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Abstract: We study the estimation and prediction of Gaussian processes with space-

time covariance models belonging to the dynamical generalized Wendland (DGW)

family, under fixed-domain asymptotics. Such a class is nonseparable, has dynami-

cal compact supports, and parameterizes differentiability at the origin similarly to

the space-time Matérn class.

Our results are presented in two parts. First, we establish the strong consistency

and asymptotic normality for the maximum likelihood estimator of the microergodic

parameter associated with the DGW covariance model, under fixed-domain asymp-

totics. The second part focuses on optimal kriging prediction under the DGW
model and an asymptotically correct estimation of the mean squared error using a

misspecified model. Our theoretical results are, in turn, based on the equivalence

of Gaussian measures under some given families of space-time covariance functions,

where both space or time are compact. The technical results are provided in the

online Supplementary material.

Key words and phrases: Fixed-domain asymptotics, microergodic parameter, max-

imum likelihood, space-time generalized wendland family

1. Introduction

1.1. Context

This study is concerned with fixed-domain asymptotics for the estimation and

kriging prediction of Gaussian random fields defined over product spaces D×T ,

where D is a subset of Rd (d is a positive integer) and T is a compact interval

of the real line. The most notable application refers to D as the spatial domain

and to T as time. Although we focus on the space-time case, our results can be

analogously applied to the anisotropic spatial case, where the rate of decay in the

correlation in one coordinate is different from that of the remaining d coordinates.
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Here, we assume that the process is observed at n (possibly unevenly spaced)

locations and repeatedly over m time points.

There might be other choices for the space-time asymptotics: for instance,

for the temporal part, one might consider an increasing asymptotic framework,

while keeping a fixed-domain approach for the spatial part. We are not aware of

any contribution of this type, and such a setting looks challenging. Alternatively,

one might consider both space and time under an increasing domain fashion. In

this case, the results of Mardia and Marshall (1984) on maximum likelihood (ML)

estimation apply, and the space-time asymptotics becomes a straightforward ex-

tension of the results obtained in the spatial case.

Instead, there is a lack of general results for the case of fixed-domain asymp-

totics. Some results have been given for specific classes of covariance functions.

For instance, Zhang (2004), Wang and Loh (2011), and Kaufman and Shaby

(2013) studied the asymptotic properties of the ML estimation of the microer-

godic parameter of the Matérn covariance model. Additionally, Stein (1999) and

Kaufman and Shaby (2013) have studied the asymptotic effect of the misspeci-

fied kriging prediction on the prediction variance, under the Matérn covariance

model. Recently, Bevilacqua et al. (2019) considered a fixed-domain asymptotic

framework for Gaussian random fields defined over a compact set of Rd under the

generalized Wendland (GW) class of compactly supported correlation functions

(Zastavnyi and Trigub (2002). Bevilacqua and Faouzi (2019) explored a similar

problem using the generalized Cauchy class, which allows for decoupling of fractal

dimensions with the Hurst effect.

The literature on space-time fixed-domain asymptotics is sparse, with the

notable exception of Ip and Li (2017), who perform an asymptotic analysis based

on a class of space-time covariance functions, proposed by Fuentes, Chen and

Davis (2008), having both spatial and temporal margins belonging to the Matérn

family (Stein (1999)). We refer to this family as the dynamical Matérn (DM)

family of space-time covariance functions. The recent paper by Porcu, Furrer and

Nychka (2020) gives a thorough review of space-time covariance functions.

1.2. Our contribution

This study considers a class of nonseparable space-time covariance functions

proposed by Porcu, Bevilacqua and Genton (2020). The members of this class are

dynamically compactly supported, meaning that for any fixed temporal lag, the

spatial margin is dynamically compactly supported; that is, there is a decreasing

and continuous function, h, such that for every fixed temporal lag, to, the spatial

margin of the space-time covariance function is compactly supported over a ball
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with radius h(to) embedded in Rd. Specifically, the spatial margin belongs to the

GW class. For the remainder of the paper, we refer to this class as the dynamical

GW (DGW) class.

We study the problem of ML estimation of the DGW class defined over the

product space D × T , under fixed-domain asymptotics. Further, we study the

problem of kriging prediction under the same asymptotic framework. The results

on fixed-domain asymptotics largely rely on the equivalence of Gaussian measures

(Skorokhod and Yadrenko (1973)). Thus, we derive conditions for the equivalence

of such measures under either two DGW families with different parameters, or

under a DGW and a DM family. These conditions are provided in Section B

of the online Supplementary Material (OS). We explore the implications of these

results in terms of the consistency and the asymptotic distribution of the ML

estimator for the microergodic parameter. Finally, we assess the consequences of

previous results in terms of the efficiency of the misspecified best linear unbiased

predictors.

The remainder of the paper proceeeds as follows. Section 2 contains the

necessary mathematical notation and a description of the covariance functions

used in this paper. Background material on the equivalence of Gaussian measures

is deferred to A in the OS. Section 3 provides preliminary results related to the

space-time Fourier transforms of both the DM and the DGW models. We also

find conditions for the equivalence of Gaussian measures under both models (see

B in the OS). These results are the basis for Section 4, which studies the problem

of consistency and asymptotic normality for the ML estimators of the parameters

indexing the DGW family. The problem of misspecified kriging predictions under

the DGW is then explored in Section 5. Section 6 concluldes the paper. Technical

proofs are deferred to Section C in the OS.

2. Background Material

2.1. Preliminaries and notation

We denote by Z = {Z(s, t), (s, t) ∈ D × T } a zero mean Gaussian ran-

dom field with index set on D × T , with stationary covariance function C :

Rd × R → R that is spatially isotropic and temporally symmetric. That is,

there exists a continuous function K : [0,∞)2 → R such that K(0, 0) = 1 and

C(h, u) = σ2K(‖h‖, |u|), for (h, u) ∈ Rd × R, where σ2 denotes the variance

parameter. Here, ‖ · ‖ denotes the Euclidean norm. We denote by Φd,T the set

of such functions. For the remainder of the paper, we use r for ‖h‖ and t for

|u|. Additionally, we denote with Φd the family of spatially isotropic covariance
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functions defined on Rd. The classes Φd and Φd,T are nested, with the inclusion

relations

Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φ∞ and Φ1,T ⊃ Φ2,T ⊃ · · · ⊃ Φ∞,T

being strict, where Φ∞ :=
⋂
d≥1 Φd and Φ∞,T :=

⋂
d≥1 Φd,T . There is a rich

mathematical theory for both classes Φd and Φd,T . For a recent account on the

class Φd, refer to Daley and Porcu (2014). Porcu, Gregori and Mateu (2006)

provide extensive material for the class Φd,T .

In particular, the results in Porcu, Gregori and Mateu (2006) (see also Gneit-

ing and Guttorp (2010)) show that a continuous function φ with φ(0, 0) = 1 be-

longs to the class Φd,T if and only if there exists a probability measure F , defined

on the positive quadrant of R2 such that

K(r, t) =

∫ ∞
0

∫ ∞
0

Ωd(rξ1) cos(tξ2)F (d(ξ1, ξ2)), t ≥ 0, r ≥ 0,

where Ωd(t) = t−(d−2)/2J(d−2)/2(t) and Jν is the Bessel function of the first kind

of order ν > 0 (Abramowitz and Stegun (1970)). Classical Fourier inversion

arguments show that if K is absolutely integrable, then K ∈ Φd,T if and only if

the function f : [0,∞)2 → R, defined by

f(z, τ) =
1

(2π)(d+1)/2

∫ ∞
0

∫ ∞
0

Ωd(zξ1) cos(τξ2)φ(ξ1, ξ2)ξ
d−1
1 dξ1dξ2 (2.1)

is nonnegative and integrable. The function f is called the isotropic spectral

density throughout.

2.2. The Matérn and generalized wendland classes of covariance func-

tions

The Matérn class (Matérn (1986); Handcock and Stein (1993)) of continuous

functions KM(r;α, ν), r ≥ 0, α, ν > 0, is defined as

KM(r;α, ν) =
21−ν

Γ(ν)

( r
α

)ν
Kν
( r
α

)
, (2.2)

where Kν is a modified Bessel function of the second kind of order ν (Abramowitz

and Stegun (1970)). The function KM(·;α, ν) belongs to the class Φ∞.

We now introduce the GW class KGW(·;β, µ, κ) : [0,∞) → R, defined as

(Gneiting (2002); Zastavnyi (2002))
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KGW(r;β, µ, κ) :=


1

B(2κ, µ+1)

∫ 1
r/β u

(
u2−

(
r

β

)2)κ−1
(1−u)µ du, 0 ≤ r < β,

0, r ≥ β,
(2.3)

where κ > 0, β > 0 is the compact support parameter, and B denotes the beta

function. For κ = 0, the GW class is defined as (Askey (1973)):

KGW(r;β, µ, 0) :=


(

1− r

β

)µ
, 0 ≤ r < β,

0, r ≥ β.
(2.4)

Closed-form solutions of the integral in (2.3) can be obtained when κ = k,

a nonnegative integer. In this case, (2.3) can be factorized as

KGW(r;β, µ, k) = KGW(r;β, µ+ k, 0)Pk(r), r ≥ 0,

where Pk is a polynomial of order k.

The GW class belongs to the class Φd, for a fixed d ∈ N, provided µ ≥
(d+ 1)/2 + κ.

Both KM and KGW are flexible models, because they allow us to parameter-

ize the mean square and sample path differentiability of a Gaussian random field

in a continuous fashion with these covariance functions. In particular, for theM
case, given a positive integer k, the sample paths are k-times differentiable, in

any direction, if and only if ν > k. Similarly, for the GW case, the sample paths

are k-times differentiable, in any direction, if and only if κ > k − 0.5. Figure 1

depicts KGW(t; 10, 6, k) for k = 0, 1, 2, 3 and KM(t; 1, ν) for ν = 0.5, 1.5, 2.5, 3.5.

2.3. The DM and DGW families of space-Ttme covariance functions

TheDM family of space-time covariance functions was introduced by Fuentes,

Chen and Davis (2008): the motivation for the proposal was to provide a class

of space-time covariance functions that have spatial or temporal margins of the

Matérn type. That is, either the spatial margin C(·, 0) or the temporal margin

C(0, ·) belong to the class KM(‖ · ‖;α, ν), as defined in (2.2). The DM family

is the building block for the work of Ip and Li (2017), which has largely inspired

our work. To introduce the DM family, we follow a different path tp that of

Fuentes, Chen and Davis (2008): let θ = (ν, ζ, υ, ε, σ)>, with > denoting the

transpose of a vector. We assume ν, υ, ζ, σ are positive, and ε ∈ [0, 1]. We define
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Figure 1. Left: KGW(t; 10, 6, k) for k = 0, 1, 2, 3, Right: KM(t; 1, ν) for ν =
0.5, 1.5, 2.5, 3.5

the parameter `, which depends on θ, as

`(θ) =
σ2ζ2ν−dυ2ν−1Γ(ν)

Γ(ν − (d+ 1)/2)
1{ε=0} +

σ2ζ2ν−dυ2ν−1Γ(ν)2

Γ(ν − d/2)Γ(ν − 1/2)
1{ε=1} + x1{ε∈(0,1)},

(2.5)

with 1A being the indicator function of any Borel set of the real line. Here, Γ

denotes the gamma function (Gradshteyn and Ryzhik (2007)), and x is a positive

constant that is kept fixed, and is disregarded for the rest of our exposition.

We define the DM class of covariance functions, KDM(·, ·;θ) : [0,∞2)→ R,

through the identity

KDM(r, t;θ) =

∫
R

eiutgθ(r, u)du, (r, t) ∈ [0,∞)2, (2.6)

where i is the imaginary unit. Here, the function gθ is defined as

gθ(r, u) =
`(θ)πd/2

2ν−d/2−1Γ(ν)

(
r

a(u)

)ν−d/2 (
υ2 + εu2

)−ν Kν−d/2 (a(u)r) ,

with a(u) =
√
ζ2(υ2 + u2)/υ2 + εu2, u ∈ R. In Equation (2.6), the parameter

ζ−1 (spatial range) explains the rate of decay of the spatial correlation, υ−1

(temporal range) explains the rate of decay of the temporal correlation, and

` is a scale parameter proportional to the variance σ2 (sill parameter) of the

associated random field. The parameter ε allows us to switch from separability

(when ε = 0) to different levels of nonseparability. The arguments in Fuentes,

Chen and Davis (2008) show that KDM(·, ·;θ) is a member of the class Φ∞,T .
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In addition, Fuentes, Chen and Davis (2008) show that some special cases admit

partial Fourier transforms that admit closed forms of the Matérn type.

We now follow Porcu, Bevilacqua and Genton (2020) to introduce the DGW
class of space-time covariance functions. Let µ, β, σ > 0, δ ∈ (0, 2], γ > 0, and

κ ≥ 0. Let χ = (µ, κ, β, σ2, δ, λ, γ)>.

The range of the parameter λ is specified below. Let us consider the function

hδ,γ(t) =

(
1 +

(
t

γ

)δ)−1
, t ≥ 0. (2.7)

We define the DGW class of covariance functions, denoted KDGW(·, ·;χ) (Porcu,

Bevilacqua and Genton (2020)), as follows:

KDGW(r, t;χ) = σ2 [hδ,γ(t)]λKGW(r;βhδ,γ(t), µ, κ), r, t ≥ 0. (2.8)

According to Theorem 1 in Porcu, Bevilacqua and Genton (2020) (see also Table

1 therein), KDGW(·, ·;χ) belongs to the class Φd,T , for some integer d, provided

µ ≥ d+ 3

2
+ κ+ α, and λ > max

(
d+ 3

2
, 2κ+ 3

)
. (2.9)

The constant α is positive and bigger than a lower bound κ1(δ) that is specified

in Table 1 of Porcu, Bevilacqua and Genton (2020). Here, α is fixed and does

not enter into the parameter χ. For the remainder of the paper, we suppose

that α is always bigger than the lower bound κ1(δ). When interpreting the

parameters, we note that β is the spatial compact support when t = 0; that is,

KDGW(·, 0;χ) = KGW(·;β, µ, κ), with KGW as in (2.3), is compactly supported

over a ball with radius β embedded in Rd. The parameter κ determines the

differentiability at the origin for the spatial margin KDGW(·, 0;χ). The parameter

γ > 0 is the temporal scale, and the parameter δ indexes the fractal dimension

for the temporal sample paths. Finally, the function hδ,γ is the temporal radius,

because for every to > 0, the margin KDGW(·, to;χ) is compactly supported over

a ball with radius βhδ,γ(to) embedded in Rd. For the remainder of the paper, we

use fDM(·, ·;θ) and fDGW(·, ·;χ) for the Fourier transforms of KDM(·, ·;θ) and

KDGW(·, ·;χ), respectively, that are uniquely determined according to Equation

(2.1).
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3. Preliminary Results

3.1. Fourier transforms and tails for the DGW and DM classes

For d a positive integer and κ ≥ 0, we define η := (d + 1)/2 + κ. The next

result describes the behavior of the isotropic spectral density associated with

the DGW covariance function, fDGW(·, ·;χ), defined in (2.8), and determined

according to (2.1). Some further notation is needed. For given functions g1(x)

and g2(x), we write g1(x) � g2(x) to mean that there exist constants c and C

such that 0 < c < C <∞ and c|g2(x)| ≤ |g1(x)| ≤ C|g2(x)|, for all x.

Note that f ∼ g means that the function f is asymptotically equal to the

function g. We consider the function 1F2, defined as

1F2(a; b, c; z) =

∞∑
k=0

(a)kz
k

(b)k(c)kk!
, z ∈ R,

which is a special case of the generalized hypergeometric functions qFp (

Abramowitz and Stegun (1970)), with (q)k = Γ(q + k)/Γ(q), for k ∈ N ∪ {0},
being the Pochhammer symbol. Finally, for a complex number z, we use =(z) to

denote its imaginary part. We are ready to provide our first result.

Theorem 1. Let DGW be the class of functions KDGW(·, ·;χ) defined in Equa-

tion (2.8), and let fDGW(·, ·;χ) be the spectral density associated with KDGW(·, ·;χ)

and determined according to Equation (2.1). Let ς := (µ, κ, η, d)>. Let

%λ,η =
2δ(d+ λ− 2η)Γ((δ + 1)/2)Γ((δ + 2)/2) sin(πδ/2)

γδπ3/2
,

%λ,η+1 =
2δ(d+ λ− 2η − 2)Γ((δ + 1)/2)Γ((δ + 2)2) sin(πδ/2)

γδπ3/2
,

cς3 =
Γ(µ+ 2η)

Γ(µ)
, cς4 =

Γ(µ+ 2η)

Γ(η)2η−1
, cς5 =

π

2
(µ+ η)

and

Lς =
2−κ−d+1Γ(κ)π−d/2Γ(µ+ 1)Γ(2κ+ d)

B(2κ, η)Γ(κ+ (d/2))Γ(µ+ 2η)
.

Then, for κ ≥ 0, σ2, β > 0, δ ∈ (0, 2), λ > 2κ+ 3, and µ ≥ η + 1 + α, we have

1. fDGW(z, τ ;χ) = −σ2βdγ3/2τ1/2
√

2π−3/2Lς×=(
∫∞
0 K1/2(γtτ)1F2(η; η+µ/2,

η + µ/2 + 1/2;−(zβ(1 + eiπδ/2tδ)−1)2/4)/(1 + eiπδ/2tδ)d+λt1/2dt)

2. For τ, z →∞,

fDGW(z, τ ;χ) = σ2β−(1+2κ)Lςcς3z
−2η ×
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%λ,ητ

−(1+δ) −O
(
τ−(1+2δ)

)]
+
[
%λ,η+1τ

−(1+δ) −O
(
τ−(1+2δ)

)]
O(z−2)

)
+
[
%λ,0τ

−(1+δ) −O
(
τ−(1+2δ)

)]
O(z−(µ+η)); (3.1)

3. For z →∞, τ →∞, fDGW(z, τ ;χ) � z−2ητ−1−δ.

The proof of this result is deferred to Section C in the OS.

To describe the asymptotic behavior of the spectral density associated with

the DM class, a result from Ip and Li (2017) is needed.

Theorem 2. Let fDM(·, ·;θ) be the spectral density function associated with the

DM class in Equation (2.6), and being uniquely determined according to (2.1).

Then, for υ > 0 and ε ∈ [0, 1], we have

1. fDM(z, τ ;θ) = `(θ)(ζ2υ2 + υ2z2 + ζ2τ2 + ε2z2τ2)−ν ;

2. As z, τ →∞ and ε ∈ (0, 1],

1

fDM(z, τ ;θ)
∼ `−1(θ)(εzτ)2ν

(
1 +

νζ2υ2

ε2z2τ2
+
νυ2

ε2τ2
+
νζ2

ε2z2
+O(τ−4z−4)

)
;

3. As z, τ →∞ and ε = 0,

1

fDM(z, τ ;θ)
∼ `−1(θ)(υ2z2+ζ2τ2)ν

(
1+ν

ζ2υ2

ζ2τ2 + υ2z2
+O

(
(ζ2τ2 + υ2z2)−2

))
.

The following section describes technical results that provide the crux for the

proofs of our main results.

4. ML for DGW Classes

Following the arguments in Zhang (2004), an immediate consequence of The-

orem 2 in the OS is that for fixed κ, δ, µ, and λ, the parameters σ2, β, and γ

cannot be estimated consistently. Instead, we show here that the microergodic

parameter σ2/(γδβ2κ+1) is consistently estimable. We then assess the asymp-

totic distribution of the ML estimator. Let D × T be a bounded subset of

Rd × R, and let Znm = (Z(s1, t1), . . . , Z(sn, tm))> be a finite realization of a

zero mean stationary Gaussian random field Z(s, t), (s, t) ∈ D × T , with a

given parametric covariance function σ2K(r, t; τ ), with σ2 > 0, τ a parameter

vector, and K a member of the class Φd,T , with K(0, 0; τ ) = 1. Here, we con-

sider the DGW covariance model, that is, KDGW(r, t;χ) = σ2K(r, t; τ ), where

K(r, t; τ ) = [hδ,γ(t)]λKGW(r;βhδ,γ(t), µ, κ), with hδ,γ(t) =
(
1 + (t/γ)δ

)−1
and
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τ = (µ, κ, β, δ, λ, γ)>. At the same time, in the current exposition, τ does not

contain the parameters that are fixed, but only those that are to be estimated

using the ML. Specifically κ, δ, λ, and µ are assumed known and fixed; that is,

we assume τ = (β, γ)>, the spatial and temporal scale parameters. Then, the

Gaussian log-likelihood function is defined as

Lnm(σ2, β, γ) = −1

2

(
nm log(2πσ2) + log (|Rnm(β, γ)|) (4.1)

+
1

σ2
Z>nmRnm(β, γ)−1Znm

)
, (4.2)

where Rnm(β, γ) = [K(‖si−sj‖, |tl−tk|;β, γ)]n;mi,j=1;,l,k=1 is the correlation matrix.

Let σ̂2nm be the ML estimator of the variance parameter obtained by maximizing

Lnm(σ2, β, γ) with respect to σ2, and given by

σ̂2nm(β, γ) =
1

nm
Z>nmRnm(β, γ)−1Znm. (4.3)

We now establish the strong consistency and the asymptotic distribution

of the random variable σ̂2nm(β, γ)/(γδβ2κ+1), that is, the ML estimator of the

microergodic parameter.

Theorem 3. Let Z(s, t), (s, t) ∈ D × T ⊂ Rd × R, for d = 1, 2, be a zero

mean Gaussian random field with covariance model KDGW(·, ·;χ), and let τ =

(µ, κ, β0, δ, λ, γ0)
>, with λ > 2κ+ 3 and µ > η + 1 + α. For κ, δ, λ, and µ fixed

and known and arbitrary β and γ, we have as n,m→∞,

1. σ̂2nm(β, γ)/γδβ2κ+1 a.s.−→ σ20/γ
δ
0β

2κ+1
0 , and

2.
√
n×m

(
σ̂2nm(β, γ)/γδβ2κ+1 − σ20/γδ0β

2κ+1
0

) D−→ N
(

0, 2
(
σ20/γ

δ
0β

2κ+1
0

)2)
.

The proof is deferred to Section C in the OS. The second point of Theorem 3

provides the asymptotic distribution of the microergodic parameter for arbitrary

dependence parameters β and γ. Nevertheless, in practical applications, both

parameters must be estimated. In principle, the asymptotic distribution of the

random variable σ̂2nm(β̂ ˆ, γ)/γ̂δβ̂2κ+1, with τ̂ = (β̂, γ̂)>, can be obtained follow-

ing the arguments in Kaufman and Shaby (2013) or Bevilacqua et al. (2019).

However, to establish the strong consistency and asymptotic distribution of the

sequence of random variables σ̂2nm(β̂, γ̂)/γ̂δβ̂2κ+1, we need to prove the monotone

behavior of σ̂2nm(β, γ)/γδβ2κ+1 when viewed as a function of (β, γ) ∈ I × J , with

I × J a product of bounded intervals. Unfortunately, we have not been able to

inspect such a monotonicity property.
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In the following, to assess the quality of the approximation of Theorem 3

(Point 2), we consider a simulation study that takes into account the case when

γ and β are arbitrary. We also explore the case when both are estimated using

the ML.

Specifically, we consider 500 simulations, using a Cholesky decomposition,

of a Gaussian random field with a DGW space-time covariance function ob-

served in [0, 1]2 × [0, 1]. In particular, we consider x2 location sites uniformly

distributed in [0, 1]2 with x = 6, 8, 10, 12, 14 and 0, 0.1, . . . , 0.9, 1 temporal in-

stants; that is, we consider n = 36, 64, 100, 144, 196, and m = 11. The increasing

total number of space-time observations in the three-dimensional unit cube is

n×m = 396, 704, 1100, 1584, 2156, respectively.

For each simulation, we consider κ = 0, 1, δ = 1.75, λ = 5, and µ = 5.5 + κ

as known and fixed, and we set σ20 = 1, β0 = 1, and γ0 = 3. We estimate the

microergodic parameter as

σ̂2i (xi, yi)

x2κ+1
i yδi

=
Z>i Rnm(xi, yi)

−1Zi

nmx2κ+1
i yδi

,

where xi = β0 and yi = γ0 for the case with arbitrary dependence parameters

(here, we set them equal to the true dependence parameters), and xi = β̂i and

yi = γ̂i for the case of parameters estimated using the ML. Here, Zi is the data

vector of simulation i.

For the first case, the ML estimation is obtained using (4.3), and for the

second case, the ML estimation is obtained using the maximization, with respect

to β and γ, of the log profile likelihood Lnm(σ̂2nm(β, γ), β, γ).

Using the asymptotic distributions stated in Theorem 3, Table 1 compares

the sample quantiles of order 0.05, 0.25, 0.5, 0.75 and 0.95 and the mean and

variance of √
n×m

2

(
σ̂2i (xi, yi)β

2κ+1
0 γδ0

σ20x
2κ+1
i yδi

− 1

)
when xi = β0 and yi = γ0 with the associated theoretical values of the standard

Gaussian distribution. In the same table, we also explore the case xi = β̂i and

yi = γ̂i.

As expected, the best approximation is achieved overall when using the true

dependence parameters (i.e., xi = β0, yi = γ0), and in the case of xi = β̂i and

yi = γ̂i, the asymptotic distribution seems a satisfactory approximation of the

sample distribution, visually improving with increasing n. Note that the variance

increases when the smoothness parameter κ increases. This pattern is well known

in the purely spatial case when estimating the microergodic parameter of the GW
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Table 1. For κ = 0, 1 and δ = 1.75, sample quantiles, mean, and variance of√
n×m/2(σ̂2

i (xi, yi)β
2κ+1
0 γδ0/(σ

2
0x

2κ+1
i yδi ) − 1), i = 1, . . . , 500, for xi = β̂i, β0 and

yi = γ̂i, γ0,. when β0 = 1 and γ0 = 3 with n × m = 396, 704, 1100, 1584, 2156, com-
pared with the associated theoretical values of the standard Gaussian distribution.

κ = 0 (x, y) n×m 5% 25% 50% 75% 95% Mean Var

396 -1.962 -0.904 0.060 0.836 2.142 0.029 1.534

(β̂,γ̂) 704 -1.889 -0.759 0.010 0.836 2.031 0.030 1.386

1,100 -1.728 -0.741 0.068 0.852 1.868 0.070 1.278

1,584 -1.642 -0.738 0.008 0.704 1.717 0.017 1.141

2,156 -1.643 -0.720 -0.009 0.639 1.669 -0.094 1.119

396 -1.535 -0.705 -0.014 0.720 1.788 0.022 1.061

(β0, γ0) 704 -1.662 -0.733 0.032 0.704 1.758 0.001 1.060

1,100 -1.675 -0.700 0.032 0.709 1.682 0.021 1.052

1,584 -1.634 -0.646 0.014 0.717 1.601 0.005 1.017

2,156 -1.645 -0.648 -0.094 0.659 1.660 -0.079 1.012

κ = 1 (x, y) n×m 5% 25% 50% 75% 95% Mean Var

396 -2.179 -0.971 -0.110 0.733 2.462 -0.036 1.839

(β̂,γ̂) 704 -2.039 -0.806 0.041 0.877 1.938 0.015 1.510

1,100 -1.939 -0.782 0.104 0.800 1.850 0.002 1.382

1,584 -1.683 -0.735 -0.030 0.653 1.977 -0.002 1.270

2,156 -1.693 -0.720 -0.009 0.679 1.723 -0.096 1.194

396 -1.535 -0.705 -0.014 0.720 1.788 0.022 1.061

(β0, γ0) 704 -1.662 -0.733 0.032 0.704 1.758 0.001 1.060

1,100 -1.675 -0.700 0.032 0.709 1.682 0.021 1.052

1,584 -1.634 -0.646 0.014 0.717 1.601 0.005 1.017

2,156 -1.645 -0.648 -0.094 0.659 1.660 -0.079 1.012

N(0, 1) -1.645 -0.674 0 0.674 1.645 0 1

or Matérn covariance models. In addition, when xi = β0 and yi = γ0, the sample

quantiles do not depend on κ, as expected. We repeat this numerical experiment

by considering arbitrary dependence parameters sufficiently ”far” from the true

values , finding that the convergence can be very slow, as observed in Kaufman

and Shaby (2013) and Bevilacqua et al. (2019).

5. Prediction Using the DGW Model

We now consider kriging prediction, under fixed domain asymptotics, of a

Gaussian random field at an unknown space-time location (s0, t0) ∈ D × T ,

using the DGW model KDGW(r, t;χ). Recall that the parameter vectors χ and

τ are defined in Sections 2.3 and 4, respectively. Specifically, we focus on two

properties:
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(A) asymptotic efficient prediction, and

(B)) asymptotically correct estimation of the prediction variance.

Stein (1988) shows that both asymptotic properties hold when the Gaussian

measures are equivalent (see Section A in the OS). Let P (KDGW(χi)), for i = 0, 1,

be two probability zero mean Gaussian measures with covariance belonging to

the DGW class of space-time covariance functions, where χi = (σ2i , τ
>
i )> and

τi = (µ, κ, βi, δ, λ, γi)
>, for i = 0, 1 is the associated set of parameters.

Under P (KDGW(χ0)), and using Theorem 2 in the OS, properties (A) and

(B) hold, provided
σ20

γδ0β
2κ+1
0

=
σ21

γδ1β
2κ+1
1

,

and µ > η + 1 + α, δ > (d + 1)/2, and d = 1, 2. Similarly, let P (KDM(θ)) and

P (KDGW(χ)) be two zero mean Gaussian measures under the DM and DGW
models, respectively. Under P (KDM(θ)), properties (A) and (B) hold when

µ > η + 1 + α, Point 2 of Theorem 3 in the OS holds, and d = 1, 2.

Actually, Stein (1993) gives a substantially weaker condition for asymptotic

efficiency prediction based on the asymptotic behavior of the ratio of the spectral

densities. Let

Ẑnm(τ ) = cnm(τ )>Rnm(τ )−1Znm (5.1)

be the best linear unbiased predictor at an unknown location (s0, t0) ∈ D × T ,

under the misspecified model P (KDGW(r, t;χ)), where cnm(τ ) = [φ(s0 − si, t0 −
tj ; τ )]n,mi=1,j=1 and Rnm(τ ) = [φ(si−sj , ti− tj ; τ )]n,mi=1,j=1 is the correlation matrix.

If the correct model is P (KDGW(r, t;χ0)), then the mean squared error of the

kriging predictor is given by:

Varχ0

[
Ẑnm(τ )− Z(s0, t0)

]
= σ20

(
1− 2cnm(τ )>Rnm(τ )−1cnm(τ0) (5.2)

+cnm(τ )>Rnm(τ )−1Rnm(τ0)Rnm(τ )−1cnm(τ0)
)
.

If β0 = β and γ0 = γ, that is, the true and misspecified models coincide, this

expression simplifies to

Varχ0

[
Ẑnm(τ0)− Z(s0, t0)

]
= σ20

(
1− cnm(τ0)

>Rnm(τ0)
−1cnm(τ0)

)
. (5.3)

Similarly, Varθ
[
Ẑnm(τ ) − Z(s0, t0)

]
and Varθ

[
Ẑnm(θ) − Z(s0, t0)

]
can be

defined under P (KDM(θ)). Here, Ẑnm(θ) is the best linear unbiased predictor

using the DM model, and recall that θ = (ν, ζ, υ, ε, σ)> is the set of correlation

parameters. The following results are an application of Theorems 1 and 2 of Stein
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(1993).

Theorem 4. Let P (KDGW(χi)), for i = 0, 1, and P (KDM(θ0)) be three Gaussian

probability measures on D × T ⊂ Rd × R, and let µ > η + 1 + α. Then, for all

(s0, t0) ∈ D × T :

1. Under P (KDGW(χ0)), as n→∞,

Varχ0

[
Ẑnm(τ1)− Z(s0, t0)

]
Varχ0

[
Ẑnm(τ0)− Z(s0, t0)

] −→ 1, (5.4)

for any fixed β1 > 0 and γ1 > 0.

2. Under P (KDM(θ0)), if ν = η as n→∞,

Varθ0
[
Ẑnm(τ1)− Z(s0, t0)

]
Varθ0

[
Ẑnm(θ)− Z(s0, t0)

] −→ 1, (5.5)

for any fixed β1 > 0, γ1 > 0, and θ = (ν, ζ, υ, ε).

3. Under P (KDGW(χ0)), if σ20β
−(2κ+1)
0 /γδ0 = σ21β

−(2κ+1)
1 /γδ1, then

Varχ1

[
Ẑnm(τ1)− Z(s0, t0)

]
Varχ0

[
Ẑnm(τ1)− Z(s0, t0)

] −→ 1. (5.6)

4. Under P (KDM(θ0)), for ε ∈ (0, 1], if σ21%λ,ηc
ς
3β
−2η = `(θ0)ε

−2ν , ν = η and

1 + 2κ = δ, then as n→∞,

Varχ1

[
Ẑnm(τ1)− Z(s0, t0)

]
Varθ0

[
Ẑnm(τ1)− Z(s0, t0)

] −→ 1. (5.7)

As an illustration of the results in Theorem 4, we perform a small numeri-

cal experiment, focusing in particular on Points 1 and 3. Let us define the ratios

(5.4) and (5.6) as U1(β1, γ1) and U2, respectively. We randomly select nj = 36, 64,

100, 144, 196, (j = 1, . . . 500) location sites without replacement from a fine reg-

ular grid on the unit square, and we keep these location sites fixed across the 11

temporal instants 0, 0.1, . . . , 1. We then compute the ratios U1j(β1, γ1) and U2j ,

for j = 1, . . . , 500, using the closed-form expressions in Equation (5.2) and (5.3),

to predict the space-time location site s0 = (0.53, 0.53) and t0 = 0.6. Specifically,

for κ = 0, 1, we set µ = 5.5 + κ, δ = 1.75, and λ = 5, as in the numerical exper-

iment in Section 4. The parameters of the correct model χ0 = (σ20, τ
>
0 )> with
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Table 2. Ū1 =
∑500
j=1 U1j(β1, γ1)/500 , Ū2 =

∑500
j=1 U2j/500 when increasing the number

of space-time locations for κ = 0, 1.

m× n κ=0 κ=1

Ū1 Ū2 Ū1 Ū2

396 1.00249 1.05611 1.00104 1.05730

704 1.00104 1.04349 1.00035 1.04338

1,100 1.00048 1.03826 1.00013 1.03781

1,584 1.00022 1.03513 1.00005 1.03500

2,156 1.00012 1.03354 1.00002 1.03337

τ>0 = (µ, κ, β0, δ, λ, γ0)
> are fixed as σ20 = 1, β0 = 1, and γ0 = 3, and the pa-

rameters of the misspecified model χ1 = (σ21, τ
>
1 )> with τ>1 = (µ, κ, β1, δ, λ, γ1)

>

are fixed as σ21 = 1.25, and γ1 = 3.05; the spatial parameter is obtained using

the equivalence condition, that is, β1 = β0((σ
2
0/σ

2
1)(γ0/γ1)

δ)−(1+2κ) (see also A

in OS). This gives β1 = 1.21436 for κ = 0, and β1 = 1.066881 for κ = 1.

Table 2 reports the overall mean Ū1 =
∑500

j=1 U1j(β1, γ1)/500 and Ū2 =∑500
j=1 U2j/500 when increasing the number of spatiotemporal sites n × m =

396, 704, 1100, 1584, 2196. It can be appreciated that the convergence to one

of Ū1 is much faster than that of Ū2. These results are consistent with those

of the purely spatial case in Bevilacqua et al. (2019). In addition, there are no

significant differences between the cases κ = 0, 1.

6. Conclusion

There is a clear lack of general results on the asymptotic properties of the ML

estimator under fixed-domain asymptotics, particularly in the space-time setting.

This is reflected in the literature, where the results are sparse and are estabilished

for ad hoc families of covariance functions. Similarly, we have established results

that hold for the DGW family under fixed-domain asymptotics. Future research

could examine a more realistic setting for the temporal component. A promising

solution might be to embed time in the circle, so that the associated Gaussian

random field becomes periodic.

Supplementary Material

The online Supplementary Material contains mathematical proofs and some

graphical representations.
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