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GAUSSIAN PROCESS PREDICTION USING
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Abstract: Gaussian process (GP) models are widely used in the analysis of com-

puter experiments. However, two issues have not been solved satisfactorily. The

first is a computational issue that prevents GP models from being more widely

applied, especially for massive data with high-dimensional inputs. The second is

the underestimation of the prediction uncertainty in GP modeling. To tackle these

problems simultaneously, we propose two methods for constructing GP predictive

distributions based on a new version of bootstrap subsampling. The new subsam-

pling procedure borrows the strength of space-filling designs to provide an efficient

subsample, and thus reduce the computational complexity. Compared with the

plug-in approach, this procedure provides unbiased predictors and offers an efficient

analogue of conventional bootstrap predictive distributions with empirical coverage

probabilities closer to their nominal levels. We illustrate the proposed methods

using two complex computer experiments with high-dimensional inputs and tens of

thousands of simulation outputs.

Key words and phrases: Computer experiment, experimental design, kriging, space-

filling design, sub-bagging, uncertainty quantification.

1. Introduction

Computer experiments examine real systems using complex mathematical

models. They are widely used as alternatives to physical experiments, especially

when studying complex systems. In many situations, a physical experiment is

infeasible because it is unethical, impossible, inconvenient, or too expensive. A

mathematical model of a system can often be developed and input/output pairs

can be produced with the help of computers. Computer experiments are widely

used in science and engineering. Typically, such experiments require a great

deal of time and computing. Furthermore, they are nearly deterministic, in the

sense that a particular input will produce almost the same output if given to the

computer experiment on another occasion. Therefore, it is desirable to build an

interpolator for computer experiment outputs, and to use this as an emulator
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for the actual experiment. Additional discussions of the design and analysis of

computer experiments can be found in Santner, Williams and Notz (2003) and

Fang, Li and Sudjianto (2006).

A Gaussian process (GP) model (or kriging) is a flexible and widely used

method in the analysis of computer experiments; however, there are two critical

issues in GP modeling. The first is a computational issue that prevents GP

models from being more widely used, especially with high-dimensional inputs and

massive outputs. This is because the modeling and prediction of a GP involve

significant manipulations of an N ×N correlation matrix, where N is the sample

size, requiring O(N3) computations and often resulting in a singularity. This

problem is even more critical when analyzing complex computer experiments,

because the estimation of high-dimensional correlation parameters often leads

to numerical instability in the estimation and prediction. The second issue is

how to accurately quantify the uncertainty based on a GP. It is well known that

the GP predictive interval constructed by substituting the true parameters by

the estimators, often called the plug-in predictor, underestimates the uncertainty

(Santner, Williams and Notz (2003, p.98)). Although numerous works examine

each of these issues, to the best of our knowledge, there is no systematic approach

that addresses both simultaneously, which is the main focus of this study.

The computational issue is well recognized in the literature and a number of

methods have been proposed. Some methods address this problem by changing

the model to one that is computationally convenient. Here, examples include

the works of Rue and Held (2005), Cressie and Johannesson (2008), Banerjee

et al. (2008), Gramacy and Lee (2008), Wikle (2010), Chang et al. (2014), Cas-

trillon, Genton and Yokota (2016), Mak and Joseph (2018), and Wang, Yang

and Stufken (2019). Another approach is to approximate the likelihood for the

original data. Here, examples include the works of Nychka (2000), Stein, Chi

and Welty (2004), Furrer, Genton and Nychka (2006), Snelson and Ghahramani

(2006), Fuentes (2007), Kaufman, Schervish and Nychka (2008), Gramacy and

Apley (2015), and Nychka et al. (2015). Nevertheless, most existing methods

are developed for data sets collected from a regular grid under a low-dimensional

geostatistical setting. However, these assumptions are often violated in com-

puter experiments because high-dimensional inputs are common, and the com-

putational expense often prohibits running such experiments over a dense grid

of input configurations. A commonly used approach for high-dimensional com-

puter experiments is to impose a sparsity constraint on the correlation matrix

(Kaufman, Schervish and Nychka (2008), Kaufman et al. (2011)). However, it

has been shown that this method does not work well for parameter estimation
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(Stein (2013), Liang et al. (2013)), which is crucial for the GP predictor. In ad-

dition, the connection between the degree of sparsity and the computation time

is nontrivial.

The second issue of quantifying the uncertainty in GP predictions is impor-

tant, but has been overlooked in the literature. For example, most of the afore-

mentioned methods address the computational issue, but adopt plug-in predictors

for inference, and therefore underestimate the prediction uncertainty. Moreover,

with different approximation techniques, these methods bring in additional un-

certainty that is difficult to quantify. Although methods such as Bayesian ap-

proaches (Handcock and Stein (1993), Kennedy and O’Hagan (2001), Schmidt

and O’Hagan (2003)) and the regular bootstrap (Santner, Williams and Notz

(2003), Luna and Young (2003)) have been proposed to provide a better quantifi-

cation of the prediction uncertainty by incorporating the estimation uncertainty,

they are computationally intensive and often intractable for massive data.

In this paper, a new framework is proposed to for constructing GP predic-

tors and their predictive distributions, in which we combine the bootstrap predic-

tive distribution with an experimental design-based stratified subsampling plan.

Bootstrapping is an increasingly popular method for obtaining accurate confi-

dence intervals and performing statistical inference (DiCiccio and Efron (1992),

DiCiccio and Efron (1996), Efron and Tibshirani (1993). A direct application of

bootstrap methods to construct predictive distributions for GP is conceptually

attractive, but computationally prohibitive, especially for massive data. There-

fore, we introduce a new bootstrap method using design-based subsampling, and

propose two methods for constructing of bootstrap predictive distributions. We

show that, compared with the plug-in approach, this procedure not only provides

unbiased predictors, but also offers an efficient analogue of conventional bootstrap

predictive distributions with empirical coverage probabilities closer to their nom-

inal levels. Moreover, theoretical comparisons with commonly used predictors

are provided.

The remainder of the paper is organized as follows. In Section 2, we introduce

the idea of a Latin hypercube design (LHD)-based block bootstrap and propose

two methods for constructing predictive distributions. In Section 3, the proposed

predictors are shown to be unbiased. Theoretical comparisons with the regular

bootstrap and the plug-in approach are developed. In Section 4, the finite-sample

performance of the proposed methods is investigated using simulation studies.

Applications to two real examples of computer experiments are given in Section

5. Section 6 concludes the paper.
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1.1. Gaussian process models for computer experiments

Consider a computer experiment that has n inputs x ∈ Rd and produces

output y(x). To analyze the experiment, y(x) is assumed to be a realization

from a stochastic process

Y (x) = µ(x) + Z(x), (1.1)

where the mean function is defined as µ(x) = xTβ, and Z(x) is a stationary

Gaussian process with mean zero and covariance function σ2ψ. The covariance

function is defined as cov{Y (x + h), Y (x)} = σ2ψ(h;θ), where θ is a vector

of correlation parameters for the correlation function ψ(h;θ), and ψ(h;θ) is a

positive semidefinite function with ψ(0;θ) = 1 and ψ(h;θ) = ψ(−h;θ). Note

that we assume the variables in the mean function are known, such a model is

also known as universal kriging. However, the proposed framework is not limited

to this assumption. It can be extended to incorporate various variable selection

methods for GP models (Li and Sudjianto (2005)).

Suppose n realizations are observed and denoted by

Dn = {
(
xt1 , y(xt1)

)
, . . . ,

(
xtn , y(xtn)

)
} = {(x1, y1), . . . , (xn, yn)}.

Let yn = (y1, . . . , yn)T , Xn = (x1, . . . ,xn)T , and φ = (θT ,βT , σ2)T be vectors of

the parameters, and let Θ be the parameter space. Based on (1.1), the likelihood

function can be written as

f(yn,Xn;φ) =
|Rn(θ)|−1/2

(2πσ2)n/2
exp

{
− 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)

}
,

where Rn(θ) = [ψ(y(xi), y(xj);θ), i, j = 1, . . . , n] is an n× n correlation matrix.

Thus, the log-likehood function, ignoring a constant, is

`(Xn,yn,φ) = − 1

2σ2
(yn −Xnβ)TR−1

n (θ)(yn −Xnβ)

−1

2
log |Rn(θ)| − n

2
log(σ2).

Here, the parameters β, θ, and σ are unknown. They are estimated using

likelihood-based methods such as the maximum likelihood or restricted maxi-

mum likelihood (REML) (Irvine, Gitelman and Hoeting (2007)). Here, we focus

on maximum likelihood estimators (MLEs); the results can be extended to the

REML.
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For a GP model, the MLEs can be obtained by

β̂n = (XT
nR

−1
n (θ)Xn)−1XT

nR
−1
n (θ)yn, (1.2)

σ̂2
n =

(yn −Xnβ̂n)TR−1
n (θ)(yn −Xnβ̂n)

n
, (1.3)

and

θ̂n = argmin
θ
{n log(σ̂2

n) + log |Rn(θ)|}, (1.4)

where |Rn(θ)| is the determinant of the matrix Rn(θ).

Based on the MLEs, we are interested in predicting yn+1 at an untried new

input xn+1 and quantifying the uncertainty. To achieve this, the conventional

plug-in method predicts yn+1 using the distribution g(xn+1 | Xn,Yn, φ̂n), which

is normally distributed with mean

µ(xn+1 |Xn,yn, φ̂n) = xT
n+1β̂n + γn(θ̂n)TR−1

n (θ̂n)(yn −Xnβ̂n) (1.5)

and variance

σ2(xn+1 |Xn,yn, φ̂n) = σ̂2
n{1− γn(θ̂n)TR−1

n (θ̂n)γn(θ̂n)}, (1.6)

where γn(θ̂n) is the correlation between a new observation and the existing data;

that is, γn(θ̂n) =
[
ψ(xi − xn+1; θ̂n), i = 1, . . . , n

]
.

Such a predictor is often computationally infeasible for massive data because

it requires manipulations of an n × n correlation matrix Rn(θ̂n), such as the

calculations of R−1
n (θ) and |Rn(θ)|, which are computationally intensive and often

intractable owing to numerical issues. This is particularly difficult for massive

data (i.e., large n) collected on nonregular grids, such as the space-filling designs

commonly used in computer experiments, because Kronecker product techniques

cannot be used to simplify the computation (Rougier (2008), Santner, Williams

and Notz (2003)). Alternatives, such as Bayesian methods, suffer from the same

difficulty. Furthermore, the resulting plug-in predictors tend to underestimate

the uncertainty, because the variance in (1.6) is obtained by substituting the true

parameters by their estimators.

1.2. LHD-based block subsampling

The main way of achieving an efficient computational reduction in GP esti-

mation and prediction is to incorporate a new version of bootstrap subsampling

called LHD-based block subsampling. The idea and some empirical performance

was first discussed by Liu and Hung (2015). The asymptotic properties for es-
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timation and variable selection using LHD-based block subsampling are studied

in Zhao, Amemiya and Hung (2018). Although the empirical results for this

approach in different applications have shown promising performance (Liu and

Hung (2015), Sun et al. (2019)), there is a lack of a systematic framework in

which to construct the predictive distributions, and the corresponding theoreti-

cal justifications are not available in the literature.

The idea of bootstrap subsampling is attractive for achieving computational

reductions, but direct applications with random subsamples are not efficient in

GP estimation and prediction for two reasons. First, it is known in the experi-

mental design literature that the estimation efficiency of simple random sampling

can be improved by certain stratification, such as LHDs (McKay, Beckman and

Conover (1979)). Second, it is shown by Zhu and Stein (2006) that including

clusters of points is important for capturing the local behavior of the process,

especially when the parameters are unknown in a GP.

LHD-based block subsampling has the following advantages. First, because

of the one-dimensional balance property inherited from LHDs, the subsamples

can spread out uniformly over the complete data and, therefore, the resulting

subsamples are more representative. Second, estimations and predictions calcu-

lated from LHD-based subsamples are expected to outperform those from simple

random samples because of the well-developed understanding of variance reduc-

tion in LHD compared with that in simple random sampling (McKay, Beckman

and Conover (1979)). Third, the clusters of points within the blocks capture the

local behavior of the process, and therefore improves the estimation accuracy for

correlation parameters, which is essential for GP prediction.

LHD-based subsampling follows three steps.

Step 1: Denote the d-dimensional input space by Γ ∈ [0, l]d. Divide each di-

mension into m equally spaced intervals so that Γ consists of md disjoint

hypercubes/blocks. Define each block by mapping i to a d-dimensional

hypercube

Bn(i) = {x ∈ Rd : bij ≤ xj ≤ b(ij + 1) and j = 1, . . . , d},

where i = (i1, . . . , id), for ij ∈ (0, . . . ,m−1), represents the index of each hy-

percube/block, and b = l/m is the edge length of the hypercube. Let |Bn(i)|
be the number of observations in the ith block. To simplify the notation

in the proof, we assume the data points are equally distributed over the

blocks and |Bn(i)| = n/md. Theoretically, this assumption can be relaxed

to situations where the number of observations in each block is in the same
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order, that is, |Bn(i∗i )| = O(n/md), and the asymptotic properties developed

in Section 3 remain valid. In practice, based on empirical experience, this

procedure provides an efficient representation of the original data, as long

as each bootstrap subsample does not contain empty hypercubes/blocks.

Step 2: Select m hypercubes according to a randomly generated m-run LHD,

in which each column of the design matrix is a random permutation of

{0, . . . ,m−1}. Denote the design points by d-dimensional vectors i∗1, . . . , i
∗
m

and the corresponding selected blocks by Bn(i∗1), . . . ,Bn(i∗m). The boot-

strapped subsamples, denoted by y∗1(x∗
1), . . . , y∗N (x∗

N ), are the observations

in the selected blocks, where N =
∑m

i=1 |Bn(i∗i )|. Based on the subsamples,

the MLEs φ̂∗
N can be obtained from (1.2)–(1.4).

Step 3: Repeat the second step U times to obtain the bootstrapped MLEs

φ̂∗
N(1), . . . , φ̂

∗
N(U). Based on these estimators, the bootstrap predictive dis-

tributions can be constructed using the methods described in Section 2.3.

To illustrate the subsampling idea, we consider a simple example of a six-

run two-dimensional LHD on the first panel of Figure 1 in the Supplementary

Material. The design points are denoted by i∗1 = (0, 4), i∗2 = (1, 0), i∗3 = (2, 2),

i∗4 = (3, 5), i∗5 = (4, 1), and i∗6 = (5, 3). On the second panel, consider Γ ∈ [0, 24]2

with d = 2 and l = 24. The circles represent the settings in which computer

experiments are performed, and the total sample size is n = 216. According to

the LHD on the left, we have m = 6, b = 4, and |Bn(i)| = 6. The corresponding

LHD-based blocks are the six gray boxes in the right panel, and the red dots are

the resulting subsamples with size N = 36.

Note that applying LHD-based block subsampling reduces the complexity

from O(n3) to O(n3/m3(d−1)), which is particularly useful for high-dimensional

problems when d is large. This method also allows parallel computing for large

data sets. Note too that this subsampling plan is flexible and can be modified

to select subsamples based on a subset of variables, instead of all variables. To

do so, we randomly select a subset of variables with dimension d̄, where d̄ < d,

and select subsamples only according to the d̄ variables. This is typically useful

when d is large, because the size for each subsample is n/md−1, which can be too

small to be representative; however, this increases to n/md̄−1 if only a subset of

the variables are implemented. The proposed procedure can also be extended to

regions with irregular shapes by replacing the LHD in Step 2 with other space-

filling designs constructed for nonrectangular regions, such as Draguljić, Dean

and Santner (2012) and Hung, Qian and Wu (2012).
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1.3. Two construction methods for predictive distribution

To construct a predictive distribution based on the LHD-based subsamples,

we developed two bootstrap procedures. One is called the direct density predic-

tion method, and the other is called the normal approximation method. Both

procedures use the LHD-based subsamples to construct predictive distributions;

therefore, compared with using the full sample, the computational complexity is

reduced. The difference between these two methods is how the normal assump-

tion is imposed. The direct density method imposes the normal assumption on

each bootstrap iteration, which leads to the final predictive distribution following

normal mixture. On the other hand, the normal approximation method assumes

that the final predictive distribution is normal and the mean and variance are

estimated using the LHD-based subsamples. The mathematical definitions of the

two methods are given as follows.

Definition 1 (Direct density prediction). Given the realization {Xn,yn}, let

{X∗
N ,y

∗
N} be a bootstrap sample with empirical distribution P ∗, and let φ̂∗

N be

the maximizer of the log-likelihood `(X∗
N ,y

∗
N ,φ). Then, a bootstrap predictive

distribution is defined by

g∗(xn+1 |Xn,yn) =

∫
g(xn+1 |X∗

N ,y
∗
N , φ̂

∗
N )dP ∗(X∗

N ,y
∗
N |Xn,yn), (1.7)

where g(·) is the probability density function of the normal distribution with

mean µ(xn+1 |Xn,yn, φ̂n) and variance σ2(xn+1 |Xn,yn, φ̂n).

Based on the LHD-based subsamples, a Monte Carlo estimate of (1.7) can

be obtained by

g̃∗(xn+1 |Xn,yn) = U−1
U∑

u=1

g(xn+1 |X∗
N(u),Y

∗
N(u), φ̂

∗
N(u)),

where φ̂∗N(u), for u = 1, . . . , U , are the MLEs obtained from each subsample.

The resulting g̃∗(xn+1 | Xn,yn) follows a mixture distribution. When U → ∞,

g̃∗(xn+1 |Xn,yn) converges to g∗(xn+1 |Xn,yn).

The conventional predictive distribution discussed in Section 2.1 is normal.

Therefore, a reasonable alternative is to assume a normally distributed predictive

distribution with mean and variance estimated as follows.

Definition 2 (Normal approximation). The predictive distribution is normal

with mean
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µ∗(xn+1 |Xn,yn) =

∫
µ(xn+1 |X∗

N ,y
∗
N , φ̂

∗
N )dP ∗(X∗

N ,y
∗
N |Xn,yn) (1.8)

and variance

σ2∗(xn+1 |Xn,yn) =

∫
σ2(xn+1 |X∗

N ,y
∗
N , φ̂

∗
N )dP ∗(X∗

N ,y
∗
N |Xn,yn). (1.9)

Based on the LHD-based subsamples, the Monte Carlo estimates of (1.8) and

(1.9) can be obtained by:

µ̃∗(xn+1 |Xn,yn) = U−1
U∑

u=1

µ(xn+1 |X∗
N(u),y

∗
N(u), φ̂

∗
N(u))

and

σ̃2∗(xn+1 |Xn,yn) = U−1
U∑

u=1

σ2(xn+1 |X∗
N(u),y

∗
N(u), φ̂

∗
N(u)),

respectively. When U → ∞, µ̃∗(xn+1 | Xn,yn) converges to µ∗(xn+1 | Xn,yn)

and σ̃2∗(xn+1 |Xn,yn) converges to σ2∗(xn+1 |Xn,yn).

2. Theoretical Properties and Comparisons

In this section, we derive the theoretical properties, including the unbiased-

ness and the variance of the proposed predictors. The results discussed here focus

only on GP prediction, assuming that the estimator φ̂∗
N converges to the original

MLE φ̂n in probability, as shown by Zhao, Amemiya and Hung (2018). Note that

there are two distinct asymptotics, namely, the fixed-domain (Stein (1999)) and

the increasing domain (Cressie (1993), Mardia and Marshall (1984)) asymptotics.

However, theoretical results under fixed-domain asymptotics are limited in the

literature, owing to its generally complex correlation structure (Ying (1993)). It

is shown by Zhang and Zimmerman (2005) that, given their quite different be-

havior under the two frameworks in a general setting, their approximation quality

performs about equally well for the exponential correlation function under certain

assumptions. Therefore, we focus here on the increasing domain asymptotics as

a fundamental step in providing insights about the bootstrap estimators.

We first construct an asymptotic expansion of the predictive distributions,

which is a fundamental tool for the theoretical development of the proposed

method. Define the information matrix of the bootstrapped likelihood function

evaluated at φ̂n by

I = E∗{−∇2
φ`(X

∗
N ,y

∗
N , φ̂n)},
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where Isi is the entry in the sth row and ith column of I−1. The third-order

derivative of the likelihood function evaluated at φ̂n is then defined by

Kijk =
1

2
E∗
{
∂3`(X∗

N ,y
∗
N , φ̂n)

∂φi∂φj∂φk

}
.

The cross products between the first- and second-order derivatives of the predic-

tive function and the second- and third-order derivatives of the likelihood function

evaluated at φ̂n are

Lj
s,i(h) = E∗

{
∂h(xn+1 |X∗

N ,y
∗
N , φ̂n)

∂φs

∂`(X∗
N ,y

∗
N , φ̂n)

∂φi

∂`(X∗
N ,y

∗
N , φ̂n)

∂φj

}
,

where h1(xn+1 | . . .) = I−1h(xn+1 | . . .) and

Jrs,ij(h) = E∗
{
∂2h(xn+1 |X∗

N ,y
∗
N , φ̂n)

∂φrφs

∂`(X∗
N ,y

∗
N , φ̂n)

∂φi

∂`(X∗
N ,y

∗
N , φ̂n)

∂φj

}
,

and

Ms,j,ik(h) =
1

2
E∗
{
∂h(xn+1 |X∗

N ,y
∗
N , φ̂n)

∂φs

∂`(X∗
N ,y

∗
N , φ̂n)

∂φj

∂2`(X∗
N ,y

∗
N , φ̂n)

∂φi∂φk

}
.

The following theorem provides a third-order asymptotic expansion of the

proposed predictive function. To facilitate the presentation, we use Einstein’s

summation convention hereafter: if an index appears twice in any one term, once

as an upper and once as a lower index, summation over the index is applied.

Theorem 1. Assume I is asymptotically nonsingular and the limit of I−1/2∇2
φ`(

X∗
N ,y

∗
N , φ̂n)I−1/2 is a unit matrix when N →∞. Then, the LHD-based bootstrap

prediction function h∗(xn+1 | Xn,Yn) has the following third-order asymptotic

expansion:

h∗(xn+1 |Xn,Yn) = E∗h(xn+1 |X∗
N ,y

∗
N , φ̂n) + IsiIjkMs,j,ik

+
1

2
IijKirsL

j
r,s(h) + IrjIsiJrs,ij(h) +Op∗(N−2).

Owing to the correlation between xn+1 and Xn, the first term E∗h(xn+1 |
X∗

N ,y
∗
N , φ̂n) is not always equal to h(xn+1 | Xn,yn, φ̂n). Assuming data inde-

pendence, an important special case of Theorem 1, which agrees with the result

in Fushiki, Komaki and Aihara (2005) (Theorem 1), is the following.

Corollary 1. If ψ(x1,x2) = 0 if x1 6= x2, the LHD-based bootstrap prediction

function h∗(xn+1 |Xn,Yn) = h∗(xn+1 | φ̂n) has the following third-order asymp-
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totic expansion:

h∗(xn+1)=h(xn+1 | φ̂n)+IsiIjkMs,j,ik+
1

2
IijKirsL

j
r,s+IrjIsiJrs,ij+Op∗(N−2).

Based on the asymptotic expansion in Theorem 1, we show that the two

new predictors are unbiased and their variances can be rewritten as in the next

theorem. Denote the predictive mean and variance of the direct density method

by µ∗1(·) and σ2∗
1 (·), respectively. Similarly, denote these by µ∗2(·) and σ2∗

2 (·),
respectively, for the normal approximation method. Let

∑
i be the summation

of all md blocks and
∑
π be the summation of independent permutations over

{0, 1, . . . ,m− 1}.

Theorem 2. Under the regularity conditions given in the Supplementary Mate-

rial, we have the following:

i. The proposed predictors, µ∗1 and µ∗2, are unbiased; that is,

E{µ(xn+1 |Xn,yn, φ̂n)− µ∗1} = E{µ(xn+1 |Xn,yn, φ̂n)− µ∗2} → 0

ii. The predictive variances have the following relationship:

P (σ2∗
1 ≥ σ2∗

2 )→ 1,

σ2∗
1 = σ2∗

2 +
1

(m!)d−1

∑
π

[µ(xn+1|X∗
N ,y

∗
N , φ̂n)

−µ(xn+1|Xn,yn, φ̂n)]2 + op(1),

σ2∗
2 = σ̂2

n

{
1− 1

md−1

∑
i

γi(θ̂n)TR−1
i,i γi(θ̂n)

}
+ op(1).

The next theorem compares of the predictive variance of the plug-in predic-

tive distribution defined in (1.6) with those of the two new predictors.

Theorem 3. Under the regularity assumptions given in the Supplementary Ma-

terial, we have

P (σ2∗
1 ≥ σ2(xn+1 |Xn,yn, φ̂n))→ 1,

P (σ1∗
2 ≥ σ2(xn+1 |Xn,yn, φ̂n))→ 1.

It is known that the regular plug-in predictor interpolates the observed data.

The next theorem shows that although this interpolation property cannot be

guaranteed by the proposed predictors, the predictive variance on an existing

data point is smaller than the variance on an untried point. For the direct
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density approach, denote the variance within the sampled data by σ2∗
1

(I)
, and

the variance for the out-of-sample data by σ2∗
1

(O)
. Similarly, we have σ2∗

2
(I)

and

σ2∗
2

(O)
, respectively, for the normal approximation method.

Theorem 4. Under the regularity assumptions given in the Supplementary Ma-

terial, we have:

(i). The in-sample predictive variances are

σ2∗
1

(I)
=

(
1− 1

md−1

)
1

(m!)d−1

∑
π

[µ(xn+1|X∗
N ,y

∗
N , φ̂n)

−µ(xn+1|Xn,yn, φ̂n)]2+σ2∗
2

(I)
+ op(1),

σ2∗
2

(I)
=

(
1− 1

md−1

)
σ̂2
n[1− 1

md−1

∑
i

γn,i(θ̂n)TR−1
i,i γn,i(θ̂n)] + op(1).

(ii). Comparison of the in-sample and out-of-sample predictive variance:

σ2∗
1

(O)− σ2∗
1

(I)
= σ2∗

2
(O) − σ2∗

2
(I)

+ op(1) + (mm!)1−d∑
π

[µ(xn+1|X∗
N ,y

∗
N , φ̂n)− µ(xn+1|Xn,yn, φ̂n)]2,

σ2∗
2

(O)− σ2∗
2

(I)
=

σ̂2
n

md−1

[
1− 1

md−1

∑
i

γi(θ̂n)TR−1
i,i γi(θ̂n)

]
+ op(1)

i.e.

P ( σ2∗
1

(O) ≥ σ2∗
1

(I)
)→ 1, P ( σ2∗

2
(O) ≥ σ2∗

2
(I)

)→ 1.

For Theorem 4, although the proposed predictors do not have the interpo-

lation property, their in-sample predictive variances are, in general, smaller than

their out-of-sample variances.

3. Simulation Studies

The objective of this section is to demonstrate the finite-sample performance

of the proposed method. This performance is compared with that of some existing

methods, including the regular GP model, plug-in approach, and conventional

bootstrap prediction. All simulations are conducted on a 2.4 GHz Intel Core i5,

8GB 1600 MHz DDR3 workstation under Python 3.5.2 running on MAC OS X.
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3.1. Comparisons with regular MLE

The finite-sample performance of the proposed method is compared with

that of the regular MLE using full data, denoted by “ALLData.” Three settings

of LHD-based block bootstrap are employed: m = 3, 4, and 5. The outputs

are simulated from a GP with mean function coefficients β = (0, 2,−2, 1) and

correlation function

ψ(x1,x2) = exp

(
−

3∑
i=1

|x1i − x2i|
θi

)
,

where θ1 = θ2 = θ3 = 0.4 and σ = 1. Two sample sizes, n = 2,000 and 4,000, are

considered, and the design points are generated from a regular grid over the region

[0, 1]3. For each sample size, 50 training samples and 100 testing samples are

generated. The performance of the parameter estimation is summarized in Table

1 in Appendix E of the Supplementary Material based on 100 replicates with 10

LHD-based block bootstrap samples implemented for the proposed method. In

addition, the mean squared prediction errors (MSPEs) for the testing data sets

and the average computing time are both reported.

The results demonstrate that the estimated parameters using the LHD-based

block bootstrap are, in general, consistent with those obtained using the com-

plete data. When n = 2,000, the standard deviations increase with the number

of blocks m, especially for the correlation parameters. This is not surprising,

because the sample sizes are smaller for larger m and “ALLData” implies the

special case of “m=1.” The impact of m on the estimation variance appears to

be smaller when the sample size increases to n = 4,000. In terms of computing

time, the LHD-based block bootstrap is much faster than the conventional GP

modeling, especially for large n.

Note that the proposed method is particularly useful for data collected from

irregular grids. The reason for generating the simulations from a regular grid is

that the MLE calculation using full data, under this setting, can be simplified

further using Kronecker product techniques, and some matrix singularity can be

avoided (Rougier (2008)). However, these techniques are not applicable to data

sets collected from an irregular grid. Therefore, the computational advantage of

the proposed method is expected to be even more significant for data collected

from irregular grids.
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3.2. Comparisons of prediction variance

We compare the proposed predictive distributions with existing methods by

looking at their predictive variance. Two existing methods, the regular bootstrap

and the plug-in predictive distribution, are considered. The regular bootstrap,

although computationally expensive, can serve as a benchmark for capturing the

true prediction uncertainty. Simulations are generated from the same model given

in Section 4.1. Owing to computational constraints in the regular bootstrap, we

use relatively smaller sample sizes, n = 1,000 and n = 2,000, for the comparison.

Both the LHD-based subsampling and the regular bootstrap are performed using

the two construction approaches, direct density and normal approximation. The

predictive variance is evaluated based on 100 untried settings with 50 replications.

The performance on predictive variance is summarized in Table 2 in Ap-

pendix E of the Supplementary Material. LHD-based subsampling is denoted by

“LHD.” In general, using LHD subsampling, the predictive variance constructed

using direct density is larger than that using the normal approximation, which

is consistent with the theoretical results in Theorem 2. It is also not surprising

to see that the predictive variances obtained from LHD subsampling are larger

than the benchmark results from the regular bootstrap, and the differences be-

come smaller when the sample size increases. On the other hand, the plug-in

approach offers the smallest prediction variances for the two sample sizes. The

proposed methods provide a significant computational reduction compared with

the regular bootstrap approach and the required computing time is even smaller

than the plug-in approach, especially when sample sizes increase. This result

suggests that, by using LHD-based subsampling, the proposed predictive distri-

butions offer computationally efficient analogues of the conventional bootstrap

methods.

3.3. Comparisons of predictive covering by the borehole function

This numerical study compares the predictive coverage probabilities obtained

by the two proposed construction methods for predictive distributions with that

of the plug-in approach. Data are generated from the borehole function, which

is a benchmark example commonly used in the computer experiment literature

(Morris, Mitchell and Ylvisaker (1993)). The LHD block procedure is imple-

mented with m = 2 and U = 10. The comparisons are performed based on 2,000

training data and 2,000 testing data with 100 replications. The empirical per-

formance of the predictive coverage for the 95% and 90% confidence intervals is

illustrated in Table 1. In general, the two proposed construction methods pro-
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Table 1. Comparisons of predictive coverage probabilities.

95%CI 90%CI

LHD (Direct Density) 99.88% 99.55%

LHD (Normal Approximation) 97.12% 94.59%

Plug-in 78.97% 70.97%

vide empirical coverage probabilities closer to the nominal levels than the plug-in

approach does. The plug-in approach tends to have a much smaller empirical cov-

erage, which may be due to the underestimation of the prediction uncertainty in

the construction of the confidence intervals. The confidence intervals constructed

using the direct density approach appear to produce empirical coverage probabil-

ities larger than those of the normal approximation approach. This is expected,

because the direct density approach does not rely on the normal assumption,

and therefore has a larger confidence interval, which leads to a larger empirical

coverage than that of the normal approximation.

3.4. Comparisons of prediction accuracy

In this section, we compare the prediction performance of the proposed

method with a computationally efficient approximation of a GP using local GP

models (Gramacy and Apley (2015)). The data are generated from a similar GP

model to that in Section 4.1, with n = 1,500 and a slightly larger dimension

p = 4. The mean function coefficients are set to (0, 4,-4,-1,-3), and the expo-

nential covariance function is assumed with parameters θ = (0.3, 1.6, 3, 2) and

σ =1. The proposed method is implemented using m = 3 and U = 20. The

local GP is implemented using the laGP package in R, with the initial number of

nearest neighbors set to six, the total size of the local designs set to 100, and the

default settings in prediction minimizing the predictive variance. The prediction

performance is evaluated based on untried testing data with sample size 1,500.

Based on 100 replicates, the prediction performance is demonstrated by box

plots in Figure 1, based on two measurements, namely, the RMSPE and the Ma-

halanobis distance to the underlying truth Bastos and O’Hagan (2009). Note that

the two proposed approaches produce the same predictive mean, and thus have

the same RMSPE. However, they have different prediction variance. Therefore,

the corresponding Mahalanobis distances are not necessarily the same. According

to Figure 1, the two proposed methods outperform laGP by producing smaller

RMSPEs and smaller Mahalanobis distances to the true responses.
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Figure 1. Prediction comparisons with laGP. The left panel is based on RMSPEs, and
the right panel is based on the Mahalanobis distances.

4. Real Examples

4.1. A data center thermal management example

A data center is a computing infrastructure facility that houses large amounts

of information technology equipment used to process, store, and transmit digital

information. Data center facilities constantly generate large amounts of heat in

the room, which must be maintained at an acceptable temperature for reliable

operation of the equipment. A significant fraction of the total power consumption

in a data center is for heat removal; therefore, determining the most efficient

cooling mechanism has become a major challenge. To solve the problem, a crucial

step is to model the thermal distribution at different experimental settings (Hung,

Qian and Wu (2012)).

For a data center thermal study, physical experiments are not always feasible,

because some settings are highly dangerous and expensive. Therefore, simulations

based on computational fluid dynamics (CFD) are widely used. In this example,

CFD simulations are conducted at the IBM T. J. Watson Research Center based

on a real data center layout. Detailed discussions about the CFD simulations

can be found in (Lopez and Hamann (2011)). The first three columns in Table 3

in Appendix E of the Supplementary Material list nine variables and their levels

in the CFD simulations, including four computer room air conditioning (CRAC)

units with different flow rates (x1, . . . , x4), the overall room temperature setting

(x5), the perforated floor tiles with different percentages of open areas (x6), and

the spatial location in the data center (x7 to x9). There are 27,000 temperatures

simulated from the CFD simulator, obtained from an irregular grid over the nine-

dimensional experimental space.

It is computationally intensive to build a GP model based on the complete
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CFD data. Therefore, we implement the proposed LHD-based block bootstrap

approach with m = 3 for variables x6, x7, and x9, which are the top three fac-

tors with the highest levels. The fitted GP model is summarized in the last two

columns of Table 3 in Appendix E of the Supplementary Material, where β̂ rep-

resents the estimated mean function coefficients, and θ̂ represents the correlation

parameters estimated based on the exponential covariance function. From the fit-

ted model, it appears that the height (x9) in a data center has a relatively larger

effect, particularly on the mean function. Furthermore, we find that the tem-

peratures increase dramatically with height, based on the predicted heat map at

three different heights (Figure 2 in the Supplementary Material) with an untried

setting (i.e., CRAC unit 1 flow rate 6,500, unit 2 flow rate 6,500, unit 3 flow rate

2,750, unit 4 flow rate 2,750, room temperature 70 (F), and tile percentage 59).

These findings can be validated by a general understanding of thermodynamics.

4.2. Ice sheet thickness modeling

The second application examines ice sheet thickness using the community ice

sheet model (CISM; Rutt et al. (2009)). The main objective of this model is to

understand ice sheet behavior and its impact on climate. The CISM mimics the

effects of past climate on the current ice sheet state by considering a model of

an idealized ice sheet over a rectangular region that is flowing out to sea on one

side, while accumulating ice from prescribed precipitation over a period of 1,000

years. There are two control variables in the CISM, namely, a constant term in

the Glen–Nye flow law (Greve and Blatter (2009)) controlling the deformation of

the ice sheet, denoted by x1, and the heat conductivity in the ice sheet, denoted

by x2. The simulated thickness is produced on a 27×32 rectangular lattice of

the spatial locations, denoted by x3 and x4. We focus on the central part of the

icebergs by taking the middle 13×16 rectangular lattice in this analysis. A set

of simulations with 20 combinations of the two control variables is considered;

therefore, the total sample size is n = 4,160. The detailed variable settings can

be found in Higdon, Mitra and Johnson (2013).

The study compares the performance of the proposed method with that of

a conventional GP using full data in real applications. A four-dimensional GP is

considered for the analysis of the simulation results from the CISM. The estima-

tion and prediction performance is evaluated based on a 10-fold cross-validation.

The LHD-based subsamples are obtained using the setting (m = 3, U = 10),

and each LHD-based subsample has size N = 139. The results are summarized

in Table 2, with the conventional GP denoted by “Alldata” and the proposed

method denoted by “LHD.” RMSPE is the root mean squared prediction error
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Table 2. LHD bootstrap analysis of CISM data.

x1 x2 x3 x4 RMSPE Time (Sec)

Alldata
β̂ -0.80(4.0× 10−3) 0.31(6.0× 10−3) 7.3× 10−5(6.0× 10−4) 0.11(4.6× 10−4)

0.01 10,097.39
θ̂ 7.26(11.00) 3.41(8.15) 0.03 (9.5× 10−3) 0.65(0.21)

LHD
β̂ -0.84(0.08) 0.42(0.05) -1.2× 10−4(2.2× 10−3) 0.08(0.01)

0.07 66.36
θ̂ 23.71(19.56) 3.82(4.00) 3.4× 10−3(1.1× 10−3) 0.21(0.58)

calculated from the 10-fold cross-validation.

From the results in Table 2, it appears that even with only 3.7%(≈ 1/27)

of the data in each subsample, the LHD-based approach provides a reasonable

performance in terms of parameter estimation and prediction. The computational

time is reduced by more than 99.3% using the proposed method. In general, the

estimation for x3 seems to be more challenging than for the other variables, owing

to its relatively smaller effect. One example of the iceberg thickness prediction is

demonstrated in Figure 3 of the Supplementary Material over the entire spatial

location with the parameter setting x1 = 2.40 and x2 = 6.53 × 104. The left

panel is the original simulation outputs from the CISM. The middle panel is the

plug-in prediction using the full data. The right panel is the prediction obtained

from the LHD-based approach. It shows that, given some roughness owing to the

small subsample size, the prediction using the LHD-based approach efficiently

captures the underlying structure.

5. Conclusion

We present an LHD-based block subsampling procedure with two prediction

methods to tackle the computational difficulties and uncertainty quantification

issues in GP prediction. The new procedure borrows the strength of space-filling

designs to provide an efficient subsampling plan and a reduction in computational

complexity. Theoretical properties of the proposed predictive distributions are

discussed. The proposed procedure is applied to two complex computer experi-

ments with high-dimensional inputs and massive outputs.

The following areas offer potential for future work. First, extensions of the

proposed procedure to optimal designs with better space-filling properties are in-

tuitively appealing. For example, it is known that randomly generated LHDs can

contain some structure. To further enhance the desirable space-filling properties,

various modifications are proposed. Numerical comparisons and theoretical de-

velopments of the generalization to different types of optimal space-filling designs

should be studied carefully. Second, an interesting and important issue with the
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LHD-based block bootstrap is to determine the optimal block size. This topic

has been discussed for conventional block bootstrap methods (Hall, Horowitz and

Jing (1995), Lahiri (1999), Nordman, Lahiri and Fridley (2007)). However, their

solutions are not directly applicable to GP models. We plan to study the optimal

block size for the propose procedure based on some new criteria defined for a GP.

Supplementary Material

The online Supplementary Material contains the proofs of Theorem 1 to

Theorem 4, as well as the figures and tables.

Acknowledgments

The authors gratefully acknowledge the constructive advice from the asso-

ciate editor and the referee. This research was supported by NSF grants.

References

Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process

models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology) 70, 825–848.

Bastos, L. and O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics

51, 425-438.

Castrillon, J. E., Genton, M. G. and Yokota, R. (2016). Multi-level restricted maximum like-

lihood covariance estimation and kriging for large non-gridded spatial datasets. Spatial

Statistics 18, 105–124.

Chang, W., Haran, M., Olson, R. and Keller, K. (2014). Fast dimension-reduced climate model

calibration and the effect of data aggregation. The Annals of Applied Statistics 8, 649–673.

Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 209–226.

DiCiccio, T. J. and Efron, B. (1992). More accurate confidence intervals in exponential families.

Biometrika 79, 231–245.

DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11,

189–228.
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