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Abstract: This study examines the computation of the high-dimensional zero-norm

penalized quantile regression estimator, defined as the global minimizer of the zero-

norm penalized check loss function. To seek a desirable approximation to the esti-

mator, we reformulate this NP-hard problem as an equivalent augmented Lipschitz

optimization problem. Then, we exploit its coupled structure to propose a multi-

stage convex relaxation approach (MSCRA PPA), each step of which solves inex-

actly a weighted `1-regularized check loss minimization problem using a proximal

dual semismooth Newton method. Under a restricted strong convexity condition,

we provide a theoretical guarantee for the MSCRA PPA by establishing the er-

ror bound of each iterate to the true estimator and the rate of linear convergence

in a statistical sense. Numerical comparisons using synthetic and real data show

that the MSCRA PPA exhibits comparable or better estimation performance and

requires much less CPU time.

Key words and phrases: High-dimension, proximal dual semismooth Newton method,

variable selection, zero-norm penalized quantile regression,

1. Introduction

Sparse penalized regression has become a popular approach for high-dimensi-

onal data analysis. In the past two decades, many classes of such regressions

have been developed by imposing a suitable penalty term on the least squares

loss. These include the bridge penalty of Frank and Friedman (1993), Lasso of

Tibshirani (1996), smoothly clipped absolute deviations (SCAD) penalty of Fan

and Li (2001), elastic net of Zou and Hastie (2005), and adaptive Lasso of Zou

(2006), among others; see the survey papers by Bickel et al. (2006) and Fan and

Lv (2010) for further information. These penalties, as a convex surrogate (e.g.,

the `1-norm) or a nonconvex approximation (e.g., the bridge penalty) to the zero-

norm, essentially try to capture the performance of the zero-norm, first used in

the best subset selection by Breiman (1996). The sparse least squares regres-
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sion approach is useful, but it focuses on the central tendency of the conditional

distribution. However, it is known that a particular covariate may not have a sig-

nificant influence on the mean value of the response, but may have a strong effect

on the upper quantile of the conditional distribution owing to the heterogeneity

of the data. It is likely that a covariate has different effects at different segments

of the conditional distribution. As illustrated by Koenker and Bassett (1978), the

quantile regression (QR) outperforms the least squares regression significantly for

nonGaussian error distributions.

Inspired by this, many researchers have recently considered the QR intro-

duced by Koenker and Bassett (1978) for high-dimensional data analysis, owing

to its robustness to outliers and its ability to offer unique insights into the rela-

tion between the response variable and the covariates; see, for example, Wu and

Liu (2009), Belloni and Chernozhukov (2011), Wang, Wu and Li (2012), Wang

(2013), Fan, Fan and Barut (2014a) and Fan, Xue and Zou (2014b). Belloni and

Chernozhukov (2011) focused on the theory of the `1-penalized QR, showing that

this estimator is consistent at the near-oracle rate and providing the conditions

under which the selected model includes the true model. Wang (2013) studied

the `1-penalized least absolute derivation (LAD) regression, verifying that the

estimator has near-oracle performance with a high probability. And Fan, Fan

and Barut (2014a) studied the weighted `1-penalized QR and established the

model selection oracle property and the asymptotic normality for this estimator.

For nonconvex penalty-type QRs, Wu and Liu (2009), under mild conditions,

achieved the asymptotic oracle property of the SCAD and the adaptive-Lasso

penalized QRs. Furthermore, Wang, Wu and Li (2012) showed that with prob-

ability approaching one, the oracle estimator is a local optimal solution to the

SCAD or minimax concave penalty (MCP) penalized QRs of ultrahigh dimen-

sionality. Note that the above results are all established for the asymptotic case

n→∞.

In addition to the above theoretical works, some examine the computation

of (weighted) `1-penalized QR estimators. Compared with the (weighted) `1-

least-squares estimator, these requires more sophisticated algorithms, owing to

the piecewise linearity of the check loss function. Although the `1-penalized QR

model can be transformed into a linear program (LP) by introducing additional

variables, and one may use an interior point method (IPM) program, such as

SeDuMi (Sturm (1999)), to solve it, this is limited to the small- or medium-scale

case; see Figures 1–2 in Section 5. Inspired by this, Wu and Lange (2008) pro-

posed a greedy coordinate descent algorithm for the `1-penalized LAD regression,

Yi and Huang (2015) proposed a semismooth Newton coordinate descent algo-
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rithm for the elastic-net penalized QR, and Gu et al. (2018) recently developed

a semi-proximal alternating direction method of multipliers (sPADMM) and a

combined version of the ADMM and the coordinate descent method (which is

actually an inexact ADMM) to solve the weighted `1-penalized QR. In addition,

for nonconvex penalized QRs, Peng and Wang (2015) developed an iterative co-

ordinate descent algorithm and established the convergence of any subsequence

to a stationary point. Furthermore, Fan, Xue and Zou (2014b) provided a sys-

tematic study of folded concave penalized regressions, including the SCAD and

MCP penalized QRs as special cases, showing that with high probability, the

oracle estimator can be obtained within two iterations of the local linear approx-

imation (LLA) approach proposed by Zou and Li (2008). However, Peng and

Wang (2015) and Fan, Xue and Zou (2014b) did not establish the error bound of

the iterates to the true solution.

This study focuses on the computation of the high-dimensional zero-norm

penalized QR estimator, a global minimizer of the zero-norm regularized check

loss. To seek a high-quality approximation to this estimator, we reformulate

this NP-hard problem as a mathematical program with an equilibrium constraint

(MPEC). Then, we obtain an equivalent augmented Lipschitz optimization prob-

lem from the global exact penalty of the MPEC. This augmented problem not

only has a favorable coupled structure, but also implies an equivalent difference

of convex (DC) surrogate for the zero-norm regularized check loss minimization;

see Section 2. By solving the augmented Lipschitz problem in an alternating

way, in Section 3, we propose an MSCRA to compute a desirable surrogate for

the zero-norm penalized QR estimator. Similarly to the LLA method of Zou and

Li (2008), in each step, the MSCRA solves a weighted `1-regularized check loss

minimization, but the subproblems are allowed to be solved inexactly. Under a

mild restricted strong convexity condition, we provide its theoretical guarantee

in Section 4 by establishing the error bound of each iterate to the true estimator

and the rate of linear convergence in a statistical sense.

Motivated by the work of Tang et al. (2020), we also develop a proximal dual

semismooth Newton method (PDSN) in Section 5 to solve the subproblems in

the MSCRA. In contrast to the semismooth Newton method of Yi and Huang

(2015), this is a proximal point algorithm (PPA) in which the subproblems are

solved by applying the semismooth Newton method to their duals, rather than

to a smooth approximation of the elastic-net penalized check loss minimization

problem. Numerical comparisons are made using synthetic and real data for

the MSCRA PPA, MSCRA IPM, and MSCRA ADMM, which are MSCRA in

which the subproblems are solved using the PDSN, SeDuMi of Sturm (1999),
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and semi-proximal ADMM of Gu et al. (2018), respectively. We find that the

MSCRA IPM and MSCRA ADMM have very similar performance. In contrast,

the MSCRA PPA not only exhibits comparable estimation performance with the

two methods, but also requires only one-fifteenth of the CPU time required by

the MSCRA ADMM and MSCRA IPM.

Throughout this paper, I and e denote an identity matrix and a vector of

all ones, the dimensions of which are known from the context. For an x ∈ Rp,
write |x| := (|x1|, . . . , |xp|)T and sign(x) := (sign(x1), . . . , sign(xp))

T, and denote

by ‖x‖1, ‖x‖, and ‖x‖∞ the l1-norm, l2-norm, and l∞-norm of x, respectively.

For a matrix A ∈ Rn×p, ‖A‖, ‖A‖max, and ‖A‖1 respectively denote the spectral

norm, element-wise maximum norm, and maximum column sum norm of A. For

a set S, IS means the characteristic function on S; that is, IS(z) = 1 if z ∈ S,

otherwise IS(z) = 0. For given a, b ∈ Rp, with ai ≤ bi for i = 1, . . . , p, [a, b]

means the box set. For an extended real-valued function f : Rp → (−∞,+∞],

write dom f := {x ∈ Rp | f(x) <∞}, and denote Pγf and eγf for a given γ > 0

as the proximal mapping and the Moreau envelope of f , defined as Pγf(x) :=

argminz∈Rp

{
f(z) + (1/2γ)‖z − x‖2

}
and eγf(x) := minz∈Rp

{
f(z) + (1/2γ)‖z −

x‖2
}

, respectively. In the following, we write Pf for P1f . When f is convex,

Pγf : Rp → Rp is a Lipschitz mapping with modulus one, and eγf is a smooth

convex function with ∇eγf(x) = γ−1(x− Pγf(x)).

2. Zero-Norm Penalized Quantile Regression and Equivalent Differ-

ence of Convex Model

Quantile regression is a popular method for studying the influence of a set

of covariates on the conditional distribution of a response variable, and has been

widely used to handle heteroscedasticity; see Koenker and Bassett (1982) and

Wang, Wu and Li (2012). For a univariate response Y and a vector of covariates

X ∈ Rp, the conditional cumulative distribution function of Y is defined as

FY(t|x) := Pr(Y ≤ t | X = x), and the τth conditional quantile of Y is given

by QY(τ |x) := inf
{
t : FY(t|x) ≥ τ

}
. Let X = [x1x2 · · ·xn]T be an n × p design

matrix on X. Consider the linear quantile regression

y = Xβ∗ + ε, (2.1)

where y = (y1, . . . , yn)T ∈ Rn is the response vector, ε = (ε1, . . . , εn)T is the

noise vector, with components that are independently distributed and satisfy

Pr(εi ≤ 0|xi) = τ for some known constant τ ∈ (0, 1), and β∗ ∈ Rp is the true,

but unknown coefficient vector. This quantile regression model actually assumes
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that QY(τ |xi) = xTi β
∗, for i = 1, . . . , n. We are interested in the high-dimensional

case where p > n and the sparse model in the sense that only s∗(� p) components

of the unknown true β∗ are nonzero. For τ ∈(0, 1), let fτ : Rn → R be the check

loss function of (2.1); that is,

fτ (z) := n−1
n∑
i=1

θτ (zi), with θτ (u) := (τ − I{u≤0})u, (2.2)

which was first introduced by Koenker and Bassett (1978). To estimate the

unknown true β∗ in (2.1), we consider the zero-norm regularized problem

β̂(τ) ∈ argmin
β∈Rp

{
νfτ (y −Xβ) + ‖β‖0

}
, (2.3)

where ν > 0 is the regularization parameter, and ‖β‖0 denotes the zero-norm

of β (i.e., the number of nonzero entries of β). By the expression of fτ , fτ is

nonnegative and coercive (i.e., fτ (βk)→ +∞ whenever ‖βk‖ → ∞). By Lemma

3 in Appendix A, the estimator β̂(τ) is well defined. Because β̂(τ) depends on

τ , model (2.3) can be used to monitor different “locations” of the conditional

distribution. Then, the heteroscedasticity of the data, when existing, can be

inspected by solving (2.3) using different τ ∈ (0, 1). For simplicity, in the following

we use β̂ to replace β̂(τ), and for a given τ ∈ (0, 1), we write τ := min(τ, 1−τ)

and τ := max(τ, 1−τ).

Owing to the combination of the zero-norm, the computation of β̂ is NP-

hard. To design an algorithm for a high-quality approximation to β̂, we next

derive an equivalent augmented Lipschitz optimization problem from a primal-

dual viewpoint. To and to demonstrate that such a mechanism provides a unified

way to yield equivalent DC surrogates for the zero-norm regularized problem

(2.3), we introduce a family of proper lsc convex functions on R, denoted by L ,

satisfying the following conditions:

int(domφ) ⊇ [0, 1], t∗ := argmin
0≤t≤1

φ(t), φ(t∗) = 0, and φ(1) = 1. (2.4)

With a φ ∈L , clearly, the zero-norm ‖z‖0 is the optimal value function of

min
w∈Rp

{
p∑
i=1

φ(wi) s.t. 〈e− w, |z|〉 = 0, 0 ≤ w ≤ e

}
.

This characterization of the zero-norm shows that (2.3) is equivalent to
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min
β∈Rp,w∈Rp

{
νfτ (y −Xβ) +

p∑
i=1

φ(wi) s.t. 〈e− w, |β|〉 = 0, 0 ≤ w ≤ e

}
(2.5)

in the following sense: if β is globally optimal to (2.3), then (β, sign(|β|)) is a

global optimal solution of problem (2.5); and conversely, if (β,w) is a global

optimal solution of (2.5), then β is globally optimal to (2.3). Problem (2.5)

is a mathematical program with an equilibrium constraint e − w ≥ 0, |β| ≥ 0,

〈e − w, |β|〉 = 0 (abbreviated as MPEC). The equivalence between (2.3) and

(2.5) shows that the difficulty of model (2.3) arises from the hidden equilibrium

constraint. It is well known that the handling of nonconvex constraints is much

harder than that of nonconvex objective functions. Then, it is natural to consider

the penalized version of problem (2.5),

min
β∈Rp,w∈[0,e]

{
νfτ (y −Xβ) +

[
p∑
i=1

φ(wi) + ρ〈e− w, |β|〉

]}
, (2.6)

where ρ > 0 is the penalty parameter. Because β 7→ fτ (y −Xβ) is Lipschitz

continuous, the following conclusion holds by Section 3.2 of Liu, Bi and Pan

(2018).

Theorem 1. The problem (2.6) associated with each ρ > ρ := (φ′−(1)(1− t∗)τν
‖X‖)/(1− t0) has the same global optimal solution set as the MPEC (2.5) does,

where t0 is the minimum element in [t∗, 1) such that 1/(1− t∗) ∈ ∂φ(t0).

Theorem 1 states that problem (2.6) is a global exact penalty of (2.5) in the

sense that there is a threshold ρ > 0 such that the former, associated with every

ρ > ρ, has the same global optimal solution set as the latter does. Together

with the equivalence between (2.3) and (2.5), model (2.3) is equivalent to (2.6).

Note that the objective function of (2.6) is globally Lipschitz continuous over

its feasible set, and that its nonconvexity is the result of the coupled term 〈e−
w, |β|〉 rather than the combination. Thus, problem (2.6) provides an equivalent

augmented Lipschitz reformulation for (2.3). In fact, problem (2.6) associated

with every ρ > ρ implies an equivalent DC surrogate for (2.3). To illustrate this,

let ψ(t) = φ(t) if t ∈ [0, 1], and φ(t) = +∞ otherwise. Then, using the conjugate

ψ∗(s) := supt∈R{st− ψ(t)} of ψ, one may check that (2.6) is equivalent to

min
β∈Rp

{
Θν,ρ(β) := fτ (y −Xβ) + ν−1

p∑
i=1

[
ρ|βi| − ψ∗(ρ|βi|)

]}
. (2.7)

Because ψ∗ is a nondecreasing finite convex function on R, the function s 7→
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ψ∗(ρ|s|) is convex, and problem (2.7) is a DC program. To summarize, problem

(2.7) associated with every ρ > ρ provides an equivalent DC surrogate for (2.3).

Moreover, Hρ(β) :=
∑p

i=1 hρ(βi), with hρ(t) := ρ|t| − ψ∗(ρ|t|) for t ∈ R, is a DC

surrogate for the zero-norm. To close this section, we present some examples of

φ ∈ L .

Example 1. Let φ(t) = t for t ∈ R. After a simple computation, we have

ψ∗(s) =

{
0 if s ≤ 1,

s− 1 if s > 1
and hρ(t) =


ρ|t| if |t| ≤ 1

ρ
,

1 if |t| > 1

ρ
.

It follows immediately that the function ν−1hρ(t) reduces to the capped `1-

function t 7→ λmin(|t|, α) in Zhang (2010) with ν = ρ/λ and ρ = α−1.

Example 2. Let φ(t) := ((a− 1)/(a+ 1))t2 + (2/(a+ 1))t (a > 1), for t ∈ R.

One can calculate

ψ∗(s) =



0 if s ≤ 2

a+ 1
,

((a+ 1)s− 2)2

4(a2 − 1)
if

2

a+ 1
< s ≤ 2a

a+ 1
,

s− 1 if s >
2a

a+ 1
;

(2.8)

hρ(t) =



ρ|t| if |t| ≤ 2

(a+ 1)ρ
,

ρ|t| − ((a+ 1)ρ|t| − 2)2

4(a2 − 1)
if

2

(a+ 1)ρ
< |t| ≤ 2a

(a+ 1)ρ
,

1 if |t| > 2a

(a+ 1)ρ
.

It is not hard to check that ν−1hρ(t) reduces to the SCAD function ρλ(t) in Fan

and Li (2001) when ν = 2/((a+ 1)λ2) and ρ = 2/((a+ 1)λ).

Example 3. Let φ(t) := (a2/4)t2 − (a2/2)t + at + ((a− 2)2/4)(a > 2), t ∈ R.

We have

ψ∗(s) =


−(a− 2)2

4
if s ≤ a− a2

2
,

1

a2

(
a(a− 2)

2
+ s

)2

− (a− 2)2

4
if a− a2

2
< s ≤ a,

s− 1 if s > a;
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hρ(t) =


ρ|t| − 1

a2

(
a(a− 2)

2
+ ρ|t|

)2

+
(a− 2)2

4
if |t| ≤ a

ρ
,

1 if |t| > a

ρ
.

Then, ν−1hρ(t) reduces to the MCP of Zhang (2010) if ν = 2/(aλ2), ρ = 1/λ.

3. Multi-Stage Convex Relaxation Approach

From the last section, to compute the estimator β̂, we need only solve a single

penalty problem (2.6), which is much easier than solving the zero-norm problem

(2.3) because its nonconvexity arises only from the coupled term 〈w, |β|〉. Observe

that (2.6) becomes a convex program when either w or β is fixed. Thus, we solve

it in an alternating way and propose the following multi-stage convex relaxation

approach (MSCRA) using φ in Example 2.

Algorithm 1 (MSCRA for computing β̂)

Initialization: Choose τ ∈ (0, 1), ν > 0, ρ0 = 1, w0∈ [0, (1/2)e]. Set λ = ρ0/ν.
for k = 1, 2, . . . .

1. Seek an inexact solution to the weighted `1-regularized problem

βk ≈ argmin
β∈Rp

{
fτ (y −Xβ) + λ

p∑
i=1

(1−wk−1i )|βi|

}
. (3.1)

2. When k = 1, select a suitable ρ1 ≥ ρ0 in terms of ‖β1‖∞. If k = 2, 3, select ρk such
that ρk ≥ ρk−1; otherwise, set ρk = ρk−1.

3. For i = 1, 2, . . . , p, compute the following minimization problem

wki = argmin
0≤wi≤1

{
φ(wi)− ρkwi|βki |

}
. (3.2)

end for

Remark 1. (i) Step 1 of Algorithm 1 solves problem (2.6), with w fixed to be

wk−1, while Step 3 solves this problem with β fixed to be βk; that is, Algorithm

1 solves the nonconvex penalty problem (2.6) in an alternating way. In the first

stage, because there is no information on estimating the nonzero entries of β∗, it

is reasonable to impose an unbiased weight on each component of β. Motivated

by this, we restrict the initial w0 in [0, 0.5e], a subset of the feasible set of w.

When w0 = 0, the first stage is precisely the minimization of the `1-penalized

check loss function. Although the threshold ρ is known when the parameter ν
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in (2.3) is given, we select a varying ρ for (3.2) because it is just a relaxation of

(2.6).

(ii) By the optimality condition of (3.2), ρk|βki | ∈ ∂ψ(wki ) for each i, which, by

Theorem 23.5 in Rockafellar (1970) and (2.8), is equivalent to saying

wki = min

[
1,max

(
0,

(a+ 1)ρk|βki | − 2

2(a− 1)

)]
for i = 1, . . . , p. (3.3)

Clearly, when ρk|βki | is close to zero, (1−wki ) in (3.3) may be close to, but not

equal to one; when ρk|βki | is much larger, (1−wki ) in (3.3) may be close to, but not

equal to zero. To achieve a high-quality solution with Algorithm 1, the last term

of (3.1) implies that a smaller (1−wk−1
i ) but not zero is expected for those larger

|βi|, and a larger (1−wk−1
i ) but not one is expected for those smaller |βi|. Thus,

the function φ in Example 2 is desirable, especially for problems with solutions

that have small nonzero entries. The weight wk associated with the function φ

in Example 3 exhibits a similar performance. However, the weight wk associated

with the function φ in Example 1 is different since wki = 0 if ρk|βki | < 1, wki = 1

if ρk|βki | > 1, and wki ∈ [0, 1] otherwise.

(iii) Algorithm 1 is actually an inexact majorization-minimization (MM) method

(see Lange, Hunter and Yang (2000)) for solving the equivalent DC surrogate

(2.7) using a special starting point. Indeed, for a given β′ ∈ Rp, the convexity

and smoothness of ψ∗ implies that with wi = (ψ∗)′(ρ|β′i|), for i = 1, . . . , p,

p∑
i=1

ψ∗(ρ|βi|) ≥
p∑
i=1

ψ∗(ρ|β′i|) + ρ〈w, |β| − |β′|〉 ∀β ∈ Rp. (3.4)

Note that each wi ∈ [0, 1] by the expression of ψ∗. Hence, the function

fτ (y −Xβ) + λ
∥∥(e−wk−1) ◦ β

∥∥
1
− λ

[
p∑
i=1

ψ∗(ρ|βk−1
i |) + ρ〈wk−1, |βk−1|〉

]

is a majorization of Θλ,ρ at βk−1, and the subproblem (3.1) is the inexact mini-

mization of this majorization function. In addition, for any given ρ0 > 0, when

‖β0‖∞ ≤ 2/((a+ 1)ρ0), we have w0
i = (ψ∗)′(ρ0|β0

i |) = 0, by (2.8). Thus, the

first stage of Algorithm 1 with w0 = 0 is precisely the inexact MM method for

(2.7), with β0 satisfying ‖β0‖∞ ≤ 2/((a+ 1)ρ0). In addition, Algorithm 1 can

be regarded as an inexact inversion of the LLA method proposed by Zou and

Li (2008) for (2.7), but it differs from the DC algorithm of Wu and Liu (2009)

becasue the latter depends on the majorization of β 7→
∑p

i=1ψ
∗(ρ|βi|) at βk and
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the obtained approximation lacks symmetry.

(iv) Considering that a practical computation always involves a deviation, we

solve the problem in (3.1) inexactly, with the accuracy measured in the following

way: ∃δk ∈ Rp and rk ≥ 0, with ‖δk‖ ≤ rk such that

δk ∈ ∂
[
fτ (y −Xβ) + λ‖(e−wk−1) ◦ β‖1

]
β=βk

= −XT∂fτ (y−Xβk) + λ
[
(1−wk−1

1 )∂|βk1 | × · · · × (1−wk−1
p )∂|βkp |

]
, (3.5)

where the equality follows from Theorem 23.8 in Rockafellar (1970). Note that

the first-order optimality conditions of (2.6) take the following form:

u ∈ ∂fτ (z); ρ|βi| ∈ ∂ψ(wi) for i = 1, . . . , p; y −Xβ − z = 0;

XTu ∈ λ
[
(1−w1)∂|β1| × · · · × (1−wp)∂|βp|

]
,

where u ∈ Rn is the Lagrange multiplier associated with y−Xβ−z = 0. By Step

2 of Algorithm 1, ρk|βk| ∈ ∂ψ(wk1) × · · · × ∂ψ(wkp). In view of this, we measure

the KKT residual of (2.6) associated with ρk at (βk, zk, uk) by

Errk :=

√
‖∆1‖2 + ‖∆k

2‖2 + ‖y −Xβk −zk‖2

1 + ‖y‖
≤ tol, (3.6)

where ∆k
1 := zk − Pfτ (zk + uk) and ∆k

2 := XTuk − Phk(XTuk + βk) with

hk(β) := ‖λ(e−wk) ◦ β‖1 for β ∈ Rp. (3.7)

4. Theoretical Guarantees of Algorithm 1

We denote by S∗ the support of the true vector β∗, and define the set

C(S∗) :=
⋃

S∗⊂S,|S|≤1.5s∗

{
β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1

}
.

The matrix X is said to have κ-restricted strong convexity on C(S∗) if

κ > 0 and
1

2n
‖X∆β‖2 ≥ κ‖∆β‖2, for all ∆β ∈ C(S∗). (4.1)

The RSC is equivalent to the restricted eigenvalue condition of the Gram matrix

(1/(2n))XTX of van de Geer and Bühlmann (2009) and Bickel, Ritov and Tsy-

bakov (2009). Note that C(S∗) ⊇
{
β ∈ Rp : ‖β(S∗)c‖1 ≤ 3‖βS∗‖1

}
. This RSC is

a little stronger than that used by Negahban et al. (2012) for the `1-regularized

smooth loss minimization. In this section, we provide deterministic theoretical
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guarantees for Algorithm 1 under this RSC, including the error bound of the

iterate βk to the true β∗ and the decrease analysis of the error sequence. The

proofs are included in Appendix B. We need the following assumption on the

optimality tolerance rk of βk.

Assumption 1. There exists ε > 0 such that for each k ∈ N, rk ≤ ε.

First, by Lemma 4 in Appendix B, we have the following error bound.

Theorem 2. Suppose that Assumption 1 holds, that X has the κ-RSC over C(S∗),
and that the noise vector ε is nonzero. If ρ3 and λ are chosen such that ρ3 ≤
8/(9
√

3cτλ‖ε‖∞) and λ ∈ [16τ‖X‖1/n+ 8ε, (τ2κ− c−1 − 3τ‖X‖max(2n−1τ‖X‖1
+ ε)s∗)/(3τ‖X‖maxs

∗)], for some constant c ≥ 1/(τ2κ− 27τ‖X‖max(2n−1τ‖X‖1
+ ε)s∗), then for every k ∈ N,

‖βk − β∗‖ ≤ 9cτλ
√

1.5s∗

8
‖ε‖∞.

Remark 2. (i) For the `1-regularized least squares smooth loss estimator βLS ∈
arg minβ∈Rp{(1/2n)‖y −Xβ‖2 + λn‖β‖1}, the error bound ‖βLS − β∗‖ = O(σ√
s∗ log p/n) is obtained in Corollary 2 of Negahban et al. (2012) by taking λn =√
log p/n, where σ > 0 represents the variance of the noise. By comparing with

this error bound, the error bound in Theorem 2 involves the infinite norm ‖ε‖∞
of the noise ε, rather than its variance. Moreover, it still has the same order

O(
√
s∗ log p/n) when the parameter λ = O(1) in our model is rescaled to be λn.

(ii) For the following `1-regularized square-root nonsmooth loss estimator βsr ∈
argminβ∈Rp{(1/

√
n)‖y−Xβ‖+(λ′/n)‖β‖1}, the error bound ‖βsr−β∗‖ = O(σ

√
s∗

λ′$/n) with $ ≥ (1/
√
n)‖ε‖ is achieved in Theorem 1 of Belloni, Chernozhukov

and Wang (2011) by setting λ′ = O(n). By considering that fτ (y − Xβ) =

O(
√
n‖y −Xβ‖), the parameter λ in our model corresponds to λ′/n. Thus, the

error bound in Theorem 2 corresponds to O(
√
s∗λ′‖ε‖∞/n), which has the same

order as O
(
σ
√
s∗λ′$/n

)
because ‖ε‖∞ = O(1/

√
n‖ε‖).

(iii) To ensure that the constant c > 0 exists, the constant κ needs to satisfy

κ > (54τ2s∗‖X‖max‖X‖1)/(nτ2), and the inexact accuracy ε of βk needs to

satisfy 0 ≤ ε < (nτ2κ− 54τ2s∗‖X‖max‖X‖1)/(27nτs∗). Because ‖X‖1 = O(n),

it is necessary to solve the subproblem (3.1) with a very small inexact accuracy

ε.

Theorem 2 establishes an error bound for every iterate βk, but it does not tell

us whether the error bound of the current βk is better than that of the previous

βk−1. In order to seek an answer, we study the decrease of the error bound
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sequence by bounding maxi∈S∗(1 − wki ). For this purpose, write F 0 := S∗ and

Λ0 := {i : |β∗i | ≤ 4a/((a+ 1)ρ0)}, and for each k ∈ N, define

F k :=

{
i :
∣∣|βki | − |β∗i |∣∣ ≥ 1

ρk

}
and Λk :=

{
i : |β∗i | ≤

4a

(a+1)ρk

}
. (4.2)

From Lemma 6 in Appendix B, the value maxi∈S∗(1− wki ) is upper bounded by

maxi∈S∗ max(IΛk(i), IF k(i)). By this, we have the following conclusion.

Theorem 3. Suppose that Assumption 1 holds, X has the κ-RSC over C(S∗),
and the noise ε is nonzero. If λ is chosen as in Theorem 2 and the parameter ρ3

satisfies ρ3 ≤ 1/(cτλ‖ε‖∞(
√

4.5s∗ +
√

3/8)), then for each k ∈ N,

‖βk− β∗‖ ≤ (3 +
√

3)cτ2
√
s∗‖X‖1‖ε‖∞
n

+
(3 +3

√
3)cτλ

√
s∗‖ε‖∞

2
√

2
max
i∈S∗

IΛ0(i)

+ cτ‖ε‖∞
√
s∗

k−2∑
j=0

rk−j

(
1√
3

)j
+

(
1√
3

)k−1∥∥β1− β∗
∥∥, (4.3)

where we stipulate that
∑k−2

j=0 rk−j(1/
√

3)j = 0, for k = 1.

Remark 3. (i) The error bound in (4.3) consists of the statistical error due to

the noise, the identification error maxi∈S∗ IΛ0(i) related to the choice of a and ρ0,

and the computation errors
∑k−2

j=0 rk−j(1/
√

3)j and (1/
√

3)k−1‖β1− β∗‖. By the

definition of Λ0, when ρ0 and a are such that ((a+ 1)ρ0)/4a > 1/(mini∈S∗ |β∗i |),
the identification error becomes zero. If mini∈S∗ |β∗i | is not too small, it would

be easy to choose such ρ0. Clearly, when ρ0 and a are chosen to be larger, the

identification error is smaller. However, when ρ0 and a are larger, ρ1 becomes

larger and each component of w1 is close to one by (3.3). Consequently, it will

become very conservative to cut those smaller entries of β2 when solving the

second subproblem. Hence, there is a trade-off between the choice of a and ρ0

and the computation speed of Algorithm 1.

(ii) If the subproblem (3.1) could be solved exactly, the computation error∑k−2
j=0 rk−j(1/

√
3)j would vanish. If the subproblem (3.1) is solved with the accu-

racy rk satisfying rk ≤ (1/
√

3)k(1/kν) for ν > 1, this computation error will tend

to zero as k → +∞. Because the third term on the right-hand side of (4.3) is

a combination of the noise and
∑k−2

j=0 rk−j(1/
√

3)j , it is strongly suggested that

the subproblem (3.1) is solved as well as possible.

For the RSC assumption in Theorems 2–3, from Raskutti, Wainwright and

Yu (2010), we know that if X is from the Σx-Gaussian ensemble (i.e., X is formed

by independently sampling each row xTi ∼ N(0,Σx), there exists a constant κ > 0
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(depending on Σx) such that the RSC holds on C(S∗) with probability greater

than 1−c1 exp(−c2n), as long as n > c0s
∗ log p, where c0, c1, and c2 are absolutely

positive constants. From Banerjee et al. (2015), for some sub-Gaussian X, the

RSC holds on C(S∗) with a high probability when n is over a threshold that

depends on the Gaussian width of C(S∗).

5. Proximal Dual Semismooth Newton Method

By Remark 1 (iv), the pivotal part of Algorithm 1 is the exact solution of

min
β∈Rp

{
fτ (y −Xβ) + hk−1(β)− 〈δk, β − βk−1〉

}
, (5.1)

where, for each k ∈ N, hk is the function defined in (3.7). In this section, we

develop a proximal dual semismooth Newton method (PDSN) for (5.1), which is

a proximal point algorithm (PPA), with the subproblems solved by applying the

semismooth Newton method to their dual problems.

Algorithm 2 PPA for solving problem (5.1)

Initialization: Fix k. Choose γ1,0, γ2,0, γ > 0, %∈ (0, 1). Let β0 = βk−1.
for j = 0, 1, 2, . . ..

1. Seek the unique minimizer βj+1 to the following convex program

min
β∈Rp

{
fτ (y−Xβ) +hk−1(β)−〈δk, β−βk−1〉+ γ1,j

2
‖β−βj‖2 +

γ2,j
2
‖X(β−βj)‖2

}
.

2. If βj+1 satisfies the stopping rule, then stop. Otherwise, update γ1,j and γ2,j by
γ1,j+1 = max(γ, %γ1,j) and γ2,j+1 = max(γ, %γ2,j).

end for

Remark 4. (i) Because fτ (y−X·) and hk−1 are convex but nondifferentiable, we

follow Tang et al. (2020) to introduce a key proximal term (γ2,j/2)‖Xβ−Xβj‖2,

except the common (γ1,j/2)‖β − βj‖2. As shown later, this provides an effective

way to handle the nonsmooth fτ (y −X·).
(ii) The first-order optimality conditions for (5.1) have the form u ∈ ∂fτ (z), XTu

+δk ∈ ∂hk−1(β), y−Xβ−z = 0, where u ∈ Rn is the multiplier vector associated

with y −Xβ − z = 0. Hence, the KKT residual of problem (5.1) at (βj , zj , uj)

can be measured by

ErrjPPA :=

√
‖zj−Pfτ (zj+uj)‖2 +‖βj−Phk−1(XTuj+δk)‖2 +‖y −Xβj−zj‖2

1 + ‖y‖
.
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Thus, we suggest ErrjPPA≤ ε
j
PPA as the stopping condition of Algorithm 2.

The efficiency of Algorithm 2 depends on the solution of its subproblem,

which, by introducing a variable z ∈ Rn, is equivalently written as

min
β∈Rp,z∈Rn

{
fτ (z) + hk−1(β)−〈δk, β −βk−1〉+

γ1,j

2
‖β − βj‖2 +

γ2,j

2
‖z − zj‖2

}
s.t. Xβ + z − y = 0 with zj = y −Xβj . (5.2)

After an elementary calculation, the dual of (5.2) takes the following form:

min
u∈Rn

{
Ψk,j(u) :=

‖u‖2

2γ2,j
−eγ−1

2,j
fτ

(
zj− u

γ2,j

)
−eγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+
‖XTu‖2

2γ1,j

}
.

Because Ψk,j is a smooth convex function, seeking an optimal solution of the last

dual problem is equivalent to finding a root for the system

Φk,j(u) := −Pγ−1
2,j
fτ

(
zj− u

γ2,j

)
−XPγ−1

1,j
hk−1

(
βj−X

Tu+δk

γ1,j

)
+ y = 0. (5.3)

Because Pγ−1
2,j
fτ and Pγ−1

1,j
hk−1 are strongly semismooth, by Appendix A, and

the compositions of strongly semismooth mappings are strongly semismooth, by

Facchinei and Pang (2003), Φk,j is strongly semismooth. Inspired by this, we

use the semismooth Newton method to seek a root for (5.3), which by Qi and

Sun (1993) is expected to have a superlinear, or even quadratic convergence rate.

By Proposition 2.3.3 and Theorem 2.6.6 of Clarke (1983), the Clarke Jacobian

∂CΦk,j(u) of Φk,j at u is included in

γ−1
2,j ∂C

[
Pγ−1

2,j
fτ

](
zj− u

γ2,j

)
+γ−1

1,jX∂C

[
Pγ−1

1,j
hk−1

](
βj−X

Tu+ δk

γ1,j

)
XT

= γ−1
2,jUj(u) + γ−1

1,jXVj(u)XT ∀u ∈ Rn, (5.4)

where (5.4) follows from Lemmas 1–2 in Appendix A, Uj(u) and Vj(u) are

Uj(u) :=
{

Diag(v1, . . . , vn) | vi ∈ ∂C
[
Pγ−1

2,j
(n−1θτ )

]
(zji − γ

−1
2,j ui)

}
,

Vj(u) :=
{

Diag(v) | vi = 1 if |(γ1,jβ
j−XTu−δk)i| > ωki , otherwise vi ∈ [0, 1]

}
.

For each U j∈ Uj(u) and V j∈ Vj(u), the matrix γ−1
2,jU

j +γ−1
1,jXV

jXT is semidef-

inite, and is positive definite when {i | (τ − 1)/(nγ)≤ zji − γ
−1
2,j ui ≤τ/(nγ)} = ∅

or the matrix XJ has full row rank with J = {i | |(γ1,jβ
j −XTu − δk)i| > ωki }.

To ensure that each iterate of the semismooth Newton method works, or each
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element of Clarke Jacobian ∂CΦk,j(u) is nonsingular, we add a small positive

definite perturbation µI to γ−1
2,jU

j +γ−1
1,jXV

jXT. The detailed iterates of the

semismooth Newton method are provided in Appendix C.

6. Numerical Experiments

We test the performance of Algorithm 1 by solving the subproblems us-

ing PDSN, SeDuMi, and sPADMM on synthetic and real data, and call the

three solvers MSCRA PPA, MSCRA IPM, and MSCRA ADMM, respectively.

SeDuMi solves the equivalent LP of (3.1):

min
(β+,β−)∈R2p

+ ,(ζ+,ζ−)∈R2n
+

〈ωk, β+〉+ 〈ωk, β−〉+
τ

n
〈ζ+, e〉+

1− τ
n
〈ζ−, e〉

s.t. Xβ+ −Xβ− + ζ+ − ζ− = y,

and the iterates of sPADMM are described in Appendix C. All numerical results

are computed on a laptop computer running 64-bit Windows with an Intel(R)

Core(TM) i7-8565 CPU 1.8GHz and 8 GB RAM.

For SeDuMi, we adopt the default setting. For the sPADMM, we choose the

step-size % = 1.618 and the initial σ = 1, and adopt the stopping criterion in

Appendix C with jmax = 3,000 and εADMM = 10−6. For the PDSN, we choose

γ = 10−8, % = 5/7, and γ1,0 = γ2,0 = min(0.1, R0), where R0 is the relative KKT

residual at the initial (β0, z0, u0). Furthermore, we adopt the stopping criterion in

Remark 4(ii) with εj+1
PPA = max(10−8, 0.1εjPPA) for ε0PPA = 10−6, and the stopping

rule ‖Φk,j(u
l)‖/(1 + ‖y‖) ≤ 0.1εjPPA for Algorithm 1 in Appendix C.

For the MSCRA IPM, MSCRA ADMM, and MSCRA PPA, we use w0 =

0, and terminate them at βk when k > 10, Nnz(β
k) = · · · = Nnz(β

k−3) and

Errk ≤ 10−5, or Nnz(β
k) = · · · = Nnz(β

k−2) and |Errk −Errk−2| ≤ 10−6, where

Nnz(β
k) :=

∑p
i=1 I

{
|βki | > 10−6 max(1, ‖βk‖∞)

}
denotes the number of nonzero

entries of βk, and Errk is the KKT residual at the kth step, defined in (3.6). We

update ρk by ρ1 = max(1, 1/(3‖β1‖∞)) and ρk = min
(
(5/4)ρk−1, (108/‖βk‖∞))

for k = 2, 3. In addition, when implementing the three solvers, we run SeDuMi,

sPADMM, and PSDN to solve the kth subproblem, with the optimal solution of

the (k−1)th subproblem as the starting point. For k = 1, we choose β0 = 0 to

be the starting point of the MSCRA IPM and MSCRA ADMM, and use β0 = 0

to run Algorithm 2.
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Figure 1. Optimal values of three solvers for the sample size n = 500.

6.1. Comparisons of the three solvers for the subproblem

We compare SeDuMi, sPADMM, and PDSN numerically by applying them

to (3.1) for k = 1, that is, the `1-regularized check loss minimization problem.

Inspired by Gu et al. (2018), we consider the simulation model yi = xTi β
∗ + κεi

for i = 1, . . . , n in Friedman, Hastie and Tibshirani (2010) to generate the data,

where xTi ∼ N(0,Σ) for i = 1, . . . , n, with Σ = (α + (1 −α)I{i=j})p×p, β∗j =

(−1)j exp(−(2j − 1)/20), ε ∼ N(0,Σ), and κ chosen such that the signal-noise

ratio of the data is 3.0. We focus on the high-dimensional situation with (p, n) =

(5,000, 500) and α = 0 and 0.95. Figures 1–2 show the optimal values yielded by

three solvers and their CPU time (in seconds) when solving (3.1) with k = 1 and

the same sequence of 50 values of λ. From the results in Section 4, we select the

50 values of λ as

λi = max

(
0.01,

γi‖X‖1
n

)
with γi = γmin +

i− 1

49
(γmax − γmin),

for i = 1, 2, . . . , 50, where γmin = 0.02 and γmax = 0.25 and 0.38 for α = 0 and

0.95, respectively. Here, γmax is such that Nnz(β
f ) attains the value zero, where

βf represents the final output of a solver.

Figure 1 shows that the three solvers yield comparable optimal values, and

the optimal values given by the PDSN are a little better than those given by

SeDuMi and the sPADMM. Figure 2 shows that the PDSN requires much less

CPU time than SeDuMi and the sPADMM do. For α = 0.95, the CPU time
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Figure 2. CPU times of three solvers for the sample size n = 500.

of the former is, on average, about 0.03 and 0.09 times that of SeDuMi and the

sPADMM, respectively, but for α = 0, τ = 0.5, when λ < λ3, the PDSN requires

more CPU time because the Clarke Jacobians are close to singularity. This

shows that if the parameter λ in the model is not too small (a common setting

for sparsity), the PDSN is superior to SeDuMi and the sPADMM in terms of

the optimal value and CPU time. We find that the sPADMM always attains the

maximum number of iterations 3,000 for all test problems (it even attains the

maximum number of iterations if jmax = 10,000). Because jmax = 3,000 is used

here, its CPU time is less than that of SeDuMi.

6.2. Numerical performance of Algorithm 1

We first apply the MSCRA PPA to the example in Section 3.1 of Wang, Wu

and Li (2012); that is, we solve (2.6) with ν = λ−1 for λ = max(0.01, 0.1‖X‖1/n),

for which the scalar response is generated according to the heteroscedastic location-

scale model Y = X6+X12+X15+X20+0.7X1ε, where ε ∼ N(0, 1) is independent

of the covariates. Table 1 reports its identification performance for τ = 0.3, 0.5,

and 0.7 under different sample sizes, where Size, AE, P1, and P2 have the same

meaning as in Wang, Wu and Li (2012). We see that, for τ = 0.5, P2 is always

equal to zero. Thus, the check loss with τ = 0.5 cannot identify X1, but the

check loss with τ = 0.3 and 0.7 can do so, and the proportion of identifying X1

increases as n becomes large.



1138 ZHANG, PAN AND BI

Table 1. Identification performance of the MSCRA PPA.

n = 250 n = 300 n = 400 n = 500

τ = 0.3

Size 11.800(4.369) 9.320(3.146) 6.290(1.472) 5.330(0.697)
P1 0.81 0.83 0.93 0.91
P2 0.81 0.83 0.93 0.91
AE 0.197(0.174) 0.170(0.165) 0.176(0.155) 0.145(0.127)

τ = 0.5

Size 10.960(3.075) 7.910(2.060) 5.270(1.171) 4.370(0.597)
P1 1.00 1.00 1.00 1.00
P2 0.00 0.00 0.00 0.00
AE 0.034(0.014) 0.027(0.011) 0.021(0.010) 0.018(0.008)

τ = 0.7

Size 12.590(4.356) 8.320(2.169) 6.310(1.308) 5.380(0.693)
P1 0.79 0.88 0.91 0.93
P2 0.79 0.88 0.91 0.93
AE 0.183(0.175) 0.220(0.180) 0.151(0.146) 0.162(0.142)

Next, we use a synthetic example to show that the MSCRA PPA can effi-

ciently solve a series of zero-norm regularized problems (2.3) with different τ ,

but a fixed λ. We generate an independent and identically distributed standard

normal random vector β∗S∗ , with s∗ = b0.5√pc entries of S∗ chosen randomly

from {1, . . . , p} for p = 15,000. Then, we obtain the response vector y from

model (2.1), where xTi ∼ N(0,Σ), for i = 1, . . . , n, with Σ = 0.6E + 0.4I and

n = b2s∗ log pc, and the noise εi is from the Laplace distribution with density

d(u) = 0.5 exp(−|u|). Here, E is a p×p matrix of all ones. Figure 3 describes the

average absolute `2-error ‖β̂f−β∗‖ and time when applying the MSCRA PPA to

10 test problems for τ ∈ {0.05, 0.1, 0.15, . . . , 0.95} with ν = λ−1 and λ = 37.5/n.

We see that the MSCRA PPA yields better `2-errors for τ close to 0.5, and worse

`2-errors for τ close to zero or one. Therefore, for this class of noise, the check

loss with τ close to 0.5 is suitable. The MSCRA PPA yields a desired solution

for all test problems in 40 seconds, and the CPU time for τ close to 0 or 1 is

about 1.5 times that of τ close to 0.5. This means that it is an efficient solver for

the series of zero-norm regularized problems in (2.3).

7. Conclusion
We have proposed a multi-stage convex relaxation approach, the MSCRA

PPA, for computing a desirable approximation to the zero-norm penalized QR,

which is defined as a global minimizer of an NP-hard problem. Under the com-

mon RSC condition and a mild restriction on the noise, we established the error

bound of every iterate to the true estimator and the linear rate of convergence

of the iterate sequence in a statistical sense. Numerical comparisons with the

MSCRA IPM and the MSCRA ADMM show that the MSCRA PPA exhibits
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Figure 3. Performance of the MSCRA PPA under different quantile levels τ

comparable estimation performance within much less time.

Supplementary Material

The online Supplementary Material consists of four parts. Appendix A in-

cludes some preliminary knowledge on generalized subdifferentials and Clarke

Jacobian, as well as the lemmas used in Sections 2–5; Appendix B includes

the proofs of Theorems 2–3; Appendix C introduces the semismooth Newton

method and the semi-proximal ADMM of Gu and Zou (2016); Appendix D in-

cludes performance comparisons between the MSCRA IPM, MSCRA ADMM,

and MSCRA PPA using synthetic and real data.
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