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Abstract: Space-filling designs with low-dimensional stratifications are desirable

choices for computer experiments. In addition, column orthogonality is an impor-

tant property of designs for such experiments, because it allows the estimates of

the main effects in linear models to be uncorrelated with each other. However, few

works have examined space-filling designs with both properties. This paper pro-

poses a new class of designs called strong group-orthogonal arrays, the columns of

which can be partitioned into groups, with the columns from different groups being

column orthogonal and enjoying attractive low-dimensional stratifications. In addi-

tion, the overall arrays collapse to fully orthogonal arrays that accommodate large

numbers of factors, making them particularly suitable for computer experiments.

Methods for constructing this class of arrays based on both regular and nonregular

designs are proposed. Difference schemes play a key role in the construction. Lastly,

the proposed methods are easy to implement.

Key words and phrases: Column orthogonality, computer experiment, space-filling

design, strong orthogonal array.

1. Introduction

Computer experiments are widely used in many fields, and space-filling de-

signs are appropriate for such experiments (Fang, Li and Sudjianto (2006)). A

space-filling design spreads its points in the design region uniformly, where the

uniformity can be evaluated using some distance or discrepancy criteria. For

a design in a high-dimensional region, it may be more reasonable to consider

its space-filling properties in low-dimensional projections. Numerous approaches

have been proposed for constructing space-filling designs with good properties

in low-dimensional projections using orthogonal arrays (OAs), or other arrays

that can be collapsed into OAs, such as strong orthogonal arrays (SOAs) and

mappable nearly orthogonal arrays (MNOAs). McKay, Beckman and Conover

(1979) introduced Latin hypercube designs (LHDs), which are OAs of strength

one. Owen (1992) and Tang (1993) considered randomized OAs and OA-based
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Table 1. The OA(8, 7, 2, 2), OSOA(8, 3, 4, 3−), SOA(8, 3, 8, 3), and SGOA(8, 6, 4, 2).

OA(8, 7, 2, 2) OSOA(8, 3, 4, 3−) SOA(8, 3, 8, 3) SGOA(8, 6, 4, 2)

0 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 0 3 0 2 3 6 0 0 3 3 3 3

0 1 0 1 0 1 1 3 0 0 3 6 2 3 3 0 0 3 3

0 1 1 1 1 0 0 0 0 3 1 5 4 3 3 3 3 0 0

1 0 0 1 1 0 1 1 1 1 6 2 3 1 2 1 2 1 2

1 0 1 1 0 1 0 2 1 2 4 1 5 1 2 2 1 2 1

1 1 0 0 1 1 0 1 2 2 5 4 1 2 1 1 2 2 1

1 1 1 0 0 0 1 2 2 1 7 7 7 2 1 2 1 1 2

LHDs. Recently, He and Tang (2013, 2014) introduced SOAs and Mukerjee,

Sun and Tang (2014) proposed MNOAs. Both arrays are more space-filling than

ordinary OAs. In addition to the space-filling property, column orthogonality

is a desirable property for computer experiment designs, because it guarantees

that the estimates of the main effects are uncorrelated with each other when

polynomial modeling is considered.

Motivated by MNOAs and SOAs, we propose a new class of arrays called

strong group-orthogonal arrays (SGOAs), the columns of which can be parti-

tioned into groups, with the columns from different groups being column orthog-

onal and enjoying attractive low-dimensional space-filling properties. This class

of arrays performs well in terms of both the space-filling property and column

orthogonality, and can accommodate large numbers of factors. To see the benefits

of such an array, consider the four arrays in Table 1; detailed definitions of these

arrays are provided in Section 2.

The column orthogonal SOA(8, 3, 4, 3−), denoted as OSOA(8, 3, 4, 3−), con-

structed in Zhou and Tang (2019) can accommodate three factors, achieving

stratifications (to be defined in Section 2) on 2 × 4 and 4 × 2 grids in any two

dimensions, and a stratification on a 2× 2× 2 grid in the three dimensions. This

also holds for the SOA(8, 3, 8, 3). The SOA(8, 3, 8, 3) has eight levels and cannot

guarantee column orthogonality. The SGOA(8, 6, 4, 2) constructed in this paper

can accommodate six factors, each of four levels. It guarantees stratifications on

2 × 4 and 4 × 2 grids and column orthogonality in 12 of the 15 two dimensions

(80.00%), and stratifications on 2× 2× 2 grids in 16 of the 20 three dimensions

(80.00%). As summarized in Table 2, the SGOA(8, 6, 4, 2) is nearly an OSOA of

strength 3−, and can accommodate twice as many columns as the latter, making

it a more economical choice.
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Table 2. Properties of the OSOA(8, 3, 4, 3−), SOA(8, 3, 8, 3), and SGOA(8, 6, 4, 2).

Column Two-dimensional Three-dimensional

Design orthogonality stratification stratification

OSOA(8, 3, 4, 3−) 1 2× 4 and 4× 2 2× 2× 2

SOA(8, 3, 8, 3) No 2× 4 and 4× 2 2× 2× 2

SGOA(8, 6, 4, 2) 80% 2× 4 and 4× 2 (80%) 2× 2× 2 (80%)

The SGOA(8, 6, 4, 2) can be regarded as an intermediate between the OA(8, 7,

2, 2) and the OSOA(8, 3, 4, 3−). Correspondingly, an LHD based on the SGOA(8,

6,4,2) can be regarded as an intermediate between those based on the OA(8, 7, 2, 2)

and the SOA(8, 3, 8, 3), where the SOA(8, 3, 8, 3) is actually an LHD. According

to Mukerjee, Sun and Tang (2014), an MNOA of eight runs with four levels is

not available, implying that SGOAs have more flexible run sizes than MNOAs.

These attractive properties make the SGOA(8, 6, 4, 2) a better choice for com-

puter experiments.

The remainder of this paper is organized as follows. Section 2 introduces the

definitions and notation used in this paper. In Section 3, we construct SGOAs of

strength 2, and Section 4 constructs SGOAs of strength 3. Concluding remarks

are provided in Section 5. All proofs and two large tables are deferred to the

Supplementary Material.

2. Definitions and Notation

An n×m matrix is called an OA of strength t and s1, . . . , sm levels, denoted

by OA(n,m, s1 × · · · × sm, t), if all possible level combinations for any t columns

occur with the same frequency. When all sj are equal to s, the array is symmetric

and denoted by OA(n,m, s, t). Two vectors are called combinatorial-orthogonal

if they form an OA of strength 2. The correlation between two vectors a =

(a1, . . . , an)T and b = (b1, . . . , bn)T is defined as

ρ(a, b) =

∑n
i=1 (ai − ā)(bi − b̄)[∑n

i=1 (ai − ā)2
∑n

i=1 (bi − b̄)2
]1/2 ,

where ā =
∑n

i=1 ai/n and b̄ =
∑n

i=1 bi/n. Two vectors are called column or-

thogonal if the correlation between them is zero. The correlation matrix of a

design D is denoted by ρ(D) = (ρ(di, dj))m×m, where di and dj are the ith and

jth columns, respectively, of D, for 1 ≤ i, j ≤ m. A design is called column

orthogonal if any two of its columns are column orthogonal.
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For an array with n runs and m factors, we say it achieves a stratification on

an s1 × · · · × st grid in some t (t ≥ 2) dimensions if its corresponding t columns

can be collapsed into an OA(n, t, s1 × · · · × st, t).
A design is called a regular design if any two of its factorial effects are either

combinatorial-orthogonal to each other or fully aliased.

An LHD of n runs and m factors is an n×m matrix in which each column

is a permutation of 0, 1, . . . , n− 1. An LHD based on a q-level design of n runs,

with n being a multiple of q, can be obtained by replacing the n/q entries for

level j of each factor by any permutation of jn/q, jn/q + 1, . . . , (j + 1)n/q − 1,

for j = 0, 1, . . . , q − 1.

Let GF (s) denote the Galois field with order s. An r× c matrix with entries

from GF (s) is called a difference scheme based on GF (s), denoted by D(r, c, s),

if it satisfies that for any i and j with 1 ≤ i 6= j ≤ c, the vector difference of the

ith and jth columns contains every element of GF (s) equally often.

For two matrices A = (aij)m×n and B = (bij)u×v with entries from GF (s),

their Kronecker sum and Kronecker product are defined as

A⊕B=


a11

·
+B · · · a1n

·
+B

...
...

am1

·
+B · · · amn

·
+B

 and A⊗B =


a11

·
×B · · · a1n

·
×B

...
...

am1

·
×B · · · amn

·
×B

 , (2.1)

respectively, where
·

+ and
·
× are the addition and multiplication, respectively,

defined on GF (s).

The operator ∗ is a right circular shift of the columns of a design, which

means that for a design D = (d1, . . . , ds), D
∗ = (ds, d1, . . . , ds−1).

An MNOA, denoted by MNOA(n; (sµ)φ, (pµ)φ), is an n× µφ array in which

the µφ columns can be partitioned into φ disjoint groups of µ columns each with

the following properties:

(i) every column is populated by s levels from GF (s);

(ii) any two columns from different groups form an OA(n, 2, s, 2);

(iii) the whole design can be collapsed into an OA(n, µφ, p, 2), where the s levels

of each column are collapsed into p levels by bx/(s/p)c, for x = 0, 1, . . . , s−1,

with s/p being an positive integer, and bzc representing the largest integer

not exceeding z.

In such an array, each column is combinatorial-orthogonal to at least a proportion

π̃ = (φ− 1)µ/(φµ− 1) of the other columns.
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An n × m matrix with entries from {0, 1, . . . , st − 1} is called an SOA of

strength t, denoted by SOA(n,m, st, t), if any n×f submatrix, for 1 ≤ f ≤ t, can

be collapsed into an OA(n, f, sµ1×· · ·×sµf , f) for any positive integers µ1, . . . , µf ,

with µ1 + · · ·+µf = t, where the st levels of a factor are collapsed into sµj levels

by bx/st−µjc, for x = 0, 1, . . . , st − 1, 1 ≤ j ≤ f. Furthermore, an n ×m matrix

with entries from {0, 1, . . . , s2 − 1} is called an SOA of strength 2+, denoted

by SOA(n,m, s2, 2+), if any submatrix of two columns can be collapsed into an

OA(n, 2, s2× s, 2) and an OA(n, 2, s× s2, 2). An n×m matrix with entries from

{0, 1, . . . , s2− 1} is called an SOA of strength 3−, denoted by SOA(n,m, s2, 3−),

if any submatrix of two columns can be collapsed into an OA(n, 2, s2 × s, 2) and

an OA(n, 2, s× s2, 2), and any submatrix of three columns can be collapsed into

an OA(n, 3, s, 3).

For an SOA(n,m, st, t), if it is column orthogonal, we call it a column or-

thogonal SOA of strength t, denoted by OSOA(n,m, st, t). Similarly, we have

OSOA(n,m, s2, 2+) and OSOA(n, m, s2, 3−).

Before giving the definition of the new class of SGOAs, first consider the

array in the left part of Table 3. It has twelve columns, each of which is populated

by nine levels. If we partition these columns into four disjoint groups of three

columns each in column order, the array has the following interesting properties:

(i) any two distinct columns can be collapsed into an OA(27, 2, 3, 2);

(ii) any two columns from different groups are column orthogonal, and they

can be collapsed into an OA(27, 2, 3× 9, 2) and an OA(27, 2, 9× 3, 2) using

different collapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into

an OA(27, 3, 3, 3).

Definition 1. An SGOA of strength t, denoted by SGOA(n, gc, st, t), is an n×gc
matrix with entries from {0, 1, . . . , st − 1} that can be partitioned into g disjoint

groups of c columns each with the following properties:

(i) any two distinct columns can be collapsed into an OA(n, 2, s× st−1, 2) and

an OA(n, 2, st−1 × s, 2) using different collapsing methods;

(ii) any two columns from different groups are column orthogonal, and they

can be collapsed into an OA(n, 2, s × st, 2) and an OA(n, 2, st × s, 2) using

different collapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into

an OA(n, 3, s, 3).
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Table 3. An SGOA(27, 12, 9, 2).

Pre-collapsing Post-collapsing

T1 T2 T3 T4 A1 A2 A3 A4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 4 4 4 4 4 4 8 8 8 0 0 0 1 1 1 1 1 1 2 2 2

0 0 0 8 8 8 8 8 8 4 4 4 0 0 0 2 2 2 2 2 2 1 1 1

4 4 4 0 0 0 4 4 4 4 4 4 1 1 1 0 0 0 1 1 1 1 1 1

4 4 4 4 4 4 8 8 8 0 0 0 1 1 1 1 1 1 2 2 2 0 0 0

4 4 4 8 8 8 0 0 0 8 8 8 1 1 1 2 2 2 0 0 0 2 2 2

8 8 8 0 0 0 8 8 8 8 8 8 2 2 2 0 0 0 2 2 2 2 2 2

8 8 8 4 4 4 0 0 0 4 4 4 2 2 2 1 1 1 0 0 0 1 1 1

8 8 8 8 8 8 4 4 4 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0

2 3 7 2 3 7 2 3 7 2 3 7 0 1 2 0 1 2 0 1 2 0 1 2

2 3 7 3 7 2 3 7 2 7 2 3 0 1 2 1 2 0 1 2 0 2 0 1

2 3 7 7 2 3 7 2 3 3 7 2 0 1 2 2 0 1 2 0 1 1 2 0

3 7 2 2 3 7 3 7 2 3 7 2 1 2 0 0 1 2 1 2 0 1 2 0

3 7 2 3 7 2 7 2 3 2 3 7 1 2 0 1 2 0 2 0 1 0 1 2

3 7 2 7 2 3 2 3 7 7 2 3 1 2 0 2 0 1 0 1 2 2 0 1

7 2 3 2 3 7 7 2 3 7 2 3 2 0 1 0 1 2 2 0 1 2 0 1

7 2 3 3 7 2 2 3 7 3 7 2 2 0 1 1 2 0 0 1 2 1 2 0

7 2 3 7 2 3 3 7 2 2 3 7 2 0 1 2 0 1 1 2 0 0 1 2

1 6 5 1 6 5 1 6 5 1 6 5 0 2 1 0 2 1 0 2 1 0 2 1

1 6 5 5 1 6 5 1 6 6 5 1 0 2 1 1 0 2 1 0 2 2 1 0

1 6 5 6 5 1 6 5 1 5 1 6 0 2 1 2 1 0 2 1 0 1 0 2

5 1 6 1 6 5 5 1 6 5 1 6 1 0 2 0 2 1 1 0 2 1 0 2

5 1 6 5 1 6 6 5 1 1 6 5 1 0 2 1 0 2 2 1 0 0 2 1

5 1 6 6 5 1 1 6 5 6 5 1 1 0 2 2 1 0 0 2 1 2 1 0

6 5 1 1 6 5 6 5 1 6 5 1 2 1 0 0 2 1 2 1 0 2 1 0

6 5 1 5 1 6 1 6 5 5 1 6 2 1 0 1 0 2 0 2 1 1 0 2

6 5 1 6 5 1 5 1 6 1 6 5 2 1 0 2 1 0 1 0 2 0 2 1

The array in Table 3 is an SGOA(27, 12, 9, 2). Because an SGOA(n, gc, st, t)

with t ≥ 2 can be collapsed into an OA(n, gc, s, 2), we must have n = λs2, for

some integer λ. We call λ the index of an SGOA in the same way as that of an

OA. Note that the strength t of an SGOA is an index that measures the space-

filling property in two dimensions, where a larger t indicates that an SGOA is

more space-filling in two dimensions. For an SGOA(n, gc, s2, 2), if c = 1 (i.e.,

each group has only one column), it becomes an OSOA(n, g, s2, 2+). Thus, an

SGOA of strength 2 can be seen as a generalization of an OSOA of strength 2+.

Furthermore, in an SGOA(n, gc, st, t), each column is column orthogonal to gc−c
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Table 4. The OA(9, 4, 3, 2) in Example 1.

c1 c2 c3 c4
0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

columns among all other gc− 1 columns, and the corresponding pairs of columns

can be collapsed into an OA(n, 2, s × st, 2) and an OA(n, 2, st × s, 2). For an

SGOA(n, gc, st, t) with t ≥ 2, we use π to denote the proportion of two-tuples

that achieve stratifications on s × st and st × s grids and column orthogonality

simultaneously; here,

π =
gc− c
gc− 1

.

Similarly, we use δ to denote the proportion of three-tuples that achieve stratifi-

cations on s× s× s grids. From the definition, any three distinct columns from

two different groups can be collapsed into an OA(n, 3, s, 3). Thus, the δ-value of

any SGOA(n, gc, st, t) is at least δ0, with

δ0 =
3c(c− 1)(g − 1)

(gc− 1)(gc− 2)
.

In fact, after some calculations, we find that the δ-value of an SGOA is often

larger than δ0, and under some conditions, we obtain SGOAs with much larger

δ-values.

3. Construction of SGOAs of Strength 2

In this section, we provide a general construction method for SGOAs of

strength 2. Because the general method may not be easy to understand without

examples, we first present two examples to illustrate the main idea.

Example 1. Given an OA(9, 4, 3, 2) with entries from GF (3), denoted by C =

(c1, c2, c3, c4), as shown in Table 4, we obtain an SGOA(27, 12, 9, 2) as follows.

For i = 1, 2, 3, 4, let
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Table 5. The OA(16, 5, 4, 2) in Example 2.

c1 c2 c3 c4 c5
0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
0 3 3 3 3
1 0 1 2 3
1 1 0 3 2
1 2 3 0 1
1 3 2 1 0
2 0 2 3 1
2 1 3 2 0
2 2 0 1 3
2 3 1 0 2
3 0 3 1 2
3 1 2 0 3
3 2 1 3 0
3 3 0 2 1

Ai =

ci ci ci

ci ci
·

+ 1 ci
·

+ 2

ci ci
·

+ 2 ci
·

+ 1

 and Bi =

 ci ci ci

ci
·

+ 2 ci ci
·

+ 1

ci
·

+ 1 ci ci
·

+ 2

 ,

where
·

+ is the addition defined on GF (3). Treat all entries as numbers, and

define Ti = 3Ai + Bi, for i = 1, 2, 3, 4. Then, we obtain an SGOA(27, 12, 9, 2)

by taking T̃ = (T1, T2, T3, T4), which is shown in the left part of Table 3 and has

the properties mentioned before Definition 1. It is easy to check that after level-

collapsing by bx/3c, T̃ becomes A = (A1, A2, A3, A4), which is an OA(27, 12, 3, 2),

as shown in the right part of Table 3. For the resulting T̃ , we have the proportion

π = 81.82%. Furthermore, by checking all three-tuples, we find that T̃ achieves

stratifications on 3 × 3 × 3 grids in 180 of the 220 three dimensions, that is,

δ = 81.82%, which is much larger than δ0 = 49.09%.

Example 2. We now construct an SGOA(64, 20, 16, 2). Let C = (c1, . . . , c5) be

an OA(16, 5, 4, 2) with entries from GF (4), as shown in Table 5. For i = 1, . . . , 5,

define

Ai =


ci ci ci ci

ci ci
·

+ 1 ci
·

+ 2 ci
·

+ 3

ci ci
·

+ 2 ci
·

+ 3 ci
·

+ 1

ci ci
·

+ 3 ci
·

+ 1 ci
·

+ 2

 and Bi =


ci ci ci ci

ci
·

+ 3 ci ci
·

+ 1 ci
·

+ 2

ci
·

+ 1 ci ci
·

+ 2 ci
·

+ 3

ci
·

+ 2 ci ci
·

+ 3 ci
·

+ 1

 ,
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where
·

+ is the addition defined on GF (4). Treat all entries as numbers, and

create Ti = 4Ai + Bi, for i = 1, . . . , 5. We obtain an SGOA(64, 20, 16, 2) by

taking T̃ = (T1, T2, T3, T4, T5), which is shown in the left part of Table S.1 in

the Supplementary Material. It is easy to check that after level-collapsing by

bx/4c, T̃ becomes A = (A1, A2, A3, A4, A5), which is an OA(64, 20, 4, 2), as shown

in the right part of Table S.1 in the Supplementary Material. For T̃ , we can

check that any two columns from different groups are column orthogonal and

can be collapsed into an OA(64, 2, 4 × 16, 2) and an OA(64, 2, 16 × 4, 2), where

the proportion π is 84.21%. We can also check that any three distinct columns

from two different groups of T̃ can be collapsed into an OA(64, 3, 4, 3) with δ0 =

480/1140 = 42.11%. Furthermore, by checking all three-tuples, we find that T̃

achieves stratifications on 4 × 4 × 4 grids in 960 of the 1140 three dimensions;

that is, δ = 84.21%.

Next, we present the construction of SGOAs of strength 2 and investigate

their properties. The construction method is given in the following algorithm.

Algorithm 1

Step 1. For a prime power s, let C = (c1, . . . , cg) be an OA(n0, g, s, 2) with entries
from GF (s) and D be a difference scheme D(s, s, s). For i = 1, . . . , g, create

Ai = D ⊕ ci, Bi = D∗ ⊕ ci,

where ⊕ is defined in (2.1), and D∗ is the right circular shift design of D, as given
in Section 2.

Step 2. Treat all entries as numbers, and define

Ti = sAi +Bi, for i = 1, . . . , g.

Step 3. Combine Ti by column juxtaposition, and get T̃ = (T1, . . . , Tg).

For the resulting design, we have the following theorem.

Theorem 1. The obtained T̃ in Algorithm 1 is an SGOA(sn0, gs, s
2, 2); that is,

T̃ has the properties mentioned in Definition 1 with n = sn0, c = s, and t = 2.

Remark 1. In Algorithm 1, if D is a difference scheme D(s, h, s), where h ≤ s,

then T̃ is an SGOA(sn0, gh, s
2, 2). In particular, if D is (0, 1, . . . , s − 1)T , a

difference scheme D(s, 1, s), then T̃ is an OSOA(sn0, g, s
2, 2+).

From Remark 1, there is a close relationship between the SGOA of strength

2 and the OSOA of strength 2+. Actually, if we take one column from each



1234 WANG, YANG AND LIU

group of an SGOA(n, gc, s2, 2) and put these columns together, we obtain an

OSOA(n, g, s2, 2+). In this sense, SGOAs of strength 2 can be regarded as a

generalized version of OSOAs of strength 2+, where the proportion π measures

the degree of proximity in terms of both column orthogonality and the two-

dimensional space-filling property.

Remark 2. Let

ζ = (0, . . . , 0, 1, . . . , 1, . . . , s− 1, . . . , s− 1)T ,

where each of 0, 1, . . . , s− 1 repeats n0 times. In Algorithm 1, if C is saturated,

then after collapsing all factors into s levels, T̃ augmented by ζ is a saturated OA

with s levels as well. This implies that the number of columns of the resulting

SGOA is one less than that of the saturated OA with s levels and the same

number of runs.

From Theorem 1, we know that T̃ achieves stratifications on s×s2 and s2×s
grids in any two columns from different groups, and a stratification on an s×s×s
grid in any three distinct columns from two different groups. In general, for an

SGOA of strength 2, the δ-value is usually smaller than the π-value. When

taking C to be some specified OAs, we get some SGOAs with large δ-values,

which means that the resulting designs enjoy a better space-filling property in

three dimensions. We are ready to present the next theorem.

Theorem 2. If C in Algorithm 1 is saturated and regular, then the resulting T̃

achieves stratifications on s× s× s grids with a proportion π; that is, δ = π.

From Theorem 2, many SGOAs enjoy the attractive space-filling properties

in both two and three dimensions. The OAs and difference schemes needed in

Algorithm 1 are available in Hedayat, Sloane and Stufken (1999) and the library of

OAs maintained by Dr. N.J.A. Sloane (http://neilsloane.com/oadir/index.

html). Table 6 summarizes some generated SGOAs of strength 2. Here, the

symbol ] means that the number of columns of the resulting SGOA is one less

than that of the saturated OA with s levels and the same number of runs. The

symbol ‡ means that if C is a saturated regular design, then the resulting SGOA

can achieve stratifications on s × s × s grids with a proportion π. As shown in

Table 6, most of the values of π are very close to one, implying that the resulting

designs enjoy attractive space-filling properties and column orthogonality.

Table 7 compares SGOAs, the MNOAs in Mukerjee, Sun and Tang (2014),

and the SOAs in He, Cheng and Tang (2018), Liu and Liu (2015), and Zhou and

Tang (2019).

http://neilsloane.com/oadir/index.html
http://neilsloane.com/oadir/index.html
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Table 6. Some SGOAs of strength 2.

C: OA(n0, g, s, 2) T̃ : SGOA(sn0, gs, s
2, 2) π(%)

OA(4, 3, 2, 2) SGOA(8, 6, 4, 2)]‡ 80.00
OA(8, 7, 2, 2) SGOA(16, 14, 4, 2)]‡ 92.31
OA(12, 11, 2, 2) SGOA(24, 22, 4, 2)] 95.24
OA(16, 15, 2, 2) SGOA(32, 30, 4, 2)]‡ 96.55
OA(20, 19, 2, 2) SGOA(40, 38, 4, 2)] 97.30
OA(24, 23, 2, 2) SGOA(48, 46, 4, 2)] 97.78
OA(28, 27, 2, 2) SGOA(56, 54, 4, 2)] 98.11
OA(32, 31, 2, 2) SGOA(64, 62, 4, 2)]‡ 98.36
OA(36, 35, 2, 2) SGOA(72, 70, 4, 2)] 98.55
OA(40, 39, 2, 2) SGOA(80, 78, 4, 2)] 98.70
OA(44, 43, 2, 2) SGOA(88, 86, 4, 2)] 98.82
OA(48, 47, 2, 2) SGOA(96, 94, 4, 2)] 98.92
OA(52, 51, 2, 2) SGOA(104, 102, 4, 2)] 99.01
OA(56, 55, 2, 2) SGOA(112, 110, 4, 2)] 99.08
OA(60, 59, 2, 2) SGOA(120, 118, 4, 2)] 99.15
OA(64, 63, 2, 2) SGOA(128, 126, 4, 2)]‡ 99.20
OA(68, 67, 2, 2) SGOA(136, 132, 4, 2)] 99.25
OA(72, 71, 2, 2) SGOA(144, 142, 4, 2)] 99.29
OA(76, 75, 2, 2) SGOA(152, 150, 4, 2)] 99.33
OA(80, 79, 2, 2) SGOA(160, 158, 4, 2)] 99.36
OA(84, 83, 2, 2) SGOA(168, 166, 4, 2)] 99.39
OA(88, 87, 2, 2) SGOA(176, 174, 4, 2)] 99.42
OA(92, 91, 2, 2) SGOA(184, 182, 4, 2)] 99.45
OA(96, 95, 2, 2) SGOA(192, 190, 4, 2)] 99.47
OA(100, 99, 2, 2) SGOA(200, 198, 4, 2)] 99.49
OA(9, 4, 3, 2) SGOA(27, 12, 9, 2)]‡ 81.82
OA(18, 7, 3, 2) SGOA(54, 21, 9, 2) 90.00
OA(27, 13, 3, 2) SGOA(81, 39, 9, 2)]‡ 94.74
OA(54, 25, 3, 2) SGOA(162, 75, 9, 2) 97.30
OA(81, 40, 3, 2) SGOA(243, 120, 9, 2)]‡ 98.32
OA(16, 5, 4, 2) SGOA(64, 20, 16, 2)]‡ 84.21
OA(32, 9, 4, 2) SGOA(128, 36, 16, 2) 91.43
OA(64, 21, 4, 2) SGOA(256, 84, 16, 2)]‡ 96.39
OA(25, 6, 5, 2) SGOA(125, 30, 25, 2)]‡ 86.21
OA(50, 11, 5, 2) SGOA(250, 55, 25, 2) 92.59

As discussed, SGOAs of strength 2 can be regarded as a generalized version

of OSOAs of strength 2+, where the proportion π measures the degree of proxim-

ity in terms of both column orthogonality and the two-dimensional space-filling

property. From Table 7, we can see that the values of π are very close to one,

which means that these SGOAs of strength 2 have almost the same desirable

column orthogonality and two-dimensional space-filling properties as those of the
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Table 7. Comparisons between SGOAs of strength 2, MNOAs, SOAs, and OSOAs.

SGOA(n, gs, s2, 2) MNOA1 SOA(2+)2 OSOA(2)3 OSOA(p)4

s n π(%) gs π̄(%) µφ m m m p

2 8 80.00 6 − − − − 3 3−
2 24,40,48 n−4

n−3 n− 2 − − − − n/2− 1 3−
56,72,80

88,96,104

112,120

136,144,152

160,168,176

184,192,200

2 16 92.31 14 85.71 15 10 14 7 3−
2 32 96.55 30 82.76 30 22 30 15 3−
2 64 98.36 62 96.77 63 50 62 31 3−
2 128 99.20 126 98.36 123 106 126 63 3−
3 27 81.82 12 − − 6 12 4 2+

3 54 90.00 21 − − − 24 7 2+

3 81 94.74 39 92.31 40 25 40 13 2+

3 162 97.30 75 91.30 70 − 78 25 2+

3 243 98.32 120 90.76 120 90 120 40 2+

4 64 84.21 20 − − 8 20 5 2+

4 128 91.43 36 − − − 40 9 2+

4 256 96.39 84 95.24 85 45 84 21 2+

5 125 96.39 30 − − 10 30 6 2+

5 250 92.59 55 − − − 60 11 2+

1MNOA(n; ((s2)µ)φ, (sµ)φ) in Mukerjee, Sun and Tang (2014); 2SOA(n,m, s2, 2+) in He, Cheng and Tang
(2018); 3OSOA(n,m, s2, 2) in Liu and Liu (2015); 4OSOA(n,m, s2, p) in Zhou and Tang (2019); Symbol –
indicates that the corresponding array is not available.

OSOAs of strength 2+. In addition, they can accommodate s times as many

columns as the latter can, and they perform better in three dimensions. OSOAs

of strength 2 are better than SGOAs of strength 2 in terms of column orthogo-

nality, and can accommodate more (or equally many) factors; SGOAs of strength

2 enjoy better two- and three-dimensional space-filling properties. Compared

with the MNOAs constructed in Mukerjee, Sun and Tang (2014), the resulting

SGOAs have a better three-dimensional space-filling property when the MNOAs

are available. Furthermore, SGOAs are particularly useful when the run size n

is a multiple of s3, but not of s4, when the MNOAs are not available. That is,

SGOAs can fill the gap between the run sizes of the available MNOAs. For ex-

ample, we can construct SGOAs of 27 and 54 runs, whereas such MNOAs are not

available. These desirable properties ensure that SGOAs are competitive designs

for computer experiments. Figure 1 summaries the sizes of the designs listed in

Table 7 for s = 2, where each point represents the design of the corresponding
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Figure 1. Comparison of SGOAs of strength 2 with some related designs for s = 2.

type with n runs and m factors. We can see that SGOAs have flexible run sizes

and can accommodate large numbers of factors.

4. Construction of SGOAs of Strength 3

In this section, we consider SGOAs of strength 3, in the sense that the factors

have s3 levels and their two-dimensional space-filling properties are better than

those of SGOAs of strength 2. From Definition 1, we know that an SGOA of

strength 3, denoted by SGOA(n, gc, s3, 3), is an n× gc matrix with entries from

{0, 1, . . . , s3− 1} that can be partitioned into g disjoint groups of c columns each

with the following properties:

(i) any two distinct columns can be collapsed into an OA(n, 2, s× s2, 2) and an

OA(n, 2, s2 × s, 2) using different collapsing methods;

(ii) any two columns from different groups are column orthogonal, and can be

collapsed into an OA(n, 2, s×s3, 2) and an OA(n, 2, s3×s, 2) using different

collapsing methods;

(iii) any three distinct columns from two different groups can be collapsed into

an OA(n, 3, s, 3).

Example 3. In Table S.2 in the Supplementary Material, the design T = (T1, T2,

T3, T4) in the left part is an SGOA(81, 12, 27, 3), where each of the 12 columns is

populated by 27 levels. It is easy to check that any two distinct columns can be

collapsed into an OA(81, 2, 3× 9, 2) and an OA(81, 2, 9× 3, 2). Any two columns

from different groups are column orthogonal, and they can be collapsed into an
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OA(81, 2, 3 × 27, 2) and an OA(81, 2, 27 × 3, 2); thus, we have π = 81.82%. In

addition, the maximum correlation coefficient between any two distinct columns

from one group is 0.033, implying that T is nearly column orthogonal. Collapsing

each factor into three levels, we get an OA, which is displayed in the right part

of Table S.2 in the Supplementary Material. We can see that any three distinct

columns from two different groups form an OA(81, 3, 3, 3). Thus, T achieves

stratifications on 3× 3× 3 grids in at least 108 of the 220 three dimensions; that

is, δ0 = 49.09%. In fact, by checking all three-tuples, we find that T achieves

stratifications on 3 × 3 × 3 grids in 207 of the 220 three dimensions; that is,

δ = 94.09%. Thus, the design enjoys attractive space-filling properties in both

two and three dimensions, as well as near column orthogonality.

Now, we introduce the method for constructing SGOAs of strength 3 in the

following algorithm, and then discuss the properties of the resulting designs.

Algorithm 2

Step 1. For a prime power s, let C = (c1, . . . , cg) be an OA(n0, g, s, 2) with entries
from GF (s) and D be a difference scheme D(s, s, s). For i = 1, . . . , g, create

Ei = (DT , DT
1 , . . . , D

T
s−1)T ⊕ ci, Fi = (1s ⊗D∗)⊕ ci, and Gi = (1s ⊗D∗∗)⊕ ci,

where Dk = D
·
+ k, for k = 1, . . . , s − 1, 1s is an s × 1 vector with all elements

unity, the operators ⊕ and ⊗ are defined in (2.1), D∗ is the right circular design
of D, and D∗∗ is the right circular design of D∗, as given in Section 2.

Step 2. Treat all entries as numbers, and define

Ti = s2Ei + sFi +Gi, for i = 1, . . . , g.

Step 3. Combine Ti by column juxtaposition, and get T = (T1, . . . , Tg).

Here is an illustrative example.

Example 4. Let C = (c1, c2, c3, c4) be the OA(9, 4, 3, 2) with entries from GF (3)

in Table 4. For i = 1, 2, 3, 4, create

Ei =



0 0 0
0 1 2
0 2 1
1 1 1
1 2 0
1 0 2
2 2 2
2 0 1
2 1 0


⊕ ci, Fi =



0 0 0
2 0 1
1 0 2
0 0 0
2 0 1
1 0 2
0 0 0
2 0 1
1 0 2


⊕ ci, and Gi =



0 0 0
1 2 0
2 1 0
0 0 0
1 2 0
2 1 0
0 0 0
1 2 0
2 1 0


⊕ ci.
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Treat all entries as numbers, and define Ti = 9Ei + 3Fi + Gi for i = 1, 2, 3, 4.

Then, we get an SGOA(81, 12, 27, 3) by taking T = (T1, T2, T3, T4), as shown in

the left part of Table S.2 in the Supplementary Material.

For the resulting design T in Algorithm 2, we have the following theorem.

Theorem 3. The obtained T in Algorithm 2 is an SGOA(s2n0, gs, s
3, 3); that is,

T has the properties mentioned in Definition 1 with n = s2n0, c = s, and t = 3.

Remark 3. In particular, if D is a difference scheme D(s, h, s) in Algorithm 2,

where h ≤ s, then T is an SGOA(s2n0, gh, s
3, 3).

According to the proof of Theorem 3, any SGOA(s2n0, gs, s
3, 3) generated

by Algorithm 2 becomes an SGOA(s2n0, gs, s
2, 2) after collapsing the factors into

s2 levels. In addition, the rows of this SGOA(s2n0, gs, s
2, 2) can be partitioned

into s parts, each of which is an SGOA(sn0, gs, s
2, 2). Furthermore, we can get

SGOAs of strength 3 with a better three-dimensional space-filling property by

taking C to be some specific OAs.

Theorem 4. If C in Algorithm 2 is a regular OA(sp, g1, s, 2) with g1 = 2p − 1,

in which each generated column can be represented as the sum of q indepen-

dent columns, where 2 ≤ q ≤ p, then the resulting T , an SGOA(sp+2, g1s, s
3, 3),

achieves a stratification on an s × s × s grid in any three columns that do not

belong to a same group, which implies that

δ =

[(
g1s
3

)
− g1

(
s
3

)](
g1s
3

) = 1− (s− 2)(s− 1)

(g1s− 2)(g1s− 1)
. (4.1)

We call the resulting design an improved SGOA of strength 3, owing to its

better three-dimensional space-filling property. From (4.1), we can see that δ is

quite close to one for a large g1. The following is an illustrative example.

Example 5 (Example 4 continued). Let C be the first three columns of the OA

shown in Table 4, in which the third column can be represented as the sum of

the first two columns. Then, we get an improved SGOA(81, 9, 27, 3), that is, the

first nine columns of the SGOA(81, 12, 27, 3) shown in the left part of Table S.2

in the Supplementary Material. We can check that any three of its columns can

be collapsed into an OA(81, 3, 3, 3), except for all three columns in T1, T2, or T3
simultaneously. Thus, it achieves stratifications on 3× 3× 3 grids in 81 of the 84

three dimensions; that is, δ = 96.43%.

Similarly, taking C in Algorithm 2 to be a regular OA(27, 7, 3, 2), OA(81, 15,

3, 2), OA(16, 3, 4, 2), and OA(25, 3, 5, 2) that satisfy the requirements in Theorem
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4, we obtain the improved SGOA(243, 21, 27, 3), SGOA(729, 45, 27, 3), SGOA(

256, 12, 64, 3), and SGOA(625, 15, 125, 3), respectively. The δ-values are 99.47%,

99.89%, 94.55%, and 93.41%, respectively. These designs all enjoy attractive

three-dimensional space-filling properties.

Remark 4. In particular, if C is a regular OA(sp, g1, s, 2) with g1 = 2p − 1 that

satisfies the requirements in Theorem 4 and D is (0, 1, . . . , s − 1)T , a difference

scheme D(s, 1, s), then the resulting T in Algorithm 2 is an OSOA(sp+2, g1, s
3, 3).

Remark 4 indicates that there is a close relationship between the improved

SGOAs of strength 3 and OSOAs of strength 3. In fact, if we take one column

from each group of an improved SGOA(sp+2, g1s, s
3, 3) and put these columns

together, we get an OSOA(sp+2, g1, s
3, 3). In addition, the resulting array has a

better two-dimensional space-filling property than that of an ordinary OSOA of

strength 3.

Table 8 lists some SGOAs of strength 3 obtained using Algorithm 2 and the

corresponding OSOAs of strength 3 with the same run sizes; the OAs used are

available in the library of OAs (http://neilsloane.com/oadir/index.html).

Note that if s = 2, we have δ = 1, which means that any three columns guarantee

a stratification on an s×s×s grid. Actually, SGOAs of strength 3 can be regarded

as generalized versions of OSOAs of strength 3, where the proportion δ measures

the degree of proximity of the three-dimensional space-filling property, and the

proportion π characterizes the degree of proximity of the column orthogonality.

As shown in Table 8, the values of π and δ are very close to one or just equal to

one (for δ when s = 2), which means that these SGOAs of strength 3 have almost

the same three-dimensional space-filling property and column orthogonality as

those of the OSOAs of strength 3. Furthermore, the SGOAs of strength 3 have

better space-filling properties in the sense of the stratifications on s × s3 and

s3 × s grids, with a large proportion π. At the same time, the values of corrmax

are very small, implying that even if any two columns in the same group are

usually not column orthogonal, the correlation between them is acceptable. In

addition, for s = 2, the SGOA of strength 3 with n runs accommodates n/2− 2

columns, which is nearly twice the number (n/4) of the corresponding OSOA. For

s > 2, they can have far more columns than the corresponding OSOAs do. For

example, for a given run size 243, an OSOA of strength 3 can accommodate ten

columns. Furthermore, it guarantees stratifications on 3×9 and 9×3 grids in any

two dimensions, and a stratification on a 3× 3× 3 grid in any three dimensions.

The corresponding SGOA of strength 3 can accommodate 39 columns, and it

guarantees stratifications on 3 × 9 and 9 × 3 grids in any two dimensions, and

http://neilsloane.com/oadir/index.html
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Table 8. Some SGOAs and OSOAs of strength 3.

C: OA(n0, g, s, 2) T : SGOA(s2n0, gs, s
3, 3) π(%) δ(%) corrmax

1 OSOA(s2n0,m, s
3, 3)2

OA(4, 3, 2, 2) SGOA(16, 6, 8, 3) 80.00 100 0.190 OSOA(16, 4, 8, 3)

OA(8, 7, 2, 2) SGOA(32, 14, 8, 3) 92.31 100 0.190 OSOA(32, 8, 8, 3)

OA(12, 11, 2, 2) SGOA(48, 22, 8, 3) 95.24 100 0.190 OSOA(48, 12, 8, 3)

OA(16, 15, 2, 2) SGOA(64, 30, 8, 3) 96.55 100 0.190 OSOA(64, 16, 8, 3)

OA(20, 19, 2, 2) SGOA(80, 38, 8, 3) 93.70 100 0.190 OSOA(80, 20, 8, 3)

OA(24, 23, 2, 2) SGOA(96, 46, 8, 3) 97.78 100 0.190 OSOA(96, 24, 8, 3)

OA(28, 27, 2, 2) SGOA(112, 54, 8, 3) 98.11 100 0.190 OSOA(112, 28, 8, 3)

OA(32, 31, 2, 2) SGOA(128, 62, 8, 3) 98.36 100 0.190 OSOA(128, 32, 8, 3)

OA(36, 35, 2, 2) SGOA(144, 70, 8, 3) 98.55 100 0.190 OSOA(144, 36, 8, 3)

OA(40, 39, 2, 2) SGOA(160, 78, 8, 3) 98.70 100 0.190 OSOA(160, 40, 8, 3)

OA(44, 43, 2, 2) SGOA(176, 86, 8, 3) 98.82 100 0.190 OSOA(176, 44, 8, 3)

OA(48, 47, 2, 2) SGOA(192, 94, 8, 3) 98.92 100 0.190 OSOA(192, 48, 8, 3)

OA(52, 51, 2, 2) SGOA(208, 102, 8, 3) 99.01 100 0.190 OSOA(208, 52, 8, 3)

OA(56, 55, 2, 2) SGOA(224, 110, 8, 3) 99.08 100 0.190 OSOA(224, 56, 8, 3)

OA(60, 59, 2, 2) SGOA(240, 118, 8, 3) 99.15 100 0.190 OSOA(240, 60, 8, 3)

OA(64, 63, 2, 2) SGOA(256, 126, 8, 3) 99.20 100 0.190 OSOA(256, 64, 8, 3)

OA(68, 67, 2, 2) SGOA(272, 134, 8, 3) 99.25 100 0.190 OSOA(272, 68, 8, 3)

OA(72, 71, 2, 2) SGOA(288, 142, 8, 3) 99.29 100 0.190 OSOA(288, 72, 8, 3)

OA(76, 75, 2, 2) SGOA(304, 150, 8, 3) 99.33 100 0.190 OSOA(304, 76, 8, 3)

OA(80, 79, 2, 2) SGOA(320, 158, 8, 3) 99.36 100 0.190 OSOA(320, 80, 8, 3)

OA(84, 83, 2, 2) SGOA(336, 166, 8, 3) 99.39 100 0.190 OSOA(336, 84, 8, 3)

OA(88, 87, 2, 2) SGOA(352, 174, 8, 3) 99.42 100 0.190 OSOA(352, 88, 8, 3)

OA(92, 91, 2, 2) SGOA(368, 182, 8, 3) 99.45 100 0.190 OSOA(368, 92, 8, 3)

OA(96, 95, 2, 2) SGOA(384, 190, 8, 3) 99.47 100 0.190 OSOA(384, 96, 8, 3)

OA(100, 99, 2, 2) SGOA(400, 198, 8, 3) 99.49 100 0.190 OSOA(400, 100, 8, 3)

OA(9, 4, 3, 2) SGOA(81, 12, 27, 3) 81.82 94.09 0.033 OSOA(81, 4, 27, 3)

OA(27, 13, 3, 2) SGOA(243, 39, 27, 3) 94.74 98.58 0.033 OSOA(243, 10, 27, 3)

OA(81, 40, 3, 2) SGOA(729, 120, 27, 3) 98.32 99.57 0.033 OSOA(729, 28, 27, 3)

OA(16, 5, 4, 2) SGOA(256, 20, 64, 3) 84.21 92.63 0.015 OSOA(256, 8, 64, 3)

OA(25, 6, 5, 2) SGOA(625, 30, 125, 3) 86.21 66.50 0.008 OSOA(625, 12, 125, 3)

1corrmax represents the maximum correlation coefficient between any two distinct columns in one group; 2OSOA
of strength 3 generated using the method in Liu and Liu (2015).

enjoys column orthogonality and stratifications on 3×27 and 27×3 grids, with a

large proportion 94.74%. Even if any two columns in the same group are usually

not column orthogonal, the correlation between them is no larger than 0.033. In

terms of the three-dimensional space-filling property, it enjoys stratifications on

3 × 3 × 3 grids in a large proportion of 98.58%. Compared with the nine-level

MNOA, the SGOA of strength 3 has better one-dimensional stratification, and

can guarantee stratifications on 3× 9 and 9× 3 grids in any two dimensions. In

contrast, the MNOA can only guarantee a stratification on a 3 × 3 grid in any

two dimensions. Therefore, the SGOAs of strength 3 are more economical and

suitable for computer experiments.
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5. Conclusion

In this paper, we propose a new class of designs called SGOAs that enjoy

attractive column orthogonality and space-filling properties in both two and three

dimensions. Construction methods for this class of arrays based on both regular

and nonregular designs are developed. The resulting designs have flexible run

sizes that are not restricted to prime powers. At the same time, the methods are

easy to implement.

Compared with MNOAs, the proposed SGOAs have flexible run sizes and

better three-dimensional space-filling properties. The SGOAs have similar or

better (in the case of strength 3) low-dimensional space-filling properties com-

pared with those of the OSOAs, and can accommodate more factors. In addition,

the SGOAs perform well in terms of column orthogonality, because they satisfy

column orthogonality with large proportions. These desirable properties make

SGOAs competitive designs for computer experiments.

Supplementary Material

The online Supplementary Material includes proofs of the theorems and two

large tables.
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