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Abstract: We provide robust estimators for the first canonical correlation and direc-

tions of random elements on Hilbert separable spaces by using robust association

and scale measures, combined with basis expansions and/or penalizations as a regu-

larization tool. Under regularity conditions, the resulting estimators are consistent.

The finite-sample performance of our proposal is illustrated by means of a simula-

tion study that shows that, as expected, the robust method outperforms the existing

classical procedure when the data are contaminated. A real data example is also

presented.
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1. Introduction

In recent years, data collected in the form of functions or curves have received

considerable attention in fields such as chemometrics, economics, environmen-

tal studies, image recognition, spectroscopy, and many others. These data are

known in the literature as functional data; see Ramsay and Silverman (2005) for

a complete overview. As is well known, functional data are intrinsically infinite-

dimensional, and this structure is a source of information. Therefore, even when

recorded at a finite grid of points, functional observations should be considered

as random elements of some functional space rather than as multivariate observa-

tions. In this manner, some of the theoretical and numerical challenges posed by

the high dimensionality may be solved. This framework led to the extension of

some classical multivariate analysis concepts, such as dimension-reduction tech-

niques, to the context of functional data, usually using some regularization tool.

This paper focuses on canonical correlation analysis, where data consist

of pairs of random curves. The aim of this analysis is to identify and quan-

tify the relation between the observed functions. Under a Gaussian model,
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Leurgans, Moyeed, and Silverman (1993) showed that the natural extension of

multivariate estimators to the functional scenario fails, motivating the need for a

regularization technique that involves smoothing using a penalty term. In addi-

tion, He, Müller and Wang (2003) provided conditions that ensure the existence

and proper definition of canonical directions and correlations for processes that

support a Karhunen–Loéve expansion, and Cupidon et al. (2007) derived the

asymptotic distribution of correlations and regularized functional canonical vari-

ations. An alternative way to get around the ill-posed problem related to func-

tional canonical correlation analysis is to use a finite basis expansion. Proposals

based on this approach are discussed in He, Müller and Wang (2004) and Ram-

say and Silverman (2005). More precisely, these authors proposed to performing

a regularization step projecting the observed curves on a finite number of basis

functions, before computing the smooth canonical correlations and directions in

the basis expansion domain.

The aforementioned papers use the Pearson correlation as a measure of the

association between the observed functions. However, the Pearson correlation is

known to be sensitive to atypical observation, and this sensitivity is inherited by

procedures based on it (see Taskinen et al. (2006)). To the best of our knowl-

edge, when considering the analysis of functional canonical correlation, the only

proposal of estimators resistant to anomalous observations is that studied by

Alvarez, Boente and Kudraszow (2019), who implemented the regularization by

projecting random processes on a finite number of functions in an orthonormal

basis.

Our aim is to introduce two families of robust consistent estimators for per-

forming functional canonical correlation analysis. For the first family, regular-

ization is based on a roughness penalty term, while for the second, a dimension-

reduction technique is also applied. The remainder of the paper is organized as

follows. In Section 2, we state some notation and preliminary definitions, and

briefly describe the two classical approaches for regularized functional canonical

correlation analysis. Section 3 presents our robust proposals. Consistency results

are stated in Section 4. The results of a numerical study comparing the robust

proposals with their classical counterparts for clean and contaminated samples

are given in Section 5, together with an analysis of a real data example. Some

final comments are given in Section 6. All proofs are deferred to the Appendix

or the online supplementary Material.
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2. Preliminaries

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖2 =

〈·, ·〉. Let (X,Y ) be a random element of the Hilbert space H × H defined in

a probability space (Ω,A,P). In the product space H × H, we define the usual

inner product 〈(u1, v1), (u2, v2)〉H×H = 〈u1, u2〉 + 〈v1, v2〉. When (X,Y )> has a

finite second moment, that is, E(‖X‖2 + ‖Y ‖2) < ∞, we use ΓXX : H → H,

ΓY Y : H → H, ΓXY : H → H and ΓY X : H → H to denote the covariance and

cross-covariance operators, respectively. More precisely, for any u1, u2 ∈ H, v ∈
H, we have that Cov(〈u1, X〉, 〈u2, X〉) = 〈u1,ΓXXu2〉 and Cov(〈u1, X〉, 〈v, Y 〉) =

〈u1,ΓXY v〉, and similarly for ΓY Y and ΓY X .

2.1. The classical approaches

Canonical correlation analysis, developed originally for multivariate data,

has been extended successfully to accommodate functional data by Leurgans,

Moyeed, and Silverman (1993), as follows.

Assume that the observed data {(Xi, Yi)
>, i = 1, . . . , n} are independent

realizations of a bivariate stochastic process (X,Y )> ∈ H × H. When (X,Y )>

has finite second moments, a nonsmooth approach to the problem of functional

canonical correlation is to search for functions u and v in H such that the linear

combinations 〈u,X〉 and 〈v, Y 〉 have a maximum squared correlation; that is, the

objective is to find u 6= 0, v 6= 0 that maximize

L(u, v) = Corr2(〈u,X〉 , 〈v, Y 〉) =
〈u,ΓXY v〉2

〈u,ΓXXu〉 〈v,ΓY Y v〉
, (2.1)

where the ratio 〈u,ΓXY v〉2/ (〈u,ΓXXu〉 〈v,ΓY Y v〉) is equal to zero when 〈u,
ΓXXu〉 = 0 or 〈v,ΓY Y v〉 = 0. In particular, Leurgans, Moyeed, and Silver-

man (1993) considered the case H = L2(I). They also assumed that there are

two bases of H composed of the functional canonical coordinates, which are a

generalization of the vector canonical coordinates, that ensure the existence of a

solution to the nonsmooth approach.

Leurgans, Moyeed, and Silverman (1993) proved that it is not possible to

consider a sample version of the problem of maximizing L(u, v). Therefore, they

proposed estimating the first canonical variables by maximizing, restricted to not

null “smooth elements” of H, the estimated canonical correlation penalized by a

“penalty operator”.

As mentioned in the Introduction, two possibilities may be considered to
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introduce regularization. One approach is to consider, as in Leurgans, Moyeed,

and Silverman (1993), a roughness penalty that gives a measure of the smoothness

of a function. The second considers a sieve approximation, eventually combined

with a penalty term. We briefly review both methods.

Let D : Hs → H be a linear operator, which we refer to as the differentiator.

Here Hs is the subset of smooth elements of H; that is, u ∈ Hs if ‖Du‖ < ∞.

Using D, we define the symmetric positive semi-definite bilinear form d·, ·e :

Hs × Hs → R, where du, ve = 〈Du,Dv〉. The penalization operator is then

defined as Ψ : Hs → R, Ψ(u) = du, ue, and the penalized inner product as

〈u, v〉τ = 〈u, v〉+ τ du, ve.

Remark 1. The most common setting for functional data corresponds to the

situation where H = L2(I) and

Hs =

{
u ∈ L2(I), u is twice differentiable, and

∫
I
u′ ′(t)

2
dt <∞

}
.

In this case, it is usual to consider Du = u′ ′ and du, ve =
∫
I u
′ ′(t) v′ ′(t)dt,

therefore Ψ(u) =
∫
I u
′ ′(t)2dt.

Denote H0
s := {u ∈ Hs : u 6= 0}. Given u and v in H0

s , Leurgans, Moy-

eed, and Silverman (1993) defined the population penalized squared correlation,

Lτ (u, v), as

Lτ (u, v) =
Cov2(〈u,X〉 , 〈v, Y 〉)

{Var(〈u,X〉) + τ1Ψ(u)} {Var(〈v, Y 〉) + τ2Ψ(v)}

=
〈u,ΓXY v〉2

{〈u,ΓXXu〉+ τ1Ψ(u)} {〈v,ΓY Y v〉+ τ2Ψ(v)}
,

where τ = (τ1, τ2). The so-called smoothed canonical correlation analysis (SCCA)

by Leurgans, Moyeed, and Silverman (1993), corresponds to maximizing Lτ (u, v)

over u, v ∈ H0
s . In this way, for the sample {(Xi, Yi)

>, i = 1, . . . , n}, the authors

proposed performing an SCCA by replacing the population quantities with their

sample counterparts, that is, by maximizing the penalized squared sample corre-

lation

L̂τ (u, v) =
Ĉov

2
(〈u,X〉 , 〈v, Y 〉)(

V̂ar(〈u,X〉) + τ1Ψ(u)
)(

V̂ar(〈v, Y 〉) + τ2Ψ(v)
) (2.2)

=

〈
u, Γ̂XY v

〉2(〈
u, Γ̂XXu

〉
+ τ1Ψ(u)

)(〈
v, Γ̂Y Y v

〉
+ τ2Ψ(v)

) ,
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where Ĉov and V̂ar stand for the sample covariance and variance, respectively

computed by replacing the corresponding bivariate or univariate distributions

with the empirical ones, and Γ̂XX , Γ̂Y Y , and Γ̂XY denote the sample covariance

and cross-covariance operators.

As mentioned in the Introduction, to address the dimensionality problems

of functional canonical correlation analysis, He, Müller and Wang (2004) and

Ramsay and Silverman (2005) propose an alternative to the SCCA that employs

dimension-reduction techniques, that is, following a sieve approach. More pre-

cisely, these authors implement regularization by first projecting the sample’s

curves on a finite number of elements of an orthonormal basis. In this way, given

{ξi}i≥1, a suitable orthonormal basis for H, let Hd be the subspace of H spanned

by {ξ1, . . . , ξd}. Then, if we take d = dn such that dn → ∞, the sequence of

increasing subspaces Hdn approximates H. From now on, we assume the basis

elements are smooth, and so H0
dn

:= {u ∈ Hdn : u 6= 0} ⊂ H0
s . For simplicity, we

consider only the case where the same basis is used to approximate both canonical

direction estimators.

For the sample {(Xi, Yi)
>, i = 1, . . . , n}, Ramsay and Silverman (2005) de-

fined the SCCA restricted to the basis expansion domain as the maximization

of L̂τ (u, v) over H0
d × H0

d. Let α = (α1, . . . , αd)
> and β = (β1, . . . , βd)

>

be the coefficients’ vectors of u and v in the considered basis, and let x =

(〈X, ξ1〉, . . . , 〈X, ξd〉)> and y = (〈Y, ξ1〉, . . . , 〈Y, ξd〉)>. It is easily seen that, in

the basis expansion domain, the SCCA of the given data is carried out by maxi-

mizing the following over α,β 6= 0:

L̂dτ (α,β) =

Ĉov
2
(α>x,β>y)(

V̂ar(α>x) + τ1
∑d

i,j αi αj dξi, ξje
)(

V̂ar(β>y) + τ2
∑d

i,j βi βj dξi, ξje
) . (2.3)

The maximizers of (2.3) are the coefficient’s vectors of the estimated leading

canonical directions in the considered basis.

Frequently used bases for functional data are the Fourier, polynomial, splines,

and wavelet bases. The practitioner can also use a data-driven basis, such as the

one composed of the eigenfunctions of the covariance operators. The number of

basis elements, d, should be chosen sufficiently large to ensure that the regular-

ization is controlled by the choice of the smoothing parameter τ rather than by

the dimensionality d.
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2.2. Co-association measures

As is well known, the estimators obtained by maximizing L̂τ (u, v) are very

sensitive to the presence of outliers, because they are based on the sample ver-

sion of the covariance operators. This suggests that more resistant association

measures are needed to get reliable estimations; see, for instance, Alfons, Croux

and Filzmoser (2017), who provide robust canonical correlation estimators for

multivariate data and a discussion on bivariate association measures. Associa-

tion measures are an alternative to, and include, the Pearson correlation. In our

setting, we seek robust alternatives to the covariance between two random vari-

ables because we are penalizing the two variances appearing in the denominator

of (2.2). Clearly, a resistant measure can be constructed from a robust associa-

tion measure and a robust scale estimator. However, other possible choices can

be considered. We first give a definition that provides a general framework for

robust counterparts of the usual covariance.

Given two univariate random variables U and V , let F(U,V ), FU , and FV
denote the distributions of (U, V )>, U , and V , respectively. A bivariate co-

association measure γ between U and V , denoted as γ(F(U,V )), is a functional

defined over the space of bivariate distributions, such that

(i) γ(F(U,V )) = γ(F(V,U)),

(ii) γ(F(aU+b,cV+d)) = a c γ(F(U,V )), where a, b, c, and d are real constants.

To simplify the notation, we write γ(U, V ) instead of γ(F(U,V )) from now on.

Furthermore, if a bivariate co-association measure γ also satisfies the condi-

tion

(iii) γ2(U, V ) ≤ γ(U,U) γ(V, V ),

a measure of association may be defined as ρ (U, V ) = γ (U, V )/
√
γ (U,U) γ (V, V ).

Clearly, the covariance between two random variables is a co-association measure

that satisfies (i)–(iii), and its related association measure is the Pearson corre-

lation.

As mentioned above, to provide a robust counterpart of (2.2), robust scale

estimators are also needed. To recall the definition of a scale functional, denote G
as the set of all univariate distributions. A scale functional σ : G → [0,+∞) is a

location-invariant and scale-equivariant functional, that is, σ(FaU+b) = |a|σ(FU ),

for all real numbers a and b (see Maronna et al. (2019)). Two well-known ex-

amples of scale functionals are the standard deviation and the median absolute

deviation about the median, mad(FU ) = c median (|U −median(U)|). The nor-

malization constant c, used in the mad, can be chosen so that its empirical or
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sample version is consistent for a scale parameter of interest. Typically, one

chooses c = 1/Φ−1(0.75) so that the mad is equal to the standard deviation

at a normal distribution. More generally, any M -scale estimator can be cali-

brated to provide Fisher-consistent estimators at the normal distribution, that

is, σ(Φ) = 1, with Φ being the standard normal distribution. As above, when

there is no confusion, we write σ(U) instead of σ (FU ).

Given a bivariate co-association functional γ and a scale functional σ, one can

define the related association measure ρ as ρ (U, V ) = γ (U, V ) /{σ (U)σ (V )}, if

ρ2 (U, V ) ≤ 1, for any two univariate variables U and V . Conversely, given an

association measure ρ and a scale functional σ, the related co-association is given

by γ (U, V ) = ρ (U, V ) σ (U)σ (V ).

Examples of such association measures can be constructed from a bivariate

robust scatter functional W = W(U, V ), which provides a more resistant alterna-

tive to the classical covariance matrix Σ = Cov(U, V ). The association measure

induced by a bivariate scatter matrix W is given by

ρ(U, V ) =
W12(U, V )

{W11(U, V )W22(U, V )}1/2
, (2.4)

where Wij(U, V ) is the (i, j)th element of the scatter matrix W(U, V ). One pos-

sible choice for W(U, V ) is the M -scatter estimator defined by Maronna (1976),

because it provides an efficient estimator that is also highly robust in the bivariate

case. Another possible choice is to consider the orthogonalized Gnanadesikan–

Kettenring covariance proposed by Maronna and Zamar (2002). When using M -

estimators or the orthogonalized Gnanadesikan–Kettenring covariance, the cor-

responding co-association measure is defined by taking γ(U, V ) = W12(U, V ) and

the related scale estimators as σ(U) =
√

W11(U, V ) and σ(V ) =
√

W22(U, V ).

Note that ρ2 (U, V ) ≤ 1 when W is positive semi-definite, which is satisfied by

both estimators mentioned above.

Taking into account that Cov(U, V ) = (αβ/4)(sd2(U/α+V/β)− sd2(U/α−
V/β)), for all α 6= 0 and β 6= 0, where sd(·) stands for the standard deviation,

Gnanadesikan and Kettenring (1972) define a family of co-association functionals,

replacing the standard deviation with a robust scale σ and taking α = σ(U) and

β = σ(V ). More precisely, given a scale functional σ, the co-association measure

γ? is defined as γ?(U, V ) = σ(U)σ(V ) (σ2
+ − σ2

−)/4, with

σ2
+ = σ2

(
U

σ(U)
+

V

σ(V )

)
σ2
− = σ2

(
U

σ(U)
− V

σ(V )

)
. (2.5)

In order to obtain a highly robust estimator of the correlation between two real
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random variables, the association measure ρ?(U, V ) is defined as ρ?(U, V ) =

(σ2
+ − σ2

−)/4. However, the resulting measure is not bounded between −1 and

1, because the co-association measure does not satisfy (iii). To ensure an asso-

ciation measure in the valid range, Gnanadesikan and Kettenring (1972) define

the association measure ρgk as ρgk(U, V ) = (σ2
+ − σ2

−)/(σ2
+ + σ2

−), with σ2
+ and

σ2
− defined in (2.5), which lies in the range [−1, 1]. The related a co-association

measure is defined as γgk(U, V ) = σ(U)σ(V ) ρgk(U, V ).

Remark 2. We say that (U, V ) ∼ E2(µ,Σ, ϕ) if Z = (U, V )> is elliptically dis-

tributed with location µ, scatter matrix Σ, and characteristic generator function

ϕ, that is, the characteristic function of Z is equal to ψZ(t) = exp(iµ>t)ϕ(t>Σt).

As mentioned in Section 2.1 of Alvarez, Boente and Kudraszow (2019), if the ro-

bust scatter functional W is affine-equivariant, the association measure defined in

(2.4) is Fisher-consistent for elliptical families; that is, ρ(U, V ) = Σ12/
√

Σ11 Σ22.

In particular, the association measure induced by the M -scatter estimator de-

fined by Maronna (1976) is Fisher-consistent at any elliptical distribution. Fur-

thermore, even when the scatter matrix defined in Maronna and Zamar (2002)

is not affine equivariant, the association measure ρ given in (2.4) is also Fisher-

consistent at any elliptical distribution.

When the scale function σ(·) is calibrated to be Fisher-consistent at the

normal distribution, γ? and γgk are Fisher-consistent at the bivariate normal

distribution. When considering elliptical distributed random vectors (U, V ) ∼
E2(µ,Σ, ϕ), it is well known that for any robust scale functional, there exists a

constant c > 0 such that, for any a, b ∈ R, σ2(aU + bV ) = c(a2Σ11 + b2Σ22 +

2abΣ12) (see, e.g., Maronna et al. (2019)). Straightforward arguments show that,

in this situation, σ2
+ = 2(1+Σ12/

√
Σ11 Σ22) and σ2

− = 2(1−Σ12/
√

Σ11 Σ22); thus

ρ? and ρgk are also Fisher-consistent at elliptical distributions.

3. Robust Approaches for Smoothed Canonical Correlation Analysis

Throughout this paper, PZ [u] denotes the distribution of 〈u, Z〉 when Z ∼
PZ , and P(X,Y )[u, v] stands for the joint distribution of (〈u,X〉 , 〈v, Y 〉)> when

(X,Y )> ∼ P(X,Y ). Furthermore, given a sample Z1, . . . , Zn, we write Pn,Z [u] for

the empirical distribution of 〈u, Z1〉 , . . . , 〈u, Zn〉, and Pn,(X,Y )[u, v] for that of the

bivariate sample (〈u,Xi〉 , 〈v, Yi〉)>, for 1 ≤ i ≤ n.

Let γr and σr be robust co-association and scale functionals, respectively,

defining a measure of association; that is, γ2
r (U, V ) ≤ σ2

r (U)σ2
r (V ). Henceforth,

γXY (u, v) = γr
(
P(X,Y )[u, v]

)
and σZ(u) = σr (PZ [u]), and their sample versions

are denoted as gn(u, v) = γr(Pn,(X,Y )[u, v]) and s2
n,Z(u) = σ2

r(Pn,Z [u]), respec-
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tively. When γr (U, V ) = ρr (U, V ) σr (U)σr (V ) for some association measure

ρr, we write rn(u, v) = ρr(Pn,(X,Y )[u, v]) and ρXY (u, v) = ρr
(
P(X,Y )[u, v]

)
. Fur-

thermore, given any u, v ∈ H, denote Lr(u, v) as the robust population squared

measure of association between 〈u,X〉 and 〈v, Y 〉, and Lτ ,r(u, v) as its smoothed

version; that is,

Lr(u, v) =
γ2
XY (u, v)

σ2
X(u)σ2

Y (v)
and Lτ ,r(u, v) =

γ2
XY (u, v)

{σ2
X(u) + τ1Ψ(u)}{σ2

Y (v) + τ2Ψ(v)}
,

where we define Lr(u, v) = 0 when σ2
X(u) = 0 or σ2

Y (v) = 0. Note that Lr is the

robust counterpart of L(u, v) in (2.1). Moreover, if γr is related to an association

measure ρr and the scale functional σr as γr (U, V ) = ρr (U, V ) σr (U)σr (V ),

then Lr(u, v) = ρ2
r

(
P(X,Y )[u, v]

)
. We refer to the supremum of Lr(u, v) as the

first or maximum canonical association.

As mentioned in Section 2.1, when the co-association measure γr and the

scale functional σr are taken as the covariance and the standard deviation, re-

spectively, the functional canonical correlation is an ill-posed problem and some

regularization is needed. Similarly, when considering a general co-association

and scale functionals, it is not possible to consider a sample version of the prob-

lem of maximizing Lr(u, v). More precisely, Proposition 3.1 of Alvarez, Boente

and Kudraszow (2019) shows that when dim(H) = ∞, there are directions such

that the empirical association measure L̂r(u, v) = g2
n(u, v)/{s2

n,X(u) s2
n,Y (v)} is

equal to one. Thus, the proposal of Leurgans, Moyeed, and Silverman (1993)

can easily be adapted, using the sample version of Lτ ,r, to obtain more stable

estimators. To simplify our notation, in what follows, we avoid the subscript r

when defining the canonical directions and their estimators. The robust canon-

ical direction functionals and their smoothed versions are defined, respectively,

as (φ1, ψ1) = argmaxu,v ∈H0
s
Lr(u, v) and (φτ ,1, ψτ ,1) = argmaxu,v ∈H0

s
Lτ ,r(u, v).

The sample counterparts of (φτ ,1, ψτ ,1) are obtained using the sample versions

of the robust co-association and scale functionals; that is, the smoothed robust

canonical correlation estimators are given by

(φ̂τ ,1, ψ̂τ ,1) = argmax
u,v ∈H0

s

g2
n(u, v)

{s2
n,X(u) + τ1Ψ(u)}{s2

n,Y (v) + τ2Ψ(v)}

= argmax
u,v ∈H0

s

L̂τ ,r(u, v) . (3.1)

In the same way, the proposal of Ramsay and Silverman (2005) based on

regularization by means of both orthonormal bases and a penalization parameter
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can be easily adapted to be robust maximizing L̂τ ,r over H0
d. Therefore, the

smoothed robust canonical correlation estimators in the basis expansion domain

are given by

(φ̃κ,1, ψ̃κ,1) = argmax
u,v ∈H0

d

L̂τ ,r(u, v) , (3.2)

where κ = (τ , d).

Note that the above maximizations have no unique solution, and that any

scalar multiplication of a solution is also a solution. For that reason, conditions

over the norms of the directions or the variances of the projections are usually

imposed in order to achieve identifiability up to a sign. With this equivalence in

mind, we have that (φ1, ψ1) is the pair of leading robust canonical directions of

the model, and (φ̂τ,1, ψ̂τ,1) and (φ̃κ,1, ψ̃κ,1), given in (3.1) and (3.2), respectively,

are its estimators. Note that an unsmoothed robust version of (3.2), that is,

when τ1 = τ2 = 0, was studied in Alvarez, Boente and Kudraszow (2019).

4. Consistency

As in Leurgans, Moyeed, and Silverman (1993), to derive consistency results

for smoothed robust canonical correlation estimators, it is enough to consider the

special case where τ1 = τ2 = τ ; thus, we focus on this case henceforth. Let N
denote the null space of d·, ·e and N⊥ its orthogonal complement. The following

assumptions are needed to obtain the desired convergence results.

C1 There exists a constant c > 0 and a self-adjoint, positive, compact operator

Γ : H×H → H×H such that

Γ =

(
Γ11 Γ12

Γ21 Γ22

)
, (4.1)

and for any u, v ∈ H, σ2
X(u) = c 〈u,Γ11u〉, σ2

Y (v) = c 〈v,Γ22v〉 and γXY (u, v)

= c 〈u,Γ12v〉. In addition, the eigenfunctions of Γ11 and Γ22 fall in Hs.

C2 There exist functions φ1 and ψ1 in Hs such that, for any u, v ∈ H, we have

Lr(u, v) ≤ Lr(φ1, ψ1) = ρ2
1. Furthermore, there exists 0 ≤ ρ2 < ρ1, such

that Lr(u, v) ≤ ρ2, for any u ∈ H and v ∈ H such that γr(P(X,X)[u, φ1]) =

γr(P(Y,Y )[v, ψ1]) = 0. Furthermore, assume that ‖φ1‖ = 1 and ‖ψ1‖ = 1,

and that (φ1, ψ1) is unique up to change of sign.

C3 (a) For any u ∈ N , u 6= 0, σX(u) 6= 0, and σY (u) 6= 0.

(b) N is finite dimensional and there exists d > 0 such that Ψ(u) = du, ue >
d‖u‖2, for all u ∈ N⊥.
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Note that in C1, we may assume without loss of generality that c = 1,

redefining Γ as c Γ. From now on, we denote ‖u‖21,τ = σ2
X(u) + τ du, ue =

〈u,Γ11u〉+ τ du, ue and ‖v‖22,τ = σ2
Y (v) + τ dv, ve = 〈v,Γ22v〉+ τ dv, ve. Further-

more, let

Cn,X = sup
‖u‖1,τn=1

∣∣s2
n,X(u)− σ2

X(u)
∣∣ ,

Cn,Y = sup
‖v‖2,τn=1

∣∣s2
n,Y (v)− σ2

Y (v)
∣∣ ,

Cn,XY = sup
‖u‖1,τn=‖v‖2,τn=1

|gn(u, v)− γXY (u, v)| .

We also need the following assumption, which is related to the convergence

of the scale and co-association estimators.

C4 The smoothing parameter τ = τn ≥ 0 is such that τn → 0, max(Cn,X , Cn,Y )
a.s.−→ 0, and one of the following hold:

(a) Cn,XY
a.s.−→ 0 as n → ∞, and there exists a constant A > 0 such that

for any u, v ∈ H0
s , we have that

L̂τ,r(u, v) =
g2
n(u, v)

{s2
n,X(u) + τΨ(u)}{s2

n,Y (v) + τΨ(v)}
≤ A.

(b) The co-association measure is such that gn(u, v) = rn(u, v)sn,X(u)

sn,Y (v), and we have that θn = sup‖u‖=‖v‖=1 |rn(u, v)− ρXY (u, v)| a.s.−→
0.

Note that the condition L̂τ,r(u, v) ≤ A, for any u, v ∈ H0
s , clearly holds with

A = 1 when γr (U, V ) = ρr (U, V )σr (U)σr (V ), for some association mea-

sure ρr, as is the case with the classical setting, because rn(u, v) ≤ 1. Note

too that rn(u, v) and ρXY (u, v) are scale invariant, so we also have that θn =

sup‖u‖1,τn=‖v‖2,τn=1 |rn(u, v)− ρXY (u, v)|.
Assume that C2 holds, and define λ0 = ρ2

1, λτ = supu,v ∈H0
s
Lτ,r(u, v), and

λ̂τ = supu,v ∈H0
s
L̂τ,r(u, v). As in Section 3, we denote the values maximizing

Lr(u, v), Lτ,r(u, v), and L̂τ,r(u, v) by (φ1, ψ1), (φτ,1, ψτ,1), and (φ̂τ,1, ψ̂τ,1), re-

spectively.

The convergence of the estimators (φ̂τ,1, ψ̂τ,1) to the first population canon-

ical directions, (φ1, ψ1), is the convergence with respect to the association mea-

sure induced by γr and σr, that is analogous to the Γ-norm convergence defined

in Leurgans, Moyeed, and Silverman (1993). This convergence means that the

canonical variates obtained from (φ̂τ,1, ψ̂τ,1) for a given random element (X,Y )>
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behave as those obtained from (φ1, ψ1), which is a desirable property for the

estimated canonical directions. To clarify the convergence considered, given

u1, u2, v1, v2 ∈ H, define the quantities

LXr (u1, u2) =
γ2
r(P(X,X)[u1, u2])

σ2
X(u1)σ2

X(u2)
and LYr (v1, v2) =

γ2
r(P(Y,Y )[v1, v2])

σ2
Y (v1)σ2

Y (v2)
.

For any pair of sequences (un)n∈N ⊆ H, (vn)n∈N ⊆ H, we say that (un, vn)

converges to (u, v) ∈ H in the Lr-norm if LXr (u, un)→ 1 and LYr (v, vn)→ 1.

The following theorem (the proof is given in the Appendix) shows that the

robust estimators of the canonical directions given in (3.1) are consistent.

Theorem 1. Let (X1, Y1)>, . . . , (Xn, Yn)> be independent and identically dis-

tributed (i.i.d.) with the same distribution as (X,Y )> ∼ P(X,Y ). Assume that C1

–C2, C3(a), and C4 hold. Then, we have that

(a) λ̂τ
a.s.−→ λ0 = ρ2

1, so the estimate of the maximum canonical association is

consistent,

(b) Lr(φ̂τ,1, ψ̂τ,1)
a.s.−→ λ0, and

(c) LXr (φ̂τ,1, φ1)
a.s.−→ 1 and LYr (ψ̂τ,1, ψ1)

a.s.−→ 1.

In order to get consistency results for the robust smoothed canonical correla-

tion estimators in the basis expansion domain, it is necessary to adopt additional

notation and assumptions. Let κ = κn = (τn, dn), λ̃κ = supu,v ∈H0
dn
L̂τ,r(u, v),

and λκ = supu,v ∈H0
dn
Lτ,r(u, v), with maximizers (φ̃κ,1, ψ̃κ,1) and (φκ,1, ψκ,1).

Let

Dn,X = sup
u∈Hdn , ‖u‖1,τn=1

∣∣s2
n,X(u)− σ2

X(u)
∣∣ ,

Dn,Y = sup
v∈Hdn , ‖v‖2,τn=1

∣∣s2
n,Y (v)− σ2

Y (v)
∣∣ ,

Dn,XY = sup
u,v∈Hdn , ‖u‖1,τn=‖v‖2,τn=1

|gn(u, v)− γXY (u, v)| ,

and let ΠHdn be the orthogonal projection operator onto Hdn .

C5 The basis {ξi}i≥1 ⊂ H0
s and d = dn is such that dn → ∞. The smoothing

parameter τ = τn ≥ 0 is such that τn → 0, max(Dn,X , Dn,Y )
a.s.−→ 0, and one

of the following hold:

(a) Dn,XY
a.s.−→ 0 as n → ∞ and there exists a constant A > 0 such that

for any u, v ∈ H0
dn

, we have that L̂τ,r(u, v) ≤ A.
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(b) The co-association measure is such that gn(u, v) = rn(u, v)sn,X(u)

sn,Y (v), and we have that δn = supu,v∈H0
dn
, ‖u‖1,τn=‖v‖2,τn=1 |rn(u, v) −

ρXY (u, v)|.

C6 σ2
X(u) : H −→ R, σ2

Y : H −→ R, and γXY : H×H −→ R are continuous in

φ1, ψ1, and (φ1, ψ1), respectively.

Note that assumption C5 is slightly weaker than C4.

The following theorem shows that the robust estimators of the canonical

directions given in (3.2) are consistent (see the Appendix for the proof).

Theorem 2. Let (X1, Y1)>, . . . , (Xn, Yn)> be i.i.d. with the same distribution as

(X,Y )> ∼ P(X,Y ). Assume that C1–C3(a) and C5–C6 hold, τnΨ(ΠHdnφ1)→ 0,

and τnΨ(ΠHdnψ1)→ 0. Then, we have that

(a) λ̃κ
a.s.−→ λ0 = ρ2

1,

(b) Lr(φ̃κ,1, ψ̃κ,1)
a.s.−→ λ0, and

(c) LXr (φ̃κ,1, φ1)
a.s.−→ 1 and LYr (ψ̃κ,1, ψ1)

a.s.−→ 1.

4.1. Some general comments

Assumptions C2 and C3 are similar to assumptions 3 and 4 in Leurgans,

Moyeed, and Silverman (1993). In particular, C3(b) corresponds to the first

part of assumption 4 in Leurgans, Moyeed, and Silverman (1993). C3 is sat-

isfied, for example, when the roughness penalty is the integrated squared sec-

ond derivative, subject to periodic boundary conditions. Note that the assump-

tions τΨ(ΠHdnφ1) → 0 and τΨ(ΠHdnψ1) → 0 in Theorem 2 are satisfied when

{Ψ(ΠHdφ1)}d∈N and {Ψ(ΠHdψ1)}d∈N are bounded.

When γr is the covariance and σr is the standard deviation sd, C1 holds,

with Γ11 = ΓXX , Γ22 = ΓY Y , Γ12 = ΓXY , and c = 1. Note that, in this case,

a necessary condition for a good definition of the canonical weights is that both

random elements X and Y have finite second moments, and Theorem 4.8 of He,

Müller and Wang (2003) provides a characterization of the canonical directions

using an eigen-analysis of the cross-correlation operator, under mild assumptions.

As discussed in the Supplementary Material, this moment requirement may be

relaxed when other association measures are considered. More precisely, in Sec-

tion S.2 of the Supplementary Material, we discuss what the target quantities

represent for elliptical processes when second moments do not exist.

Recall that a desirable property is that the measures of co-association and

scale defining Lr determine the same canonical directions, which are the target
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ones, at least for a given distribution family. This property, known as Fisher-

consistency, is strongly connected with C1 and C2. In particular, if γr is re-

lated to an association measure ρr and the scale functional σr by γr (U, V ) =

ρr (U, V ) σr (U)σr (V ), then Lr(u, v) = ρ2
r (P [〈u,X〉, 〈v, Y 〉]). Thus, for ellipti-

cal processes, C1 is a consequence of the Fisher-consistency of ρr (see Section

S.1 of the Supplementary Material). Some examples of association measures that

are Fisher-consistent for elliptical distributed vectors are discussed in Remark 2.

The following lemma gives conditions ensuring that the convergences in C4

hold, that is, that Cn,X
a.s.−→ 0, Cn,Y

a.s.−→ 0, and Cn,XY
a.s.−→ 0.

Lemma 1. Let (X1, Y1)>, . . . , (Xn, Yn)> be i.i.d. with the same distribution as

(X,Y )> ∼ P(X,Y ). Let ηn = sup‖u‖=‖v‖=1 |gn(u, v)− γXY (u, v)|, ζn = sup‖u‖=1

|s2
n,X(u)−σ2

X(u)|, and νn = sup‖v‖=1 |s2
n,Y (v)−σ2

Y (v)|. If C1 and C3 hold, and

τn → 0 and τ−1
n max(ζn, νn, ηn)

a.s.−→ 0 as n→∞, then we have that Cn,X
a.s.−→ 0,

Cn,Y
a.s.−→ 0, and Cn,XY

a.s.−→ 0.

Note that Lemma 1 and Theorem 1 allow us to derive strong consistency

results for the canonical directions defined in Leurgans, Moyeed, and Silverman

(1993). Effectively, define L(t) = log max(t, e) and LL(t) = L(L(t)), for any

t > 0. Moreover, denote LLn = LL(n), so that LLn = log log n for n ≥ 3, and

LLn = 1 for n = 1, 2. Let Z = (X,Y )> and ΓZZ = E [{Z − E(Z)} ⊗ {Z − E(Z)}]
be its covariance operator. Note that ΓZZ is a self-adjoint continuous linear

operator over H×H; moreover, it is a Hilbert–Schmidt operator. For simplicity,

F will stand for the Hilbert space of such operators with an inner product defined

by 〈Γ1,Γ2〉F = trace(Γ∗1Γ2) =
∑∞

j=1〈Γ1zj ,Γ2zj〉H×H, where {zj : j ≥ 1} is

any orthonormal basis of H × H and Γ∗1 is the adjoint of Γ1. Furthermore,

define V = {Z − E(Z)} ⊗ {Z − E(Z)} − ΓZZ , which is a zero mean random

element in F . Then, if E
{
‖V ‖2F/LL(‖V ‖F )

}
< ∞ and E

(
〈V, F 〉2F

)
< ∞, for

any F ∈ F , the law of iterated logarithms in Hilbert spaces obtained in Acosta

and Kuelbs (1983) allows us to conclude that the assumptions in Lemma 1 hold

when τn
√
n/LLn→∞. Hence, under C2 and C3, the canonical directions are

consistent in the ΓZZ−norm.

5. Numerical Results

In this section, we report the results of a small simulation study conducted

to compare the finite-sample behavior of the proposed robust estimators with

that of the classical ones, that is, those based on the Pearson correlation. We

also present an analysis of the Spanish weather data set considered in Dai and

Genton (2019). For the robust estimators, we consider the association measure



ROBUST SMOOTHED CANONICAL CORRELATION ANALYSIS 1283

induced from a bivariate robust M -scatter functional, described in Section 2.2,

computed using Huber’s score function with tuning constant k1 = (χ2
2,0.9)1/2.

The classical and robust estimators are labeled as cl and rob, respectively, in

all tables and figures.

5.1. Monte Carlo study

Our simulation model is similar to that considered in He, Müller and Wang

(2004) and Alvarez, Boente and Kudraszow (2019). For each replication, we

generate independent samples {(Xi, Yi)
>}ni=1 ⊂ H×H of size n = 100 with H =

L2[0, 50]. The processes are observed over an equispaced grid of 50 points tj , for

j = 1, . . . , 50. Hence, the inner products 〈Xi, u〉H and 〈Yi, v〉H are approximated

as sums over the design points {tj}1≤j≤50.

The clean data sets, denoted by C0, are generated from the same distribution

as the Gaussian random element (X,Y )> ∈ H ×H, given by

X(t) =

m∑
j=1

ηjfj(t) and Y (t) =

m∑
j=1

ζjfj(t) , (5.1)

where {fj}j≥1 is the Fourier basis of L2[0, 50] and m = 21. The scores η =

(η1, . . . , ηm)> and ζ = (ζ1, . . . , ζm)> are normally distributed random vectors,

(η>, ζ>)> ∼ N (0,Σ), with Σ a matrix with diagonal blocks Σ22 = Σ11 =

10 diag(1, 1, 1, 0.75, . . . , 0.75m−3) and an off-diagonal block Σ12 = diag(7, 3, 1, 0,

. . . , 0).

Note that for uncontaminated samples, the target quantities do not depend

on the selected co-association measure, and are equal to the canonical weights

and correlations defined in He, Müller and Wang (2004); that is, we have ρ1 =

0.7, ρ2 = 0.3, ρ3 = 0.1, and ρ` = 0 if ` > 3, whereas the canonical weights are

φ`(t) = ψ`(t) = f`(t), for ` = 1, 2, 3 .

As in Alvarez, Boente and Kudraszow (2019), two contamination models, de-

noted by C1 and C2, are studied so that the estimated canonical directions might

be affected. The trajectories obtained from these contaminations are denoted

by {(X(c)
i , Y

(c)
i )}ni=1. Outliers were introduced using a Bernoulli random variable

Bi ∼ B(1, 0.1), for 1 ≤ i ≤ n, which corresponds to 10% outliers. To construct

trajectories with patterns different from the clean ones, we consider random vari-

ables Wi ∼ N (25, σ2), such that Wi, Bi, (Xi, Yi)
> are independent. Under C2,

we additionally generate (η>i , ζ
>
i )> = (ηi,1, . . . , ηi,m, ζi,1, . . . , ζi,m)> ∼ N (0,Σ),

independent of Wi, Bi and (Xi, Yi)
>.

When Bi = 0, the generated trajectories correspond to clean ones, that is,
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(X
(c)
i , Y

(c)
i )> ∼ (X,Y )> given in (5.1). When Bi = 1, the curve is contaminated,

as follows. Under C1, we define (X
(c)
i , Y

(c)
i )> = Wi(f2, f2)> and take σ2 = 1,

while under C2, σ2 = 0.01 and (X
(c)
i , Y

(c)
i ) are given by

X
(c)
i = ηi,1 f1 + Wi

f3 + f4√
2

+ 0.1 ηi,3 f3 + 0.1 ηi,4 f4,

Y
(c)
i = ζi,1 f1 + Wi

f3 + f4√
2

+ 0.1 ζi,3 f3 + 0.1 ζi,4 f4.

Note that C1 is a strong contamination in the direction of the second canonical di-

rection of (X,Y )>. In C2, we contaminate in the direction of a linear combination

of the third canonical weight and the fourth element of the basis which, for clean

samples, corresponds to a canonical direction with null canonical correlation. In

all cases, we performed NR = 1,000 replications.

We present the results for the smoothed canonical estimators in the basis

expansion domain defined through (3.2); those corresponding to the procedure

given in (3.1) are relegated to the Supplementary Material. Two bases {ξi}i≥1 are

considered in this numerical study: the cubic B-spline basis, and the Fourier basis

(the same basis used to generate the data). The elements of the B-spline basis

are orthonormalized before applying the algorithm to compute the estimators.

Because the samples are generated using the first m = 21 elements of the Fourier

basis, for this basis, the dimension of the approximating spaces is selected as

d = 5, 9, 13. For the cubic B-spline basis, we also considered d = 20 as a possible

dimension for the linear subspace.

The selected penalization operator is the L2 norm of the second derivative;

that is, Ψ(u) =
∫ 50

0 u′ ′(t)2dt (see Remark 1). As in Leurgans, Moyeed, and

Silverman (1993), the discretization of the roughness penalty is computed over the

same design points {tj}1≤j≤50, and the second derivative of u at ti is approximated

by {u(ti+1)−2u(ti)+u(ti−1)}/(ti+1−ti)2, where u(t0) = u(t50) and u(t51) = u(t1).

The values dξi, ξje =
∫ 50

0 ξ′ ′i (t) ξ′ ′j (t)dt, for i, j = 1, . . . , d, are evaluated using

the described approximation for the second derivative in each element of the

basis, and then approximating the integral by sums. To evaluate the influence of

the penalty parameter, different values of τ are considered. More precisely, we

compare the performance when the smoothing parameter is equal to τ = 20, 30, or

40. In this preliminary study, we analyze the performance for fixed values of (τ, d)

only, even though, in practice, a robust cross-validation criterion is recommended,

see Alvarez, Boente and Kudraszow (2019).

The smoothed estimators (φ̃κ,1, ψ̃κ,1) given by (3.2) are computed using the

algorithm described in the Supplementary Material. For each situation, to study
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Table 1. MISE for SCCA when using the Fourier basis and different contamination
settings.

d = 5 9 13

τ = 20 30 40 20 30 40 20 30 40

Model Method

C0
cl 0.13 0.13 0.13 0.31 0.27 0.25 0.33 0.29 0.26

rob 0.18 0.19 0.18 0.42 0.37 0.34 0.44 0.38 0.34

C1
cl 3.19 3.19 3.19 3.22 3.21 3.21 3.22 3.21 3.21

rob 0.79 0.79 0.79 1.06 1.00 0.96 1.09 1.01 0.97

C2
cl 3.02 3.02 3.02 3.08 3.06 3.05 3.08 3.07 3.06

rob 1.02 1.04 1.02 1.41 1.30 1.26 1.43 1.34 1.28

Table 2. MISE for SCCA when using cubic B-splines and different contamination set-
tings.

d = 5 9 13 20

τ = 20 30 40 20 30 40 20 30 40 20 30 40

Model Method

C0
cl 0.13 0.13 0.13 0.30 0.26 0.24 0.33 0.28 0.26 0.34 0.29 0.26

rob 0.18 0.18 0.18 0.38 0.34 0.31 0.43 0.37 0.33 0.44 0.38 0.34

C1
cl 3.19 3.19 3.19 3.21 3.21 3.21 3.22 3.21 3.21 3.22 3.22 3.20

rob 0.79 0.78 0.78 1.03 0.98 0.96 1.08 1.02 0.98 1.08 1.03 0.98

C2
cl 3.01 3.01 3.01 3.06 3.05 3.04 3.07 3.05 3.04 3.07 3.07 3.04

rob 0.99 0.98 0.97 1.29 1.22 1.19 1.32 1.24 1.17 1.35 1.28 1.24

the performance of the first canonical weight estimators, we compute the average

over replications of ‖φ̃κ,1−φ1‖2+‖ψ̃κ,1−ψ1‖2, denoted as the MISE. Tables 1 and

2 report the results when considering the Fourier and B-spline bases, respectively,

for each possible combination of the dimension and penalty parameters. We also

calculate the measures defined in Alvarez, Boente and Kudraszow (2019) based

on the absolute Pearson correlation of the canonical variates over non-atypical

data. The results obtained with these measures are similar to those given by the

MISE; thus, they are relegated to the Supplementary Material.

Taking into account that the MISE is nonnegative and expected to have a

skewed distribution, Figure S.2 in the Supplementary Material presents skewed-

adjusted boxplots, as defined in Hubert and Vandervieren (2008), to display the

obtained results. The red and blue boxes correspond to the classical and robust

procedures, respectively.

As expected, when no outliers are present, all procedures are comparable,

leading to small values of the MISE, with the robust procedure performing slightly

worse than the nonrobust method, owing to the efficiency loss. In addition,
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taking into account the smoothness of the true directions, the choice d = 5 leads

to average values of the MISE that are around half those obtained for larger

dimensions.

The stability and advantage of the robust proposal over the classical one when

outliers are present in the data can be see in Tables 1 and 2 and Figure S.2. Even

though the MISE of the estimators computed using a robust association measure

is enlarged under the considered contaminations with respect to those obtained

for clean samples, its performance is much better than that of the classical ones.

Note that the maximum value of the MISE is equal to four when the estimators are

orthogonal to the target directions. Note that, under C1 and C2, independently

of the basis dimension and penalty parameter, the classical method based on

the sample covariances and variances leads to average values of the MISE larger

than three. In contrast, the largest values for the average of the MISE when

considering the proposed robust method are equal to 1.43 and 1.35 for the Fourier

and B-spline bases (see Tables 1 and 2), respectively. Figure S.2 also reveals that,

even when large values of the MISE are obtained in some samples for the robust

estimators, the median never exceeds 1.032. Indeed, the angle between the target

and the robustly estimated directions has a median smaller than 47 degrees for

any of the considered contaminations and bases. Note when the basis dimension

is equal to five, the reported results are quite similar, independently of the value

of τ , for clean and contaminated samples. In contrast, as the dimension increases,

the penalty shows its advantage.

5.2. Real data analysis

To illustrate the performance of the estimators of the first canonical direc-

tions defined in this paper, we consider the Spanish weather data from the R

package fda.usc, also studied in Dai and Genton (2019). This data set contains

geographic information from 73 weather stations in Spain that recorded meteo-

rology information for the period 1980–2009. We only analyze the data related

to temperature and wind speed, denoted by X(t) and Y (t), respectively, and

focus on the estimated canonical weights using the penalized classical and robust

procedures on the basis expansion domain, taking the Fourier basis.

The basis dimension d and the smoothing parameter τ were obtained by

cross-validation. For the classical procedure, we considered the criterion de-

fined in He, Müller and Wang (2004), while for the robust one, we adapted

the robust criterion defined in Alvarez, Boente and Kudraszow (2019). More

precisely, denote (φ̃
(−i)
κ,1 , ψ̃

(−i)
κ,1 ) as the first canonical direction estimators defined

using (3.2), computed without the ith observation, and let U
(i)
κ,1 = 〈φ̃(−i)

κ,1 , Xi〉
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and V
(i)
κ,1 = 〈ψ̃(−i)

κ,1 , Yi〉 denote the canonical variates of the ith subject. The ro-

bust cross-validation procedure maximizes over κ = (τ, d) in a set of candidates

K = T × D, the quantity RCV (κ), defined as

RCV (κ) = ρ2

{
1

n

n∑
i=1

∆(U
(i)
κ,1,V

(i)
κ,1)

}
, (5.2)

where ∆(a,b), denotes the bivariate probability measure giving all its mass to the

point (a, b) and ρ is the same association measure considered in the estimation

step. Note that we choose the same dimension and penalizing parameter on both

the temperature and wind velocity spaces.

For the basis expansion, we considered only odd dimensions between 5 and

21, that is, D = {d = 2k + 1 , 2 ≤ k ≤ 9}, while the grid T for possible values

of τ consists of 20 equally spaced values between zero and one as well as values

between 2 and 40 with step 2. To perform the maximization, we first analyzed

the performance of RCV (κ) when d is fixed and τ varies on T , leading to a value

τ̂(d) maximizing RCV (d, τ). We then determined the maximum of RCV (d, τ̂(d))

over D.

When using the classical procedure, the pair maximizing (5.2) equalled κ̂ =

(d̂, τ̂) = (21, 34), while for the robust procedure, the maximum was attained at

κ̂ = (11, 12). The estimators for the first canonical weights are shown in Figure 1.

Solid black lines are used for the robust estimators, and solid gray lines are used

for the classical ones. The classical estimators are more wiggly than the robust

ones, owing to the larger dimension of the basis domain. In addition, the peaks of

φ̃κ̂,1 and ψ̃κ̂,1 in August and mid-November (corresponding to days 240 and 320)

for the classical procedure are larger than those of the robust ones. Therefore, the

classical procedure suggests that the temperatures and wind speeds in that period

should receive a larger positive weight. To complement Figure 1, Table 3 gives

the cosine of the angle between the robust and the classical first canonical weight

estimates of the first canonical direction estimates of X, labeled φ̃rob and φ̃cl,

respectively, and those corresponding to Y , labeled ψ̃rob and ψ̃cl, respectively,

for simplicity.

We then identified possible influential observations using the bagplot of the

canonical variates Ui = 〈φ̃κ̂,1, X̃i〉 and Vi = 〈ψ̃κ̂,1, Ỹi〉, where X̃i = Xi − µ̂X
and Ỹi = Yi − µ̂Y are the centered observations, with µ̂X and µ̂Y the spatial

medians of {Xi}ni=1 and {Yi}ni=1, respectively. Observations 28, 57, 58, 59, and

73 were detected as influential curves. These observations correspond to the

Granada air base, three stations located in Santa Cruz de Tenerife, and the airport
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Table 3. Cosine of the angle between the robust and classical first canonical weight es-
timates. We label as −I the results obtained when the classical estimator is computed
after removing the observations indexed in I = {28, 57, 58, 59, 73}. The upper line cor-
responds to the data-driven dimension, and the second line reports the results obtained
when the dimension is equal to d = 11 and τ = τ̂(d).

d cos(φ̃rob, φ̃cl) cos(ψ̃rob, ψ̃cl) cos(φ̃rob, φ̃
−I
cl ) cos(ψ̃rob, ψ̃

−I
cl )

d̂ 0.100 0.549 0.966 0.991

11 0.292 0.911 0.966 0.991

φ̃κ̂,1 ψ̃κ̂,1

−
−

−
−

−

Figure 1. Spanish weather data: Estimates of the canonical weights. The black line corre-
sponds to the robust fit, while the solid and dashed gray lines correspond to the classical
estimators computed using the whole data set and without the outliers, respectively.

station in Zaragoza, respectively. In particular, in Zaragoza, the wind speed is

almost constant throughout the year. We computed the classical estimators after

removing these observations. The optimal value for (d, τ) was (11, 0.842). The

dashed lines in Figure 1 correspond to the classical estimators obtained without

these possible atypical observations. Note that the classical estimators computed

without these potential outliers are very close to the robust ones. In other words,

the robust estimator behaves similarly to the classical estimator if one can identify

and manually remove suspected outliers.

To determine whether the detected observations affect only the choice of the

dimension of the basis, Figure 2 gives the estimates obtained when d = 11 for

the classical and robust procedures. In this case, the optimal value of τ for the

classical estimator is equal to 40. Even though the canonical weights ψ̃κ̂,1 are

more similar, those corresponding to temperature show a quite different pattern,

specially during the second semester. In particular, the classical estimate has two
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φ̃κ̂,1 ψ̃κ̂,1

−
−

−
−

−

Figure 2. Spanish weather data: Estimates of the canonical weights when d = 11. The
black line corresponds to the robust fit, while the solid and dashed gray lines correspond
to the classical estimators computed using the whole data set and without the outliers,
respectively.

“slump” days around days 220 and 320 (mid-August and mid-November), while

the robust weight takes a positive value in that region.

6. Conclusion

We have introduced two procedures to obtain robust estimators of canonical

directions based on co-association measures and a regularization term involving a

roughness penalty. The resulting estimators are consistent under mild conditions.

Furthermore, if the process (X,Y )> has an elliptical distribution with a finite

second moment, the resulting target quantities correspond to the usual canonical

correlation and directions. However, if second moments are not assumed, an

interpretation of the canonical weights analogous to those given in a classical

FCCA, but in terms of the scatter operator, is possible. Finally, our simulation

study confirms the poor performance of the SCCA based on Pearson’s correlation

under contaminated samples. In contrast, the robust procedures based on the

association measure defined by an M -dispersion matrix show reliable results for

both clean and contaminated samples. We apply our method to a real data set,

and confirm that the robust estimators remain reliable, even when the data set

contains atypical observations.

Note that we have assumed that X and Y are defined over the same infinite-

dimensional space H to simplify the notation. The extension to the situation in

which X ∈ H1 and Y ∈ H2 is straightforward.



1290 BOENTE AND KUDRASZOW

Supplementary Material

The supplementary file contains some comments regarding the Fisher-consistency

of the robust canonical directions and their interpretation. It also includes the

proofs of Lemma 2 and Proposition 1 and some additional results regarding the

simulation study reported in Section 5.
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Appendix

To prove Theorem 1, we need some preliminary results whose proofs are

given in the supplementary file. In particular, Proposition 1 is the key step in

the proof of Theorem 1 and provides a sufficient condition for convergence in the

Lr-norm. The proof of Lemma 3 is omitted, since it may be derived using similar

arguments to those considered in Lemma 4 in Leurgans, Moyeed, and Silverman

(1993).

Lemma 2. Assume that C2 holds. Then, for any u and v in Hs, we have that

Lr(u, v) ≥ Lτ,r(u, v) and λτ ≤ Lr(φτ,1, ψτ,1). Moreover, λτ → λ0 as τ → 0.

Proposition 1. Assume that C3(a) and C4 hold, then supu,v ∈H0
s
|L̂τn,r(u, v)−

Lτn,r(u, v)| a.s.−→ 0.

Lemma 3. Assume that C1 and C2 hold and that Lr(un, vn)→ ρ2
1 = Lr(φ1, ψ1)

as n→∞. Then (un, vn)→ (φ1, ψ1) in the Lr-norm.

Proof of Theorem 1. (a) Standard arguments and Proposition 1 allow to

conclude that |λ̂τ−λτ |
a.s.−→ 0 which together with Lemma 2 entails that λ̂τ

a.s.−→ λ0.

To prove (b) first note that, by Proposition 1, |L̂τ,r(φ̂τ,1, ψ̂τ,1)−Lτ,r(φ̂τ,1, ψ̂τ,1)| a.s.−→
0. Using ∼a.s. to connect quantities whose difference converges to 0 almost surely,

from Lemma 2, we get that

λ0 ≥ Lr(φ̂τ,1, ψ̂τ,1) ≥ Lτ,r(φ̂τ,1, ψ̂τ,1) ∼a.s. L̂τ,r(φ̂τ,1, ψ̂τ,1) = λ̂τ
a.s.−→ λ0 ,
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concluding the proof of (b).

(c) is an immediate consequence of (b) applying Lemma 3.

Proof of Theorem 2. (a) Using C3(a) and C5 and similar arguments to those

considered in the proof of Proposition 1, we easily obtain that

sup
u,v ∈H0

dn

|L̂τn,r(u, v)− Lτn,r(u, v)| a.s.−→ 0 ,

which implies |λ̃κ − λκ|
a.s.−→ 0. From Lemma 2, it is easily seen that λ0 ≥

λτ ≥ λκ ≥ Lτ,r(φ̃dn,1, ψ̃dn,1), where φ̃dn,1 = ΠHdnφ1/‖ΠHdn,1φ1‖ and ψ̃dn,1 =

ΠHdnψ1/‖ΠHdnψ1‖ are the standardized orthogonal projections of φ1 and ψ1 re-

spectively, onto Hdn . Then, the proof of (a) is completed by showing that

Lτ,r
(
φ̃dn,1, ψ̃dn,1

)
→ Lr(φ1, ψ1) = λ0.

Since ‖ΠHdnφ1‖ → ‖φ1‖, ‖ΠHdnψ1‖ → ‖ψ1‖, τΨ(ΠHdnφ1)→ 0 and τΨ(ΠHdnψ1)

→ 0, by C6, we have

Lτ,r
(
φ̃dn,1, ψ̃dn,1

)
Lr(φ1, ψ1)

=

γ2
XY

(
φ̃dn,1, ψ̃dn,1

)
γ2
XY (φ1, ψ1)

σ2
X(φ1){

σ2
X

(
φ̃dn,1

)
+ τΨ

(
φ̃dn,1

)} σ2
Y (ψ1){

σ2
Y

(
ψ̃dn,1

)
+ τΨ

(
ψ̃dn,1

)}
converges to 1.

Finally, (b) and (c) may be obtained in a similar fashion as (b) and (c) of

Theorem 1.

Lemma 4 is needed in the proof of Lemma 1. It corresponds to Lemma 2 in

Leurgans, Moyeed, and Silverman (1993) so its proof is omitted.

Lemma 4. Assume that C1, C3(a), and C3(c) hold and let `1(τ) and `2(τ) be

the smallest eigenvalues of cΓ11 + τΨ(·) and c Γ22 + τΨ(·), respectively. Then,

for 0 < τ ≤ 1, we have that `1(τ) ≥ τ`1(1) > 0 and `2(τ) ≥ τ`2(1) > 0.

Proof of Lemma 1. As in Lemma 4, denote `1(τ) and `2(τ) as the smallest

eigenvalues of Γ11 + τΨ(·) and Γ22 + τΨ(·), respectively. Then, we have that for

any u ∈ H0
s , 〈u,Γ11u〉 + τΨ(u) ≥ `1(τ)‖u‖2, so that infu∈H0

s,‖u‖=1{〈u,Γ11u〉 +
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τΨ(u)} ≥ `1(τ), which together with the fact that

Cn,X = sup
‖u‖1,τn=1

∣∣s2
n,X(u)− σ2

X(u)
∣∣ = sup

u∈H0
s

∣∣∣∣∣s2
n,X(u)− σ2

X(u)

‖u‖21,τn

∣∣∣∣∣
= sup

u∈H0
s

∣∣∣∣∣ s2
n,X(u)− σ2

X(u)

〈u,Γ11u〉+ τnΨ(u)

∣∣∣∣∣ ≤ supu∈H0
s,‖u‖=1

∣∣∣s2
n,X(u)− σ2

X(u)
∣∣∣

infu∈H0
s,‖u‖=1{〈u,Γ11u〉+ τnΨ(u)}

,

leads to

Cn,X ≤
supu∈H0

s , ‖u‖=1

∣∣∣s2
n,X(u)− σ2

X(u)
∣∣∣

`1(τn)
≤ ζn
`1(τn)

≤ ζn
τn`1(1)

a.s.−→ 0 .

Similar arguments and the fact that νn/τn
a.s.−→ 0, allow to show that Cn,Y

a.s.−→ 0.

Finally,

Cn,XY = sup
‖u‖1,τn=‖v‖2,τn=1

|gn(u, v)− γXY (u, v)| = sup
u,v ∈H0

s

∣∣∣∣gn(u, v)− γXY (u, v)

‖u‖1,τn‖v‖2,τn

∣∣∣∣
= sup

u,v ∈H0
s

∣∣∣∣∣ gn(u, v)− γXY (u, v)

(〈u,Γ11u〉+ τnΨ(u))1/2 (〈v,Γ22v〉+ τnΨ(v))1/2

∣∣∣∣∣
≤

supu,v ∈H0
s,‖u‖=‖v‖=1 |gn(u, v)− γXY (u, v)|

infu∈H0
s,‖u‖=1{〈u,Γ11u〉+ τnΨ(u)}1/2 infv ∈H0

s,‖v‖=1{〈v,Γ22v〉+ τnΨ(v)}1/2
.

Using that from Lemma 4 `j(τ) ≥ τ`j(1), for j = 1, 2, we obtain that

Cn,XY ≤
supu,v ∈H0

s,‖u‖=‖v‖=1 |gn(u, v)− γXY (u, v)|

(`1(τn) `2(τn))1/2
≤ ηn

τn (`1(1) `2(1))1/2
,

which concludes the proof since ηn/τn
a.s.−→ 0.
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Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,

CMaLP-CONICET, Casilla de Correo 172, (1900) La Plata, Argentina.

E-mail: nkudraszow@mate.unlp.edu.ar

(Received March 2020; accepted November 2020)

mailto:gboente@dm.uba.ar
mailto:nkudraszow@mate.unlp.edu.ar

	Introduction
	Preliminaries
	The classical approaches
	Co-association measures

	Robust Approaches for Smoothed Canonical Correlation Analysis
	Consistency
	Some general comments

	Numerical Results
	Monte Carlo study
	Real data analysis

	Conclusion

