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Abstract: There is an urgent need to evaluate new therapies in a time-sensitive and

cost-effective manner. We propose the adaptive seamless phase II/III clinical trials

with covariate adaptive randomization (CAR) to satisfy this need. CAR is one of the

most popular designs in randomized controlled trials, enhancing covariance balance

and ensuring valid treatment comparisons. However, it has several challenges: (1)

the type I error rate of the commonly used Student’s t-test following CAR can be

inflated because of the seamless trials, but can also be decreased using CAR; (2)

the complicated allocation mechanism induced by CAR causes extra difficulties to

derive the asymptotic properties of a test procedure; and (3) previous theoretical

studies of seamless trials rely mainly on the assumption of complete randomization,

a procedure rarely used in real trials. We establish a theoretical foundation for

adaptive seamless phase II/III trials with CAR. We also propose an approach that

is easy to implement in order to control the type I error rate and improve the power

when using Student’s t-test. This important step will promote the application of

this procedure.
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1. Introduction

In 2006, the US Food and Drug Administration (FDA) emphasized the im-

portance of streamlining clinical trials (US FDA (2006)). Since then, there has

been an urgent need to evaluate new therapies in a time-sensitive and cost-

effective manner without compromising the integrity and validity of the devel-

opment process. In this paper, we propose the adaptive seamless phase II/III

clinical trials with covariate adaptive randomization (CAR) to satisfy this need.

Recently, the FDA drafted guidance on seamless clinical trials, aiming to broaden

acceptance of the design (US FDA (2018)). CAR is one of the most popular clini-

cal trial designs. It ensures valid treatment comparisons by balancing potentially

confounding patient characteristics across the treatment arms. We establish a
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theoretical foundation for adaptive seamless phase II/III trials with CAR in or-

der to facilitate the application of this design in practice. We address three major

challenges: the theoretical properties of this complicated allocation and analysis

procedure; control of the type I error rate; and improvement of the power.

In a typical seamless phase II/III clinical trial (Thall, Simon and Ellenberg

(1988); Jennison and Turnbull (2007); Hampson and Jennison (2015)), multiple

experimental treatments or drug doses are simultaneously compared against a

control in the phase II trial; the candidates with the best performance are then

selected for the phase III trial; and an analysis based on data from both phases

is performed at the end of the trial. By using a single protocol for the two

phases, the seamless design avoids the lead time between conventional phase II

and phase III trials, which is likely to be six months or more. It also reduces

the number of trials required to compare multiple drugs, decreases the sample

size, and allows longer monitoring of the patients from phase II (Bretz et al.

(2009)). These advantages increase the profits of pharmaceutical companies and

have received much attention from industry. By 2016, more than 40 active,

first-in-human cancer trials had used the seamless strategy (Prowell, Theoret

and Pazdur (2016)). An example highlighted by Bhatt and Mehta (2016) is the

Indacaterol to Help Achieve New COPD Treatment Excellence (INHANCE) trial

Barnes et al. (2010), a seamless phase II/III clinical trial of inhaled indacaterol

for the treatment of chronic obstructive pulmonary disease (COPD) using an

equal allocation with stratification for smoker status.

For seamless clinical trials, it is critical to control the possibly inflated type

I error rate under the dual influence of multiplicity and selection (Bauer et al.

(2010)). Following the approach of Bauer and Kieser (1999), Bretz et al. (2006)

and Schmidli et al. (2006) used the closure principle (Marcus, Eric and Gabriel

(1976)), combination tests (Bauer and Köhne (1994); Lehmacher and Wassmer

(1999)), and multiple testing procedures (Simes (1986); Dunnett (1955)) to con-

trol the familywise type I error rate. Liu, Proschan and Pledger (2002) provided a

solid theoretical foundation for general two-stage adaptive designs. Koenig et al.

(2008) proposed the adaptive Dunnett test based on the conditional error rate

(Müller and Schäfer (2001)). However, the theory of most of these studies assume

complete randomization with independent responses, which is rarely applied in

clinical trials, and these approaches may not be valid under other randomization

schemes.

It is well known that an imbalance of the confounding covariates across treat-

ments may bias the study results. This imbalance can be mitigated by CAR that

sequentially assigns the next patient based on the previous treatment assign-
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ments and covariates, as well as on the current covariate profile. CAR can also

reduce the selection bias, minimize the accidental bias, and improve the statisti-

cal efficiency (Shao, Yu and Zhong (2010)). The most commonly used CAR in

randomized controlled trials is the stratified permuted block (SPB) design. Other

CAR designs and clinical trials adopting CAR include those of Pocock and Simon

(1975), Antognini and Zagoraiou (2011), Iacono et al. (2006), Jakob et al. (2012),

and Krueger et al. (2007), as well as Barnes et al. (2010) mentioned above, a

seamless phase II/III trial with CAR.

In practice, unadjusted analyses, such as Student’s t-test, are commonly used

in clinical trials (Kahan et al. (2014); Sverdlov (2015)). This simple approach

avoids a model misspecification, but results in a conservative type I error rate

under CAR (Shao, Yu and Zhong (2010)). Hypothesis testing and sequential

monitoring in clinical trials with CAR have recently been studied by Shao, Yu and

Zhong (2010), Ma, Hu and Zhang (2015), Bugni, Canay and Shaikh (2018), and

Zhu and Hu (2019). However, none of these studies investigated the application

of CAR in seamless phase II/III trials.

Seamless phase II/III designs and CAR with Student’s t-test both lead to

difficulties in controlling the type I error rate. It is challenging to perform the

theoretical investigation and propose approaches to control the type I error rate

for seamless phase II/III trials with CAR, for several reasons: (1) the correla-

tion structure of the within-stratum imbalances is complex; (2) the relationships

among the treatment assignments, covariates, and responses are complicated; (3)

the allocation functions are discrete; and (4) the data used in the treatment selec-

tion are also used for inference at the end of the trial. Therefore, seamless phase

II/III clinical trials with CAR currently lack a theoretical foundation, and control

of the type I error rate is based on the assumption of complete randomization.

In this paper, we provide a theoretical foundation for seamless phase II/III

clinical trials with CAR. We also propose ways to adjust the Student’s t-test

statistics and use the test procedures available for complete randomization to

control the type I error rate and improve the power. This provides clinical trial

practitioners with valid tests and treatment comparisons in seamless clinical tri-

als with CAR. We also investigate estimation and hypothesis testing for CAR

with multiple treatments, which has a crucial implication for a single phase with

multiple treatments. Our numerical studies show that, compared with traditional

methods, our procedure controls the type I error rate well and increases the power

significantly.
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2. Seamless Phase II/III Clinical Trials with CAR

2.1. Framework of seamless phase II/III clinical trials

We consider a seamless phase II/III trial and refer to the two phases as Stage

1 and Stage 2, respectively. Assume the planned sample size for Stage 1 is N ,

and the planned sample size for Stage 2 is N ′, so the total sample size is N +N ′.

The design procedure is described below.

Stage 1. The first N patients are sequentially assigned to K experimental treat-

ments and the control arm with CAR. One treatment, say treatment k?, is then

chosen for Stage 2 based on certain criteria, for example, the one with the largest

estimated treatment effect and an acceptable safety profile.

Stage 2. The remaining N ′ patients are sequentially assigned to treatment k?

and the control arm with CAR. A final analysis comparing treatment k? and the

control arm is performed using the data from both stages.

We next describe the analysis procedure with a flowchart in Figure 1.

Let µ = (µ0, µ1, . . . , µK)T denote the vector of treatment effects, with µ0
corresponding to the control arm, and µk, for k = 1, . . . ,K, corresponding to K

experimental treatments. At the end of the trial, without loss of generality, we

test H0,k? : µk? = µ0 versus H1,k? : µk? > µ0 based on the combined data from

the two stages, using the closure principle (Marcus, Eric and Gabriel (1976))

to control the familywise type I error rate. The closure principle rejects H0,k?

at level α if each intersection hypothesis H0,I , with k? ∈ I, I ⊆ {1, . . . ,K}, is

rejected at level α, where H0,I = ∩k∈IH0,k, with H0,k : µk = µ0.

To test each intersection hypothesis H0,I using the data from the two stages,

we use a combination test such as the inverse χ2 method (Bauer and Köhne

(1994)). Let P1,I and P2,I denote the p-values for H0,I based on the data from

Stage 1 and Stage 2, respectively. Then the inverse χ2 method rejects H0,I if

− log(P1,IP2,I) > χ2
4(1 − α)/2, where χ2

4(1 − α) is the (1 − α)th quantile of the

χ2 distribution with four degrees of freedom. An alternative approach is the

weighted inverse normal method (Lehmacher and Wassmer (1999)).

To perform the combination test, we calculate the adjusted p-values for each

stage, P1,I and P2,I , using either the Simes test or the Dunnett test. Note that

both tests reduce to the usual Student’s t-test if there is only one treatment and

one control arm, as in Stage 2. We now briefly review the Simes test and the

Dunnett test when they are used under complete randomization, deferring the

justification and modification of these methods under CAR to Section 2.3. We

illustrate the test procedures for Stage 1 using multiple treatments because the
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Stage 2 comparison between two arms is straightforward.

Suppose the intersection hypothesis H0,I is composed of m elementary hy-

potheses H0,k, with the associated p-values denoted by P1,k. Let P1,(j), for j =

1, . . . ,m, be the p-values in ascending order. Using the Simes test, we have

the adjusted p-value P1,I = min1≤j≤m
(
mP1,(j)/j

)
for the intersection hypothesis

H0,I .

For the Dunnett test, without loss of generality, consider H0,I with I =

{1, . . . ,K}. Let

tk =
Ȳk − Ȳ0

s(1/Nk + 1/N0)1/2
, k = 1, . . . ,K, (2.1)

where Nk is the number of patients assigned to treatment k; Ȳk and S2
k are the

sample mean and sample variance, respectively, under treatment k; and s2 =∑K
k=0(Nk − 1)S2

k/ν, with ν = N − K − 1. Under complete randomization, the

null distribution of (t1, . . . , tK)T is the K-variate t-distribution with ν degrees of

freedom and correlations

ρk,k′ =

(
Nk

Nk +N0

)1/2( Nk′

Nk′ +N0

)1/2

, k, k′ = 1, . . . ,K.

Then, the conventional Dunnett test rejects the intersection hypothesis H0,I at

level α if

max
1≤k≤K

tk ≥ c,

where c is determined by pr(ζ1 < c, . . . , ζK < c) = 1−α, and (ζ1, . . . , ζK)T follows

the K-variate t-distribution with ν degrees of freedom and correlations ρk,k′ .

In the literature, the above analysis procedure is used in seamless trials to

control the familywise type I error rate, with the assumption that patients are

allocated using complete randomization and the responses of the patients are

independent of each other. However, the responses and treatment assignments

are no longer independent under CAR, because of the complicated randomization

mechanism that balances the covariates over different arms. When there are two

arms in a phase III clinical trial, the conventional tests are too conservative with

a small type I error rate because of CAR (Shao, Yu and Zhong (2010); Ma,

Hu and Zhang (2015)). It is unclear whether CAR will lead to a conservative

type I error rate in seamless clinical trials, and it is worth investigating the

underlying theory. Based on the closure principle (Marcus, Eric and Gabriel

(1976)) and the conditional invariance principle (Brannath, Koenig and Bauer

(2007); Brannath, Gutjahr and Bauer (2012)), for a valid treatment comparison,
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Start

Identify all intersection hypotheses H0,I with k? ∈ I

For each H0,I , calculate adjusted p-values P1,I and P2,I

Determine if each H0,I is rejected at level α

Reject H0,k? at level α if each H0,I is rejected

Stop

Simes/Dunnett Test

Combination Test

Closure Principle

Figure 1. Flowchart of the analysis procedure of testing H0,k? .

it suffices to validate the Simes test and the Dunnett test under CAR for each

stage of the above design and analysis procedure.

2.2. Estimation following CAR with multiple treatments

In this section, we study the estimation for CAR with multiple treatments,

a key element for an adaptive seamless II/III trial and an important problem in

its own right, with implications for a traditional single-phase clinical trial with

CAR and multiple treatments.

Suppose a CAR procedure is implemented to assign the patients to (K + 1)

arms, and the total sample size is N . Let Zi, for i = 1, . . . , N, represent the

covariate information for the ith patient. We allow Zi to be either discrete or

continuous covariates and assume that the covariates are all independent and

identically distributed (i.i.d.). To incorporate continuous covariates into the ran-

domization procedure, we discretize Zi using D(Zi), a discrete function of Zi

taking values in a finite set D. We can set D(Zi) = Zi for discrete covariates, so

both types of covariates can be treated using the same notation. For simplicity,

we introduce our methods using the univariate covariate Zi with variance σ2z ; the

conclusions can be extended easily to multivariate cases.
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Let Ti = (Ti0, Ti1, . . . , TiK)T indicate the treatment assignment for the ith

patient, where treatment 0 represents the control arm. We have Tik = 1, for k =

0, 1, . . . ,K, if the ith patient is assigned to treatment k, and Tik = 0 otherwise.

Then, Nk =
∑N

i=1 Tik, for k = 0, 1, . . . ,K, is the number of patients in treatment

k after N patients have been assigned. Let Yi = (Yi0, Yi1, . . . , YiK)T, for i =

1, . . . , N, be a random vector of response variables, where Yik, for k = 0, 1, . . . ,K,

is the response of the ith patient under treatment k. Only one element of Yi, say

Yik, can be observed if Tik = 1. Assume the response of the ith patient under

treatment k follows

Yik = µk + βZi + εik, i = 1, . . . , N,

where β represents the covariate effect, and εiks are i.i.d random errors with mean

zero and constant variance σ2ε and are independent of the covariates. In practice,

to avoid unnecessary or incorrect model assumptions, a natural treatment effect

estimator for treatment k, for k = 0, 1, . . . ,K, is Ȳk =
∑N

i=1 TikYik/Nk.

We first introduce two conditions for the balancing properties under CAR

with multiple treatments. For any k = 1, . . . ,K:

Condition 1. Nk −N0 = Op(1).

Condition 2.
∑N

i=1(Tik − Ti0)I{D(Zi) = d} = Op(1) for any d ∈ D.

These two conditions ensure that good balancing properties are attained

under a CAR procedure. Condition (A) indicates that the number of patients in

each treatment group is approximately equal, and Condition (B) implies a balance

of treatment assignments within each covariate stratum formed by D(Zi). Both

conditions are satisfied by the stratified permuted block design with multiple

treatments. Note that Condition (B) implies Condition (A) when the number of

stratum is finite. We list both conditions to emphasize the balancing properties

with respect to different levels (overall and within-stratum), similarly to Ma, Hu

and Zhang (2015).

Remark 1. The two conditions can be considered a generalization of those used

in Shao, Yu and Zhong (2010) and Ma, Hu and Zhang (2015), where only two

arms (one treatment and one control) are considered.

Now, we present our theorem on the treatment effect estimation. We write

1 for a column vector of ones, with a subscript denoting its dimension.
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Theorem 1. Under Conditions (A) and (B), as N →∞,( N

K + 1

)1/2{(
Ȳ0, Ȳ1, . . . , ȲK

)
T −

(
µ0, µ1, . . . , µK

)
T
}

converges in distribution to a normal distribution with mean zero and covariance

matrix V, where V = diag{σ2d1K+1}+(K+1)−1β2Var[E{Zi | D(Zi)}]1K+11
T

K+1

and σ2d = σ2ε + β2E[Var{Zi | D(Zi)}].
The theorem gives the asymptotic distribution of the average responses of

different treatment groups. It is clear that these treatment effect estimators are

no longer independent and are positively correlated, which is a key difference

compared with complete randomization. The dependence structure arises from

the randomization procedure that adaptively assigns patients to the treatment

arms to enhance the covariate balance.

Remark 2. Under complete randomization, the asymptotic covariance matrix

of {N/(K+1)}1/2(Ȳ0, Ȳ1, . . . , ȲK)T is a diagonal matrix with the diagonal entries

equal to σ2ε + β2σ2Z , which is larger than σ2d + (K + 1)−1β2Var[E{Zi | D(Zi)}]
under CAR. Thus, CAR can increase the precision of the estimation of the mean

response of each treatment group by balancing the covariates.

The theorem can be used to study the properties of any linear transformation

of (Ȳ0, Ȳ1, . . . , ȲK)T. However, our main interest is in comparing the treatment

effects between the experimental treatments and the control. The next corollary is

a direct consequence of Theorem 1 and provides the asymptotic joint distribution

of Ȳk − Ȳ0, for k = 1, . . . ,K.

Corollary 1. Under Conditions (A) and (B), as N →∞,( N

K + 1

)1/2{(
Ȳ1 − Ȳ0, . . . , ȲK − Ȳ0

)
T − (µ1 − µ0, . . . , µK − µ0)T

}
converges in distribution to a normal distribution with mean zero and covariance

matrix Σ, where Σ = diag{σ2d1K}+ σ2d1K1T

K .

Corollary 1 reveals that the asymptotic variance of Ȳk − Ȳ0 under CAR is

smaller than that under complete randomization. In particular, when Zi are

discrete covariates, the asymptotic variance of {N/(K + 1)}1/2(Ȳk − Ȳ0) is 2σ2ε ,

compared to 2(σ2ε + β2σ2z) under complete randomization. This can be inter-

preted to mean that the covariates are balanced so well that the variability of

the difference in means between the two groups is due only to the random errors.

The corollary provides a theoretical foundation for deriving a valid test with a

correct type I error rate.
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2.3. Control of type I error rate in seamless clinical trials with CAR

The commonly used test statistic for H0,k : µk = µ0 is based on a form of

Ȳk − Ȳ0 that is normalized to have a unit variance. The next theorem follows

Theorem 1 and shows how to construct such test statistics.

Theorem 2. Assume that Conditions (A) and (B) hold. Let

Xk =
Ȳk − Ȳ0

σd(1/Nk + 1/N0)1/2
, k = 1, . . . ,K.

If the null hypotheses H0,k : µk = µ0 are true for all k = 1, . . . ,K, then, as

N → ∞, (X1, . . . , XK)T converges in distribution to a normal distribution with

mean zero and covariance matrix R, where R = diag{1K/2}+ 1K1T

K/2.

Based on Theorem 2, Xk following a standard normal distribution can be

used as the test statistic to test the individual null hypothesis H0,k : µk = µ0,

and the critical value can be selected accordingly. Note that the asymptotic

distribution remains unchanged if σd is replaced by its consistent estimator σ̂d,

which is usually obtained in practice using either the model-based method or

the bootstrap method. We propose fitting a linear regression using all of the

stratification covariates in the model to obtain consistent estimators for the pa-

rameters in the expression of σd in Theorem 1 and to calculate the estimate of

σd accordingly. By the continuous mapping theorem, σ̂d obtained in this way is

a consistent estimator of σd. We illustrate these methods in Section 3.

Remark 3. Compared with tk defined in (2.1) that is valid under complete ran-

domization, we find that σd or its consistent estimator must be used instead of

s to construct the test statistics under CAR. Otherwise, the asymptotic distri-

bution is more concentrated around zero than the standard normal distribution,

and the actual type I error rates are smaller than the nominal levels.

As argued previously, to control the type I error rate for seamless phase

II/III clinical trials, it is critical and sufficient to prove that the Simes test or the

Dunnett test is still valid with the test statistics Xk under CAR. In Theorem 2,

we have successfully detected that the joint distribution of (X1, . . . , XK)T is an

equicorrelated multivariate normal distribution with a nonnegative correlation.

The following theorem is an immediate consequence of Result 1 in Sarkar and

Chang (1997).

Theorem 3. Under Conditions (A) and (B), the type I error rate is controlled

for the Simes test with the test statistics Xk, for k = 1, . . . ,K, under CAR.
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We next consider the Dunnett test. In Theorem 2, we proved that the vector

of test statistics (X1, . . . , XK)T asymptotically follows a K-dimensional normal

distribution with unit variances and constant correlations equal to 1/2. To obtain

a valid test, we can reject the null hypotheses if

max
1≤k≤K

Xk ≥ c′, (2.2)

where c′ is determined by pr(ξ1 < c′, . . . , ξK < c′) = 1 − α, and (ξ1, . . . , ξK)T

follows the normal distribution N (0,R). Note that the test considered here is

based on Xk defined in Theorem 2 instead of the conventional tk used under

complete randomization. In addition, the original Dunnett test is based on the

multivariate t distribution, whereas the test presented here uses the normal dis-

tribution, which relies on the asymptotic normality given in Theorem 2. For

these reasons, we refer to the test based on Xk and rejection region (2.2) as the

modified Dunnett test, although we call it the Dunnett test for simplicity when

there is no confusion.

An application of Theorem 2 yields the following theorem.

Theorem 4. Under Conditions (A) and (B), the type I error rate is asymp-

totically α for the Dunnett test with test statistics Xk, for k = 1, . . . ,K, under

CAR.

Theorems 3 and 4 show that the widely used Simes and Dunnett tests can

also be applied under CAR, provided an appropriate adjustment is made to the

test statistics. Combined with the results from the last section, the design and

analysis procedures for seamless phase II/III clinical trials with CAR (described in

Section 2.1) can lead to higher precision and valid inferences for treatment effects,

showing the advantages of balancing the covariates over complete randomization.

3. Numerical Studies

We have obtained the asymptotic results for the proposed procedure. We

next study its finite-sample properties regarding the type I error rate, the power,

and the probability that the best treatment is selected for Stage 2 at the interim

look. Three scenarios are considered: (1) three treatments and two stratifica-

tion covariates; (2) four treatments and three stratification covariates; and (3)

five treatments and two stratification covariates. We study both discrete and

continuous stratification covariates. In this section, we discuss the simulation

setting and results for Scenario 1. The results for Scenarios 2 and 3 and addi-

tional results showing the robustness of the proposed method to various model
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misspecifications are reported in the Supplementary material.

We first consider the case of discrete stratification covariates. In Scenario 1,

two experimental treatments (i.e., treatment 1 and treatment 2) are compared

with one control (i.e., treatment 0) in Stage 1, and discrete stratification covari-

ates are considered. The following linear model with two covariates Z1 and Z2 is

used to simulate the response Yi, for i = 1, . . . , N +N ′,

Yi = α0 + α1Ti1 + α2Ti2 + β1Zi1 + β2Zi2 + εi,

where (α0, α1, α2, β1, β2)
T are unknown parameters; Z1 and Z2 follow Bernoulli

distributions with success rates p1 and p2, respectively; εi follows the normal

distribution N (0, σ2); and Tik = 1, for k = 1, 2, if the ith patient is assigned to

experimental treatment k, and Tik = 0 otherwise.

In Stage 1, 120 patients sequentially enter the trial. We implement and

compare the stratified permuted block design with respect to both Z1 and Z2

with a block size of six and complete randomization. Let

Wk =
Ȳk − Ȳ0

(S2
k/Nk + S2

0/N0)1/2
, k = 1, . . . ,K.

The experimental treatment with a larger Wk, denoted as treatment k?, is con-

sidered more effective, and is selected to continue to Stage 2. In Stage 2, 500

patients sequentially enter the trial and are randomly allocated to the control

arm and treatment k? using either a stratified permuted block design or com-

plete randomization. At the end of the trial, we test H0,k? : µk? = µ0 versus

H1,k? : µk? > µ0.

We compare four analysis approaches: (1) the traditional two-sample t-test

without adjustment; (2) a linear regression with both covariates Z1 and Z2 in

the model; (3) the bootstrap t-test proposed by Shao, Yu and Zhong (2010);

and (4) our t-test with adjustment. Here, we show the bootstrap t-test for

Stage 1, and it can be done similarly for Stage 2. We generate B bootstrap

samples (Y ?b
1 , Z?b

1,1, Z
?b
1,2), . . . , (Y

?b
N , Z?b

N,1, Z
?b
N,2), for b = 1, 2, . . . , B, independently

by random sampling with replacement from (Y1, Z1,1, Z1,2), . . . , (YN , ZN,1, ZN,2).

We implement stratified permuted block design randomization with respect to

(Z?b
1,1, Z

?b
1,2), . . . , (Z

?b
N,1, Z

?b
N,2) to obtain the bootstrap analogs of treatment alloca-

tions (T ?b
1k , . . . , T

?b
Nk), where T ?b

ik = 1, for k = 0, 1, 2, if the ith patient is assigned

to treatment k, and T ?b
ik = 0 otherwise. Define
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Table 1. Type I error rate (percentage) in a seamless trial with three treatments and two
discrete covariates.

(p1, p2, σ) Allocation t-test lm BS-t Adjusted-t

Simes (0.5, 0.5, 1.0) SPB 1.73 5.26 5.14 5.20

CR 5.00 4.73 - -

(0.4, 0.6, 1.0) SPB 1.78 4.84 5.35 5.41

CR 4.73 4.80 - -

(0.4, 0.6, 1.5) SPB 3.00 4.78 5.46 5.36

CR 4.61 4.65 - -

Dunnett (0.5, 0.5, 1.0) SPB 1.98 5.75 5.09 5.46

CR 5.20 5.30 - -

(0.4, 0.6, 1.0) SPB 1.91 5.38 5.23 5.36

CR 5.05 5.23 - -

(0.4, 0.6, 1.5) SPB 3.38 5.27 5.17 5.40

CR 5.09 5.08 - -

Ȳ ?b
k − Ȳ ?b

0 =
1

N?b
k

N∑
i=1

T ?b
ik Y

?b
i −

1

N?
0

N∑
i=1

T ?b
i0 Y

?b
i ,

N?b
0 =

N∑
i=1

T ?b
i0 , N?b

k =

N∑
i=1

T ?b
ik , k = 1, 2.

The bootstrap estimator of the variance of Ȳk− Ȳ0 is the sample variance of Ȳ ?b
k −

Ȳ ?b
0 , for b = 1, 2, . . . , B, denoted ν̂Bj . The bootstrap t-test has the test statistic

TB = (Ȳk − Ȳ0)/ν̂
1/2
Bj . We set B = 200 in the simulations. For the proposed

t-test with adjustment, based on our theorems, the value of σd is estimated using

Theorem 1, and the values of σε and β are obtained by fitting a linear model

with both covariates. The closure principle and a combination test with either

the Simes or the Dunnett test are applied to control the familywise type I error

rate. The significance level α is 0.05 for all the tests. All results are based on

10,000 replications.

In Table 1, we report the type I error rate for different parameter values of

(p1, p2, σ), while fixing α0 = β1 = β2 = 1. Under complete randomization, the

type I error rate is close to the nominal level 0.05 for both the two-sample t-test

(t-test) and the full linear model (lm). Under the SPB design with either the

Dunnett or Simes test, the type I error rate of the two-sample t-test is far below

0.05, whereas our t-test with adjustment (Adjusted-t) successfully controls the

error rate. The error is also well controlled when we use the full linear model or

the bootstrap t-test (BS-t).
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Table 2. Power (percentage) and number (M) of replications in which the better treat-
ment is selected for Stage 2 in a seamless trial with three treatments and two discrete
covariates.

(α1, α2) Allocation t-test lm BS-t Adjusted-t M

Simes (0.26, 0.16) SPB 65.11 79.88 80.48 80.55 6,667

CR 64.83 79.25 - - 6,420

(0.24, 0.16) SPB 58.96 75.35 76.49 76.42 6,374

CR 60.27 74.76 - - 6,139

(0.22, 0.16) SPB 52.69 70.23 71.61 71.33 6,042

CR 55.07 69.79 - - 5,837

Dunnett (0.26, 0.16) SPB 65.74 80.61 80.86 80.97 6,667

CR 65.98 80.13 - - 6,420

(0.24, 0.16) SPB 60.08 76.30 77.20 77.00 6,374

CR 61.44 75.82 - - 6,139

(0.22, 0.16) SPB 53.57 71.18 72.39 72.10 6,042

CR 56.28 71.09 - - 5,837

In Table 2, we compare the power of the different designs and analysis

approaches. We report the results for different values of (α1, α2) while fixing

(p1, p2, σ) = (0.5, 0.5, 1) and α0 = β1 = β2 = 1. Our t-test with adjustment and

the bootstrap t-test under CAR have significantly higher power than the t-test

without adjustment under either CAR or complete randomization. In addition,

our design performs better than complete randomization in terms of the number

of replications (M) in which the better treatment is selected for Stage 2. To save

space, we present additional results for Tables 2 and 4 in the Supplementary

Material.

We also performed numerical studies in which some of the covariates are

continuous. To save space, we report the results for three treatments and two

stratification covariates only. The setting is as in Scenario 1, except that we as-

sume Z2 follows a standard normal distribution. When implementing the strat-

ified permuted block design, we discretize Z2 into the Bernoulli variable D(Z2)

as follows: D(Z2) = 1 if Z2 < zq, and D(Z2) = 0 otherwise, where zq is the qth

quantile of the standard normal distribution. The continuous covariate is used

in the statistical inference procedures. Our t-test with adjustment controls the

type I error at around 0.05, while the two-sample t-test is too conservative under

the SPB design with either the Dunnett or the Simes test (Table 3). At the same

time, the t-test with adjustment is much more powerful than the two-sample t-

test under both the stratified permuted block design and complete randomization

(Table 4).
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Table 3. Type I error rate (percentage) in a seamless trial with three treatments, one
discrete covariate, and one continuous covariate.

(p1, q, σ
2) Allocation t-test lm BS-t Adjusted-t

Simes (0.5, 0.5, 1.0) SPB 1.10 4.53 5.45 5.16

CR 4.47 4.56 - -

(0.4, 0.6, 1.0) SPB 1.08 4.63 5.14 5.20

CR 4.57 4.60 - -

(0.4, 0.6, 1.5) SPB 2.16 4.89 5.31 4.96

CR 4.55 4.58 - -

Dunnett (0.5, 0.5, 1.0) SPB 1.23 4.89 5.78 5.41

CR 5.02 4.97 - -

(0.4, 0.6, 1.0) SPB 1.27 4.94 5.46 5.19

CR 5.13 4.87 - -

(0.4, 0.6, 1.5) SPB 2.31 5.09 5.66 5.31

CR 4.89 5.10 - -

Table 4. Power (percentage) and number (M) of replications in which the better treat-
ment is selected for Stage 2 in a seamless trial with three treatments, one discrete co-
variate, and one continuous covariate.

(α1, α2) Allocation t-test lm BS-t Adjusted-t M

Simes (0.26, 0.16) SPB 46.76 79.90 69.52 69.61 6,547

CR 49.92 79.16 - - 6,154

(0.24, 0.16) SPB 40.55 75.70 64.68 64.97 6,243

CR 45.60 74.73 - - 5,970

(0.22, 0.16) SPB 35.35 70.98 60.07 59.83 5,944

CR 41.69 70.32 - - 5,709

Dunnett (0.26, 0.16) SPB 48.14 80.49 70.19 70.18 6,547

CR 51.38 79.77 - - 6,154

(0.24, 0.16) SPB 41.79 76.43 65.67 65.87 6,243

CR 46.87 75.79 - - 5,970

(0.22, 0.16) SPB 36.79 72.06 60.77 60.68 5,944

CR 43.15 71.29 - - 5,709

4. Redesign of a Clinical Trial Evaluating Treatments for Chronic Ob-

structive Pulmonary Disease

COPD is a chronic lung inflammation disease that causes poor airflow from

the lungs and long-term breathing problems. A double-blinded two-stage seam-

less clinical trial, known as the INHANCE trial, has been conducted to evalu-

ate the efficacy and safety of indacaterol in the treatment of COPD. The trial

used equal allocation with stratification for smoking status (Barnes et al. (2010);
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Donohue et al. (2010)). In Stage 1, 770 patients were enrolled and four doses

of indacaterol were compared with a placebo and with two active controls, for-

moterol and tiotropium. In Stage 2, two doses of indacaterol were selected for

comparisons with a placebo and tiotropium in 1,683 patients.

Here, we redesign the INHANCE trial and evaluate the differences of trough

forced expiratory volume in one second (FEV1) between multiple doses of in-

dacaterol and the placebo. Trough FEV1 is a standard measurement of lung

capacity, where a lower FEV1 indicates more severe COPD. We simplify the

treatment arms into the placebo and four dose levels of indacaterol in Stage 1,

and select only one dose level along with the placebo to go forward to Stage 2,

following the selection rule described in the previous section. We use summary

statistics for the patients and the effect sizes of the dosages in the study to create

a synthetic data set of patients. To do so, we simulate the outcome FEV1 and

the covariate in 112 patients in Stage 1 and 167 patients in Stage 2 using the

following linear regression model:

Yi = 0.15 + 0.15Ti1 + 0.18Ti2 + 0.22Ti3 + 0.19Ti4 + β1Zi1 + εi.

Here, (Ti1, Ti2, Ti3, Ti4) are indicator variables indicating the dosage assignment of

the ith patient: Tik = 1, for k = 1, . . . , 4, if the ith patient is assigned to dosage

k, and Tik = 0 otherwise. The binary covariate Zi1 indicates smoking status,

with a success rate of 0.41: Zi1 = 1 if the ith patient is a current smoker, and

Zi1 = 0 if the patient is an ex-smoker. Lastly, εi follows the normal distribution

N (0, σ2).

In both stages, a stratified permuted block design with respect to smoking

status is implemented with block sizes of 10 and 6, respectively, to assign patients

to different arms. In Table 5, we compare the power of the two-sample t-test and

our t-test with adjustment using different values of β1 and σ. We find that an

increase in the value of the smoking status coefficient increases the power advan-

tage of our t-test with adjustment, indicating that our t-test with adjustment is

especially useful when the outcome has large differences among strata that are

generated by dividing the study population using stratification covariates. We

also find that a larger σ leads to a lower power for all of the tests.

5. Conclusion

Several future research directions are of interest. First, we assumed a linear

model for data generation and equal allocation probabilities in order to investi-

gate the treatment effect estimators based on the differences in the sample means



1094 MA, WANG AND ZHU

Table 5. Power (percentage) in redesigned INHANCE trial.

(β1, σ) t-test Adjusted-t (β1, σ) t-test Adjusted-t

Simes (0.2, 0.5) 83.33 85.68 Dunnett (0.2, 0.5) 85.20 86.92

(0.6, 0.5) 73.22 85.72 (0.6, 0.5) 76.13 86.87

(1.0, 0.5) 53.11 85.76 (1.0, 0.5) 56.21 86.86

(0.2, 0.6) 69.57 72.66 (0.2, 0.6) 72.34 74.64

(0.3, 0.6) 68.34 72.59 (0.3, 0.6) 70.97 74.49

(0.2, 0.7) 58.07 61.22 (0.2, 0.7) 61.66 63.15

(0.3, 0.7) 56.80 61.22 (0.3, 0.7) 60.59 63.19

under CAR. Some recent studies, however, indicate that the linearity and equal

allocation assumptions may be relaxed. When there are only two arms (one

treatment and one control), Ma, Tu and Liu (2020) showed that the difference-

in-means estimator is unbiased and as efficient as regression-based estimators

under the stratified permuted block design, even if the linear model is arbitrarily

misspecified and the allocation probabilities are unequal for different arms. For

the case of multiple treatments, which is more relevant to seamless trials, the the-

oretical properties of difference-in-means estimators have not been established,

though some regression-based estimators have been studied (Bugni, Canay and

Shaikh (2019)). Moreover, robust variance estimators are required for valid tests

under these relaxed assumptions. The usual ordinary least squares variance es-

timator and Huber–White sandwich estimator are valid in a two-arm trial with

equal allocation. However, in general, especially for unequal allocation, model-

based variance estimators tend to fail, and consistent nonparametric estimators

are preferred (Bugni, Canay and Shaikh (2018); Ma, Tu and Liu (2020)).

Second, estimation is often an important, but secondary target for seamless

phase II/III trials (Posch et al. (2005); Bowden and Glimm (2014)). We have

focused on hypothesis testing, the primary concern in seamless trials and another

element of statistical inference. It would be interesting to explore the bias in the

estimation following our design.

Third, Stallard and Friede (2008) investigated scenarios where more than

one experimental treatment continues beyond the interim analysis, and sequen-

tial monitoring is implemented in Stage 2. Magirr, Jaki and Whitehead (2012)

proposed methods for any number of treatment arms, stages, and patients per

treatment per stage in such trials. Investigating these scenarios, especially group

sequential monitoring at phase III, will be of particular interest to practitioners.

Fourth, works on seamless phase II/III designs and adaptive randomiza-

tion under the Bayesian framework include, but are not limited to those of
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Huang et al. (2009), Yuan, Huang and Liu (2011), Inoue, Thall and Berry (2002),

Berry (2012), and Zang and Lee (2014). These designs provided insight into our

study.

Fifth, seamless phase II/III designs with different study endpoints in the

two stages have been investigated (Huang et al. (2009)). These have profound

implications for real trials with a primary endpoint that is observed only after a

long-term follow-up. It is necessary to select the treatment at the interim look

based on correlated short-term endpoint data. Implementing our design in this

scenario will broaden its application in practice. We leave these topics to future

work.

Supplementary Material

The online Supplementary Material contains the proof of the main theorem

and additional simulation results.
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