 that is independent of the dimension p, such that ||x||∞ ≤ Mτ,

almost surely.

Remark 1. For unbounded subGaussian feature vectors, Theorem 3 can be

supplemented by taking a truncation at M = C
√

log(np). Then, the conclusions

still hold, with an additional log(np) term. Thus, for simplicity of the statement

of Theorem 3, we consider the case when Assumption 2 holds.

In the Supplementary Material, we present Lemma 2, which shows the uni-

form convergence of the gradient and the Hessian under Huber’s contamination

model in the high-dimensional setting, where p� n. Then, we are ready for our

main theorem.

Theorem 3. Assume that Assumption 1 and Assumption 2 hold, and the true

parameter θ0 satisfies ||θ0||2 ≤ r/3 and ||θ0||0 ≤ s0. Then, there exist constants

C,C0, C1 that are dependent on (ρ, Lψ, τ
2, r, γ, π), but independent of (δ, s0, n, p,

M), such that as n ≥ Cs0 log p and λn ≥ 2C0M
√

log p/n+ 2δLψτ, the following

hold with probability at least 1− π :
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(a) All stationary points of problem (3.1) are in Bp
2(θ0, η0 + (

√
s0/(1− δ))λnC1).

(b) As long as n is large enough such that n ≥ Cs0 log2 p and the contamination

ratio δ is small such that (η0 +(1/(1− δ))√s0λnC1) ≤ η1, the problem (3.1)

has a unique local stationary point, which is also the global minimizer.

The proof of Theorem 3 is based on several lemmas, which are postponed

to the Supplementary Material. We believe that some of our lemmas are of

interest in their own right. Theorem 3 implies that the estimation error of the

penalized M-estimator is bounded as O(δ +
√
s0 log p/n), which achieves the

minimax estimation rate (Chen, Gao and Ren (2016)). Moreover, it implies that

the penalized M-estimator has good tractability when the percentage of outliers

δ is small.

Remark 2. In Theorem 3, we show there is a unique local stationary point for

the problem (3.1) if (η0 + (1/(1− δ))√s0λnC2) ≤ η1 and n is large. Thus, many

first-order algorithms can be guaranteed to converge to the global optimal when

the initialization is in the ball Bp
2(θ, η1). However, owing to the complexity of

analyzing the restricted empirical risk L̂n(θ), we leave as an open problem the

convergence analysis of such fast algorithms for any initializations in the ball

Bp
2(r).

4. Example

In this section, we use some examples to illustrate our general theoreti-

cal results about the robustness and tractability of M-estimators. In the first

subsection, we consider the low-dimensional regime, and study a family of M-

estimators with a specific loss function, known as Welsch’s exponential squared

loss (Dennis Jr and Welsch (1978); Rey (2012); Wang et al. (2013)). In the sec-

ond subsection, we consider the high-dimensional regime, and study the penalized

M-estimator with Tukey’s bisquare loss (Beaton and Tukey (1974)). In both sub-

sections, we derive explicit expressions of the two critical radii η0, η1, and discuss

the robustness and tractability of the corresponding M-estimators.

4.1. M-estimators with Welsch’s exponential squared loss

In this subsection, we illustrate the general results presented in Section 2

by considering a family of M-estimators with a specific nonconvex loss function

known as Welsch’s exponential squared loss (Dennis Jr and Welsch (1978); Rey

(2012); Wang et al. (2013)),
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ρα(t) =
1− exp(−αt2/2)

α
, (4.1)

where α ≥ 0 is a tuning parameter. The corresponding M-estimator is obtained

by solving the optimization problem

min
θ
R̂n(θ) :=

1

n

n∑
i=1

ρα(yi − 〈θ, xi〉), (4.2)

subject to ||θ||2 ≤ r.

The nonconvex loss function ρα(t) in (4.1) has been used in other contexts, such

as robust estimation and robust hypothesis testing, owing to their many nice

properties; see Ferrari and Yang (2010) and Qin and Priebe (2017). First, it is a

smooth function of both α and t, and the gradient and Hessian are well defined.

Second, when α goes to zero, ρα(t) converges to t2/2. Thus, the least squares

estimator is a special case of the M-estimator obtained from (4.4). Third, for

fixed α > 0, ρα(t), ρ′α(t), and ρ′′α(t) are all bounded. Intuitively, this implies that

the impact of outlier observations of yi is controlled, and thus the corresponding

statistical procedure is robust.

We now study the robustness and tractability of the M-estimator of (4.2)

based on our framework in Theorem 2. In order to emphasize the effects of

the tuning parameter α and the contamination ratio δ on the robustness and

tractability properties, we consider a simplified assumption on the feature vector

xi and the pdf of the idealized residual f0.

Assumption 3.

(a) The feature vector xi has an i.i.d. multivariate Gaussian distribution N(0,

τ2Ip×p).

(b) The idealized noise pdf f0(ε) has a Gaussian distribution N(0, σ2).

(c) Assume the true parameter ||θ0||2 ≤ r/3.

Now, we are ready to present Corollary 1, which is a direct application of

Theorem 2.

Corollary 1. Assume Assumption 3 holds and ||θ0||2 ≤ r/3. For any π > 0,

there exists a constant C such that as n ≥ Cp log n, the following statements hold

with probability at least 1− π :

(a) All stationary points of problem (4.2) are in Bp
2(θ0, η0 + (1/(1− δ))ζ).

(b) The empirical risk function R̂n(θ) is strongly convex in the ball Bp
2(θ0, η1).
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(c) As long as η0+(1/(1− δ))ζ < η1, R̂n(θ) has a unique stationary point, which

is the unique global optimal solution of (1.1).

Here,

ζ =
1

13.5
√

3α(1 + ασ2)3/2τ
,

η0(δ, α) =
δ

1− δ

√
e

α

4(1 + ασ2)3/2

τ
e32αr

2τ2/(3(1+ασ2)),

η1(δ, α) =
1

9
√

3α(1 + ασ2)3/2τ

[
1− δ(1 + 3(1 + ασ2)3/2)

]
.

A special case of Corollary 1 with α = 0 reduces to the least squares es-

timator. On the one hand, with α = 0, we have η1(δ, α = 0) = +∞, for any

δ > 0. Thus, the corresponding risk function is strongly convex in the entire

region of Bp
2(0, r = 10), and hence is always tractable. On the other hand, be-

cause η0(δ, α = 0) = +∞, the solution of the optimization problem in (4.4) can

be arbitrarily in the ball Bp
2(0, r = 10), even when the proportion of outliers is

small. Thus, it is not robust to outliers. This supports the well-known fact that

the least squares estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have η0(δ =

0, α) = 0 and ζ < η1(δ = 0, α). This implies that Welsch’s estimator has nice

tractability when there are no outliers. However, when the percentage of outliers

δ is increasing, η1(δ, α) decreases, implying that the presence of outliers reduces

the tractability of the M-estimator.

4.2. Penalized M-estimators with Tukey’s bisquare loss

In this subsection, we illustrate the general results presented in Section 3 by

studying Tukey’s bisquare loss function (Beaton and Tukey (1974)):

ρα(t) =


1

6
α2

1−

(
1−

(
t

α

)2
)3
 , if |t| > α,

0, if |t| > α,

(4.3)

where α > 0 is a tuning parameter. The corresponding penalized M-estimator is

obtained by solving the optimization problem

min
θ
L̂n(θ) :=

1

n

n∑
i=1

ρα(yi − 〈θ, xi〉) + λn||θ||1, (4.4)
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subject to ||θ||2 ≤ r.

Note that the loss function ρα(t) in (4.3) is nonconvex. For fixed α > 0, ρ′α(t)

and ρ′′α(t) are both bounded. We now study the robustness and tractability of

the penalized M-estimator of (4.4) based on our framework in Theorem 3. When

α goes to ∞, ρα(t) converges to t2/2. Thus, the penalized M-estimator obtained

by (4.4) reduces to the lasso estimator, which can be computed easily. However,

the lasso is also known to be very sensitive to outliers (Alfons, Croux and Gelper

(2013)). On the other hand, when α increases, the estimator becomes more

robust, but may lose tractability, owing to the nonconvexity of the function ρα(t)

and the presence of outliers.

In order to emphasize the relation between the tuning parameter α and the

contamination ratio δ, we consider a simplified assumption on the feature vector

xi and the pdf of the idealized residual f0.

Assumption 4.

(a) The feature vector xi has an i.i.d. multivariate uniform distribution [−τ, τ ]p.

(b) The idealized noise pdf f0(ε) has a Gaussian distribution N(0, σ2).

(c) The true parameter ||θ0||2 ≤ r/3.

Assumption 4 and Theorem 3 yield Corollary 2, which characterizes the

robustness and tractability of the penalized M-estimator with Tukey’s exponential

squared loss in (4.3).

Corollary 2. Assume that Assumption 4 holds, and that the true parameter θ0
satisfies ||θ0||2 ≤ r/3. Then, for any π ∈ (0, 1), there exists a constant Cπ such

that if choosing λn = 2Cπτ
√

log p/n + 2ατδ, as n � s0 log p, the following hold

with probability at least 1− π :

(a) All stationary points of problem (4.4) are in Bp
2(θ0, (1 + 2τ)η0).

(b) The empirical risk function L̂n(θ) are strong convex in the ball Bp
2(θ0, η1).

(c) As long as n is large enough and the contamination ratio δ is small such

that (1 + 2τ) η0 ≤ η1, the problem (4.4) has a unique local stationary point,

which is also the global minimizer.

Here,

η0(δ, α) =
δ

1− δ
28
√

2π

τσ3α2
e(α

2+64τ2r2)/σ2

, (4.5)
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η1(δ, α) =
(1− δ)M(α, σ)τ2 − 4δ

2
√

3τ
α, (4.6)

where M(α, σ) = 2α
∫ 1
0 (1− t)(1 + t)(1− 5t2)f0(αt)dt is a positive number when

α > 0, σ > 0.

The special case of Corollary 2 with α → ∞ reduces to the lasso estimator.

On the one hand, with α = ∞, we have η1(δ, α = 0) = +∞, for any δ > 0. This

means that the corresponding risk function is strongly convex in the entire region

of Bp
2(0, r = 10), and hence is always tractable. On the other hand, because

η0(δ, α → ∞) → +∞, the solution of the optimization problem in (4.4) can be

arbitrarily in the ball Bp
2(0, r = 10), even when the proportion of outliers is small.

Thus, it is not robust to outliers. This supports the well-known fact that the lasso

estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with δ = 0 and α > 0, we have η0(δ =

0, α) = 0, which means the true parameter θ0 is the unique stationary point of the

risk function. This implies that Tukey’s estimator has nice tractability when there

are no outliers. However, when the percentage of outliers δ is increasing, η1(δ, α)

decreases, implying that the presence of more outliers reduces the tractability of

the M-estimator.

5. Simulation Results

In this section, we report simulation results using Welsch’s exponential loss

and Tukey’s bisquare loss when the data are contaminated, using synthetic data.

We first generate covariates xi ∼ N(0, Ip×p) and responses yi = 〈θ0, xi〉+εi, where

||θ0||2 = 1. We consider the case when the residual term εi is from the gross error

model with contamination ratio δ; that is, εi ∼ (1−δ)N(0, 1)+δN(µi, 3
2), where

µi = ||xi||22+1. The outlier distribution is chosen to highlight the effects of outliers

when they are dependent on xi and have a nonzero mean.

In the first part, we consider the low-dimensional case, when the dimension

p = 10. Specifically, we generate n = 100 pairs of data (yi, xi)i=1,...,n with di-

mension p = 10 and with different choices of contamination ratios δ. We use

the projected gradient descent to solve the optimization problem in (4.2) with

Welsch’s loss and r = 10. To make the iteration points be inside the ball, we

project the points back into Bp
2(0, r = 10) if they fall outside of the ball. The

step size is fixed as one. In order to test the tractability of the M-estimator,

we run the gradient descent algorithm with 20 random initial values in the ball

Bp
2(0, r = 10) to determine whether the algorithm can converge to the same
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Figure 1. The value of std(θ̂(k)) for differ-
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Figure 2. The value of std(θ̂(300)) for dif-
ferent δ. Y-axis is with log scale

stationary point. Denoting θ̂(k) as the kth iteration point, we then plot the

empirical standard deviation of each iteration std(θ̂(k)) = Tr(V̂ar(θ̂(k))) for 20

different initializations. Figure 1 shows the convergence of the gradient descent

algorithm for Welsch’s exponential loss with α = 0.1 under the gross error model,

with different δ. From Figure 1, we observe that when the proportion of outliers

is small (i.e., δ ≤ 0.1), the algorithm converges to the same stationary point fast.

However, when the contamination ratio δ becomes larger, the algorithm may

not converge to the same point for different initial points, indicating a loss of

tractability for the same objective function with an increasing proportion of out-

liers. These observations are consistent with Theorem 2, which asserts that the

M-estimator is tractable when the contamination ratio δ is small. Then, in Figure

2, we show the empirical standard deviation at the k = 300 iteration std(θ̂(300))

when p = 20 and the ratio of n/p varies from 1 to 21. The figure shows that

when the sample size n is small, the gradient descent may not converge to the

same stationary point. However, when n is large enough, for a small proportion

of outliers δ, the algorithm does converge to the same stationary point, which

implies the uniqueness of the stationary point.

To illustrate the robustness of the M-estimator, we generate 100 realizations

of (Y,X) and run the gradient descent algorithm with different initial values.

The average estimation errors between the M-estimator and the true parameter

θ0 are presented in Figure 3. As we can see, when δ = 0, all estimators have small

estimation errors, which is expected because those M-estimators are consistent

without outliers (Huber (1964); Huber and Ronchetti (2009)). However, for the

M-estimator with α = 0, that is, the least squares estimator, the estimation error

increases dramatically as the proportion of outliers increases. This confirms that

the least squares estimator is not robust to outliers.
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When α = 0.1, the overall estimation error does not increase much, even

with 40% outliers, which clearly demonstrates the robustness of the M-estimator.

Note that when α is increased from 0.1 to 0.3, although the estimator error is

still very small for δ ≤ 0.2, it increases dramatically when δ is greater than 0.2.

We believe that two reasons contribute to this phenomenon. First, robustness

starts to decrease when α becomes too large. Second, and more importantly, the

algorithm fails to find the global optimum owing to the multiple stationary points

when α is large. Thus for each α, there exists a critical bound of δ such that the

estimator will be robust and tractable when the proportion of outliers is smaller

than that bound.

In the second part, we present our results in the high-dimensional region

when p = 200 and n = 200. Data (yi, xi) are generated from the same gross

error model in the previous simulation study, with the true parameter θ0 a sparse

vector with s = 10 nonzero entries. All nonzero entries are set to 1/
√

10. We

use the proximal gradient descent algorithm to solve problem (3.1) with Tukey’s

bisquare loss. As before, we project the points back into Bp
2(0, r = 10) if they

fall outside of the ball. We set the fixed step size as 0.1 and the L1 regularization

parameter λ =
√

log(p)/n. We first illustrate the robustness of the penalized

M-estimator using Tukey’s loss with the tuning parameter α = 4, 5, 10, 20, 500.

We generate 100 realizations of (Y,X) and run the proximal gradient descent

algorithm. The average estimation errors between the penalized M-estimator

and the true parameter are reported in Figure 4. First, note that as α is large,

Tukey’s loss is similar to the squared loss. Thus, the penalized M-estimator with

α = 500 performs similarly to the lasso. From Figure 4, we can see it has the

smallest estimation error when δ = 0, but has the largest estimation error when

δ ≥ 0.1. Moreover, when α is small, the corresponding estimation error does not

increase much, even if δ = 0.4. These results imply the robustness of the penalized

robust M-estimator.

Next, we illustrate the tractability of the penalized M-estimator by showing

std(θ̂(k)) for 20 initializations of the proximal gradient descent algorithm with

Tukey’s loss and α = 20 under the gross error model, with different δ. Figure

5 shows the result for p = 200 and n = 200, and Figure 6 shows the result for

p = 400 and n = 400. From the two plots, we observe an interesting phenomenon:

the proximal gradient descent converges to the same stationary points, even when

the percentage of outliers δ = 0.4. This result seems to contradict the result for

the low-dimensional case, where α = 0.4 can make the algorithm converge to

different stationary points. Thus, a more accurate analysis on the tractability

property of the penalized M-estimators is needed.
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Figure 6. The value of std(θ̂(k)) for differ-
ent δ; n=p=400.

6. Case Study

In this section, we present a case study of the robust regression problem

for the Airfoil Self-Noise data set (Brooks, Pope and Marcolini (2014)), which is

available from the UCI Machine Learning Repository. The data set was processed

by NASA and is commonly used in regression studies to learn the relation between

the airfoil self-noise and five explanatory variables. Specifically, the data set

contains five explanatory variables: Frequency (in Hertz), Angle of attack (in

degrees), Chord length (in meters), Free-stream velocity (in meters per second),

and Suction side displacement thickness (in meters). There are 1,503 observations

in the data set. The response variable is Scaled sound pressure level (in decibels).

In this section, the five explanatory variables are scaled to have a zero mean and

unit variance. Then, we corrupt the response by adding noise ε from the same

gross error model as the previous section: εi ∼ (1− δ)N(0, 1) + δN(µi, 3
2), with

µi = ||xi||22 + 1.
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We apply the M-estimator using Welsch’s exponential loss (Dennis Jr and

Welsch (1978)) to the data set to validate the tractability and robustness of the

corresponding M-estimator. First, we run 100 Monte Carlo simulations. At each

time, we split the data set of 1,503 pairs of observations into a training data set

of size 1,000 and a testing data set of size 503. Then for the training data set,

we use the gradient descent method with 20 different initial values to update the

iteration points.

Figure 7 shows the empirical standard deviation of each iteration std(θ̂(k))

with α = 0.3 and step size 0.5. Clearly, when δ is smaller than 0.3, the gradient

descent converges to the same local minimizer, which implies the uniqueness of

the stationary point. This result demonstrates the nice tractability of the M-

estimator under the gross error model when the proportion of outliers is small.

Then, using the optimal point as the M-estimator, we calculate the prediction

error, which is the mean squared error on the testing data. Figure 8 shows the

average prediction error on the testing data. As we can see, the prediction error

with α = 0 increases dramatically when the percentage of outliers increases. In

contrast, the prediction error of the M-estimator with α = 0.4 is stable, even with

a large percentage of outliers. This illustrates the robustness of M-estimators for

some positive α.

7. Conclusion

We have investigated the robustness and computational tractability of gen-

eral (nonconvex) M-estimators in both classical low-dimensional and modern

high-dimensional regimes. In terms of robustness, in the low-dimensional regime,

we show that the estimation error of the M-estimator is O(δ+
√
p log n/n), which
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nearly achieves the minimax lower bound of O(δ+
√
p/n) in Chen, Gao and Ren

(2016). In the high-dimensional regime, we show that the estimation error of the

penalized M-estimator has an estimation error O(δ+
√
s0 log p/n), which achieves

the minimax estimation rate (Chen, Gao and Ren (2016)).

In terms of tractability, our theoretical results imply that under sufficient

conditions, when the percentage of arbitrary outliers is small, the general M-

estimator could have good computational tractability because it has only one

unique stationary point, even if the loss function is nonconvex. Therefore, M-

estimators can tolerate a certain level of outliers while maintaining both their es-

timation accuracy and computational efficiency. Both simulations and a real-data

case study validate our theoretical results about the robustness and tractability

of M-estimators in the presence of outliers.

Supplementary Material

The online Supplementary Material contains proofs for the lemmas and main

theorems.
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