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S1 Proofs of the Minimax Lower Bounds

S1.1 Proof of Theorem 1

By the definition of the rate function v (s, n), it suffices to show the following

two statements.

inf sup E(T —T(6, 1)) > L2s* - min { log (1 + %) : Li},
T (0,u,%21,32)ED>®(s,Ly) S
(SL.1)
. L?s?
inf sup E(T —T(6, ,u))2 2 —5— - min{log s, Li} (S1.2)
T (Guufzzl,EZ)eDoo(syLn) log S

Proof of (S1.1). Let I(s,n) be the class of all subsets of {1,...,n} of s
elements. For I € [(s,n), we denote 8y = {# € R": 0, =0,Vi ¢ I,and 0; =
p,Vi € I}. Suppose that p is fixed with 4 = p* where pf = L, for all

1 <7 <n. Denote

gr(@1, - Ty Y1, Yn) = I, () IT O (4i),
where 1)y, denotes the density function of N(6;,1) and 6, ; is the i-th compo-
nent of §;. In this way, we are considering the class of probability measures
for {x;, yi}1<i<n where the mean vector for {z;} is the s-sparse vector 6,
whereas the mean vector for {y;} is u*. By averaging over all the possible
I € [(s,n), we have the mixture probability measure

1
g:m (Z gr-

s/ I€l(s,n)
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On the other hand, we consider the probability measure

f=10 ozl ?:ﬂpu;* (v:)

where ¢ is the normal density of N(0,1). From the above construction, we
consider DY(p) = {(0,11,21,%s) : 0 = 01,1 € l(s,n),p = p*, ) = By =
ITU{(0, 1, %1,%) : 0 =0,u = p*, 3 =3y = I}. Apparently, for p < L,
D%p) C D>*(s,L,). In the following, we will consider the y2-divergence
between g and f and obtain the minimax lower bound over D;(p) using the

constrained risk inequality obtained by Brown and Low (1996). Note that

5%

and for any I and I,

gigr 1 Dol = 0r)* + 30 (i — 0r)* = >0, @}
7 = (QW)n/Q/eXp{_ 5 }

y W/GXP{ B Z@-(yzé— uf)g}

_ ! / exp { — Ll = Ori = 00 = 255, 010
(27’(’)”/2 9

9191'

s Ielsn ) I'€l(s,n)

= exp(p?))

where j is the number of points in the set I N I’. It follows that

/ o Z ) (Z) (j) (Z:j) exp(2p°5)

Jj=

= Eexp(2p®J)
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where J has a hypergeometric distribution

() ()
2

As shown in p.173 of (Aldous, 1985), J has the same distribution as the

P(J =J) =

random variable E(Z|B,) where Z is a binomial random variable of param-
eters (s, s/n) and B,, some suitable o-algebra. Thus, by Jensen’s inequality
we have

—e€
n

E exp(2Jp%) < <1 - % 42 2P2) . (S1.3)

The rest of the proof will be separated into two parts, corresponding to

L, > y/log (1 + s%) and L, < 4/log (1 + s%), respectively.
Case I. L, > 4/log (1 + s%) By taking p = 4/log (1 + S%) < L,, we

have

2
/97 = Eexp(Jp?) < e. (S1.4)

Then if some estimator § satisfies
Ef(§ —0)* < Cs?||p*||%, log (1 + %) (S1.5)

then by the constrained risk inequality (Theorem 1 of Brown and Low

(1996)),

2
* * * * n
By (5= solllle ) = 0%l I = 2ol o sl o (142

n n
= llton (147 ) - VEC I tog (14 7).
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for any such estimator §. Recall that ||x*]|cc = L,. By choosing C' suffi-

ciently small, we conclude that there exists some I € [(s,n) such that

2
E,, (6 — s,oHu*Hoo) > (O's*L2 log <1 + %) (S51.6)
S
for all 4. Therefore we have

inf sup E(T —T(6,11))* > Cs*L? log (1 + %) (S1.7)

T (6,1,51,52)€D?(p)

The lower bound (S1.1) then follows from the fact that L, 2 v/logn.

Case II. L,, < 4/log (1 + s%) By taking p = L,, < 4/log (1 + s%), again

we have
e
/7 = Eexp(JpQ) <e. (S1.8)

Then if some estimator § satisfies
Ef(0 —0)* < Cs?|| |3, L2 (S1.9)

then by the constrained risk inequality (Theorem 1 of Brown and Low

(1996)),
2
E, (5 - SPHu*Hoo> > 522" 12 = 20511 oo C2s 8 | L
= P2 L2 — V2O | L2,

for any such estimator §. Recall that ||4*||c = Ln. By choosing C' suffi-

ciently small, we conclude that there exists some I € I(s,n) such that

2
(- solill ) = 0571 (51.10)
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for all §. Therefore we have

inf sup E(T —T(0,1))? > Cs*L2, (S1.11)
T (9,#,21,22)€Dg(p)

This proves the other part of (S1.1).

Proof of (S1.2). Now we prove the second part of the theorem. It follows by
Lemma 1 in Cai and Low (2011) that there exist measures v; on [—M,,, M,]

for © = 0, 1, such that:
1. vy and 14 are symmetric around 0;
2. [ty (dt) = [tw(dt), for 1 =0,1,... ky;
3. [ |tln(dt) — [ tlw(dt) = 2M,,0y,,.
4. [ |t|lvo(dt) > 0.

where 0y, is the distance in the uniform norm on [—1, 1] from the absolute
value function f(x) = |z| to the space of polynomials of no more than
degree k,. In addition, &y, = .k, ' (1+0(1)) as k, — co. Now we consider
product priors on the n-vector #, which are supported on the first s < n

components. Let
I/Z-nl = H®Sl/i : H®n_81{0}, Vig = H®n1{u*}

for ¢ = 0 and 1. In other words, we put independent priors v; for the first s
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components of the vector €, while keeping the other coordinates as 0, and
we fix p = p*.

Following the above construction, we have

1 & 1 & s
B 210~ B 3 161 = Bl — B 6]] = 257,61,
=1 =1
and
1 1
By, > il - o > il =0
i=1 =1

Then we have

1
Evpyop, 10 1) = Eugy o, =T (6, ) (S1.12)

V01V02

S
= E(Eyll|ei|EV12|/’Li| - EV01|6i|]EV02|Mi|)

S
= E(Eu11|6i|Ey12|Mi‘ - EV01‘92'|]EV12|/MD

S

+ H(]EVLH |92|EV12|MZ| - EV01|9i|EV02|:ui|)

S S
- Ev1zlﬂi|E(EV11 |0’L| - ]EVm |01|> + EVOI |Qi’ﬁ(EV12|Mi| - ]EV02|/~Li|>

2sM 5k‘n
= - ]EV12 ’MZ|
n

B 2$MnLn5,%n

p (S1.13)

We further have

1 sMZ2L?

%2 = EEV&V&(T(Q,IM) - EV&V&T(&’ M))Q < (Sll4)

n2

Set fou, (y) = [y — t)p(dt) and fiu, (y) = [ ¢(y — t)r1(dt). Note that
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since g(x) = exp(—z) is a convex function of x, and 14 is symmetric,

Let H, be the Hermite polynomial defined by

which satisfiy

/ H2y)p(y)dy =l and / H, (y) Hi(y)d(y)dy = 0

when r % [. Then

P(y) = (=1)"H,(y)d(y) (S1.15)

(S1.16)
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and it follows that

/ (i, (y) — fo,Mn(y))Qdy

fo,Mn (y)
< / (Fron () — fo,Mn<y>>2eMﬁ/2/¢<y>dy

M2/2/{ {/tkul(dt) —/t’“Vo(dt)] }2/¢(y)dy

3 iy
M2 / 2 M% [ / / t’“uo(dt)rdy

) M2k
:(ZM"/2 Z T|:/th1 dt / :|

k=kn+1

00 2%k

< Mn/2 g M, .

- k!
ke=kn+1

It then follows

H fan i_l

fO M, xz
(1+€Mn/2 Z MQk) o 1
k= k:n-s-l !
< (1 + eMEL/?D%MZk”) —1,

for some D > 0. Since k! > (k/e)*, we also have

2
I’ < (1+eM /QD(ef) > —1 (S1.17)

The rest of the proof is separated into two parts.

Case I. L, > +/logs. Now let M,, = y/logs < L, and k, < logs. It

then can be checked that I,, < ¢ for some sufficiently small constant ¢ > 0.
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Therefore, Corollary 1 in Cai and Low (2011) along with the fact that

L, > +/log s yields

1 - 25M,,6p, Ly /1 — (/2 M, L, /n)1,)?
inf sup SE(T —T(0, )" > (25M, 0k, L/ = (s ~ /1)
T (ea#721722)€D00(87Ln) n (In + 2)
C's?L2
> =% on (S1.18)
n?log s

Case II. L,, < +v/logs. In this case, we set M,, = L, < 4/logs and

k, < logs. Then again I,, < c¢ for some sufficiently small constant ¢ > 0.
Therefore, Corollary 1 in Cai and Low (2011) along with the fact that

M, < L, yields

1 . 2sM,,6, L, /n — (sY2M, L, /n)I,)?
inf sup SE(T —T(0, )" > (25M, 01, L/ = (s - /1)
T (ea/‘hzlzzz)eDw('&Ln) n (In + 2)
C 2L4
> —2on (S1.19)
n?log” s

S2 Proofs of the Risk Upper Bounds

S2.1 Proof of Theorem 2

For the hybrid estimators defined in Section 2.2 of the main paper, the key is
to study the bias and variance of a single component. Let x1, 25 ~ N(6,1),
Y1,Y2 ~ N(u,1). Denote §(x) = min{Sk(z),n*}. In the following, we

analyse the two hybrid estimators separately.
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Part I: Analysis of T5. Let

§=&(x1, 72,91, 92)
= [0(x1)I(/2logn < |xo| < 2y/2logn) + |z1|L(|z2| > 24/2]logn)]
< (5 T(v/2Togm < [ya] < 2/2Togn) + | ([ > 2/2Tog )]

(S2.1)
Note that

E(§) = [Eo(z1)P(\/2logn < |xe| < 24/2logn) + E|zq|P(|z2] > 24/21logn)]
x [Ed(y1)P(v/2logn < [ys| < 2v/2logn) + Ely: |P(|ys| > 2v/2logn)]

(52.2)

We denote
52 = Var(d(x1)I(y/2logn < |15 < 2+/2logn) + |21 |I(|zs] > 24/2logn)),
&5 = Var(d(y1)I(/2logn < |yz| < 24/2logn) + |y1]|1(Jye| > 24/21logn)),

0, = Ed(z1)P(\/2logn < |zo| < 2¢/2logn) + E|zy|P(|zs| > 24/2logn),
fiy = Ed(y1) P(v/2log n < |yo| < 24/2logn) + Elyi| P([ye| > 24/21logn).

Then we have
Var(§) = 626, + G2, + 6,62
The following two propositions are key to our calculation of the estimation

risk.
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Proposition 1. For all 0, € R, we have

Bu = 10, — 101l S Viogn, Byl = |y — lull S Viogn,

and
52 < logn, a
In particular, when 6 = 0, we have |B;| < n~2logn and 6> < n~tlogn,

whereas when p =0, we have |By| < n~*logn, and &; < n~"logn.

Proposition 2. For all 0,1 € R such that 0, < L, where L, < (v/2 —

1)y/logn, we have
|Bol =10 — 10| S Ly |Byl = |ty — ull S La,

and
&2<10gn’ 52 < logn‘

Now the bias of the estimator £ satisfies

B(€) = E€ — [0][p| = brf1, — 16]|1
<O - |z — [l + L] - i — 101 + 1y — |l] - 12 — 16
< |pl[By| + 10]| Bz| + [ Bz || Byl (52.3)
and the variance
Var(§) = 626, + 621, + 5,0,

S 620, + |ul*al + |01°6) + Bio, + Blos. (S2.4)
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Now let (x1g, T2, .oy Tne) ~ N(0,L,) and (y1e, Y2r, -, Yne) ~ N(p,1,) for
¢ =1,2, and let

flg = Z §(@ir, Ti2, Yin,s Yin)-

=1

Case 1. L 2 y/logn. It follows from (S2.3) and Cauchy-Schwartz inequality

that the bias of T}? is bounded by

IBITR)] < (10]lo + ulloc)s/log n + slog n

—

From (S2.4) we have the variance of 7%(0, 11) is bounded by

Var(f]‘g) < Z Var(&(wi1, Tiz, i1, Yiz))

i=1
< slog®n + ([|0[12 + l|ull%)s log n (52.5)
Therefore the mean squared error of T 2 satisfies
E(T3 = T(0.p))* < BX(T) + Var(T3)
< s?L2 logn.

Case II. L,, < v/logn. It follows that

BRI S (10lloo + lptlloo) sLy + sLy

—

From (52.4) we have the variance of 7%(0, ;1) is bounded by

Var(T5) < Z Var(&(wi, Tio, Yir, Yiz))

i=1

3

sL?logn log’n log”® n

v v

<log’n + + L% logn + (S2.6)

n3
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Therefore the mean squared error of f;ﬁ satisfies

E(T3 —T(0,1))* < BX(T%) + Var(Tg)

log®n

< 2L4
NS n+ \/ﬁ

+ L% logn

Part II: Analysis of Tr. With a slight abuse of notation, we denote

§ = &1, 2,41, 92) = [0(z0) (|22 < 2/2logn) + |21|1(|z2] > 2¢/2]logn)]
X [6(y1) I (ly2| < 2v/2logn) + [y1[L([y2] > 21/2logn)]

(S2.7)

Note that

E(€) = [E8(e1)P(laa] < 2/ZTogm) + Elas [ P(|zs] > 2y/ZTogn)
X [Ed(y1)P(|y2| < 24/2logn) + E|y1|P(ly2| > 24/2logn)] (S2.8)

We denote
63 = Var(0(zq)I(|z2] < 24/2logn) + |x1|I(|ze| > 24/21logn)),
= Var(6(y1)1(|y2] < 2v/2logn) + [yi|L(|y2| > 2+/21logn)),

< N

and
0, = Ed(z1) P (|22 < 24/2logn) + E|zy|P(|zs| > 24/2logn),
fiy = E6(y1) P(lye| < 2v/2logn) + Ely1|P(|y2| > 21/2]logn).
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Proposition 3. Let B, = 0, — ||, B, = ji, — |ul|. For all 6, € R and

K =rlogn for some 0 <r < 1/3, we have

1 1
B,| $ ——, B < —,
|1Bo| S e 1Byl S oo
and
G2=0(n"log’n), &, =0(n"log’n).

In particular, when 0 = 0, we have |B,| < n%2log’n and 5% < n log®n,

whereas when pu =0, we have |B,| < n®?log’n, and 52 < n log®n.

Again, let (x4, T2, ..., Tne) ~ N(0,1,) and (y1¢, Yoo, -, Yne) ~ N (1, 1)
for £ = 1,2, and let fK = > " &(za, iz, vir, viz). It follows that, when
0 < r < 1/4, the bias can be bounded by

< Oloos  llplloos s
~ Vlogn +/logn logn

|B(Tx)|

—

On the other hand, the variance of T'(0, 1) is bounded by

Var(Tx) < Z Var(§(zi, Tiz, Yir, Yiz))

i=1

< n'2Hogbn + n® L log® n - (|16]12 + [|ull?) (S2.9)
< |B(Tx)P, (S2.10)
26—1

as long as 0 <r < . In this case, we have

12
= 57 s*)011%, . s*pll2
E(Tx — T(0, 1)) < &S <

( K ( nu)) ~ loan + logn logn

The final result follows from the fact that max(||0||oo, ||t]lc0) < L.
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S2.2 Proof of Theorem 3

Let 1,29 ~ N(6,1) and y;,y2 ~ N(p,1). Define

§=&(w1,m2,91,92) = (|21l I(|z2] > 2+/210gn)] X [[y1]I(|y2] > 2+/21l0gn)].
(S2.11)

Note that

E(€) = Elas|P(j2o| > 2/21ogn) x Elyt| P(lya| > 2¢/2logn) ~ (52.12)

Denote

&g = Var(|z1|I(|z2] > 2+/2logn)), 65 = Var(|y1|I(|y2| > 24/2logn)),

and

0, = E|zy|P(|z2| > 24/2logn), foy = Ely1| P(|y2] > 24/21ogn).

Then we have

Var(§) = 626
Proposition 4. Let B, =0, — |0| and B, = ji, — |u|. For all 0, € R, we
have

|B.| < v/logn, ’Byl S Vlogn,

and

52 < logn, o
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In particular, when 6 = 0 we have |B,| Sn™* and 62 < n™*, whereas when

p=0 we have |By| Sn~* and 6, Sn~t.

Proposition 5. For all 6, i € R such that p,0 < L, where L, < +/2logn,

we have
|Be| S Lin, |By| < L,
and
52 < logn 52 < logn.
T ~v Y Yy~
n n

Now the bias of the estimator & is

B(¢) = E¢ — |0]|ul = Ouf, — 61|14

< |01|By| + |ul|Bal + | Bal| Byl (52.13)
whereas the variance is bounded by

Var(€) = 626, + oji. + 0.02 < 520, + |ul*62 + 0°5; + logn(G, 4 2.

(S2.14)
Now let (x4, o0, ..., Tne) ~ N(0,1,) and (yie, Yor, o, Yne) ~ N(u,I,) for

¢=1,2, and let

n

T = Z 5(1'1'17 Ti2, Yi1, 3/@'2)-

i=1

Case 1. L, > v/2logn. It then follows that

B(T)| < slogn + ([|0]|oc + |11l )5/ log .



18 RONG MA, TONY CAI AND HONGZHE LI

and
Var(T) < slog?n + (|0]1% + l|u]|%)s log n. (52.15)
Therefore the mean squared error of T satisfies

E(T —T(6, n))* < BX(T) + Var(T)

S s*logn([I015 + IS +logn).

The final result follows from the fact that max(||0||oo, ||t]|c0) < Ln-

Case II. L,, < v/2logn. It then follows that

|B(T)| < sLy, + (10lloo + lltlloc) sLan,

and

~ log?2
Var(T) < 22" 4 12 1ogn. (52.16)
n

Therefore the mean squared error of T satisfies

E(T — T(0, 1))* < BX(T) + Var(T)

1 2
<SPLE 4 =B L2 logn.
n

S2.3 Proof of Theorem 4

By our sample splitting argument, it suffices to obtain the mean squared risk

bound for the estimator T = S, U;(x:)Ui(y;) of T(0, 1) = S0, |6] 1]
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where Ul(xl) = |zall(Jze| > 2v2logn), Uz(yz) = lyall(Jyiz| > 2v/21logn)
and (x1g, o, .oy Tne) ~ N(0,31) and (yie, Yoo, - Yne) ~ N(u, X2) for £ =

1,2. By Proposition 3, the bias of the estimator & = (A]Z(xz)a(yz) satisfies
B(&) = E& — 0] || < |pil|Bia| 4 10i]| Biy| + [ Bial| Biyl, (52.17)

where B;, = Ul(x,) —16;] and B;, = Ul(yl) — |ps|- The variance satisfies

where 62, = Var(U;(z;)) and 62, = Var(U;(y;)). The covariance between
two copies

Cov(&;,&5) = E&§iE; — EGEE;

Thus, we have

Cov(&, &) < |Cov(Ui(x:), Uj(a;))| - fuafiy + |Cov(Us(y), Us(y;))| - 0:0;
+|Cov(Uy(:), Uy () Cov (Ui (1:), U (),

where 6; = EU,(z;) and ji; = EU,(y;). Note that

|Cov(Ui(2:), Uj () < [EU;(2:)U; ()| + 10,65



20 RONG MA, TONY CAI AND HONGZHE LI

where

A~

EUZ(I'JUJ(.Z']) = E‘Z'ZQHQ,’]Q’P(’.’EZQ‘ > 2\/ 210gn, ’LEJ'Q‘ > 2\/ 210gn)

Suppose one of 0; and ¢; is 0, and the other bounded by L,. Then by the

proof of Proposition 3, we have

A~

EU;(2:)Uj(x;) = O(n™*LY)

n

and

So

|Cov(Ui(:), Uj ()| = O(n~*L3).

n

As a result, since p;, p; S Ly, we have
[Cov (&, &)l < O(n™"Ly).

Hence, summation over O(n?) terms will be bounded by O(n=2L2%). On
the other hand, if neither 6, or 8; is zero, we have the trivial bound from

Proposition 3

|COV(£i7 5])’ S 10g2 n,
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and the summation over O(s?) terms will be bounded by s?log®n. Thus,
as long as L, < /n, we have

Var(f) < Z Var(§(zi, wio, yin, Yio)) + O(n7?Ly,) + O(s” log”n) < s” log™ n.

i=1

(S2.19)

Now note that |B(T)| < slogn + (||0]|s + ||t]|o)sv/Tog 1, it follows that

E(T — T(6, 1))* < s*log? n + L2s*log n.

S3 Proof of Propositions 1-5

S3.1 Proof of Proposition 1

In the following, we divide into four cases according to the value of |6].
When |0| = 0, we show that we are actually estimating || by 0. When
0 < |0] < y/2logn, we show that the estimator £ behaves essentially like
d, which is a good estimators when |6] is small. When /2logn < [0] <
4+/2Togn, we show that the hybrid estimator £ uses either d(z1) or |z;| and
in this case both are good estimators of |0|. When |0] is large, the hybrid
estimator is essentially the same as |z1]. We need the following lemmas to

facilitate our proof.

Lemma 1. Consider Gi(z) defined in the main paper. The constant term



22 RONG MA, TONY CAI AND HONGZHE LI

of Gk (x) = leio Guz®, with Gy = M2 gy, satisfies

2M,

BRI (83.1)

gO - Mng[) <

Lemma 2. Let X ~ N(0,1) and Sk (x) = S0, gox M2+ Hyp (). Then

for all |60 < 4v/2logn, we have

AM,

_ <
‘ESK(X) |Q|‘ = 12K + 1)’

and for M? > K, we have ES%(X) < 28K M2 K2,

Lemma 3. Suppose I(A) and I(B) are indicator random variables inde-

pendent of X and Y, with AN B = () then

Var(XI(A) + YI(B)) = Var(X)P(A) + Var(Y) P(B) + (EX)2P(A) P(A°)
+ (EY)2P(B)P(B°) — 2EXEY P(A)P(B).

(93.2)

In particular, if A= B, then we have

Var(X I(A)+Y I(A) = Var(X) P(A)+Var(Y) P(A°)+(EX —EY)*P(A) P(A°).

(93.3)
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Applying Lemma 3, we have

52 = Var(d(z1))P(y/2logn < |1o] < 24/2logn) + Var(|z,|) P(Jx2| > 24/2logn)
+ (E&(z1))?P(y/2logn < |x3| < 24/2logn)(1 — P(y/2logn < |15 < 24/2logn))
+ (Ela1|)?P(Jxa| > 24/2logn)(1 — P(|zs| > 24/2logn))

—2E(z1)E|z1|P(v/2logn < |z2] < 24/2logn)P(|za] > 24/2logn).

g2 = Var(6(y1))P(y/2logn < |2] < 24/2logn) + Var(|y: ) P(|y2| > 2+/2logn)
+ (Ed(y1))*P(v/2logn < |ya| < 2¢/2logn)(1 — P(y/2logn < |ys| < 21/2logn))
+ (Ely1 )2 P(|ya] > 24/2logn)(1 — P(|yz] > 2+/2logn))

— 2E5(y1)Ely: [ P(v/21logn < [yo| < 2v/2logn)P(ly2| > 2v/2logn).

Case 1. 6 = 0. Note that 6(x;) can be written as
d(x1) = Sk (1) — (Sk(w1) —n*)I (S (1) > n?).
Consequently,
IBy| = [E(6(21)) P(v/2T0g 7 < [1] < 2/2Tog ) + (1)) PlJ2s] > 24/2Tog )|

< |ESk (1) + E{(Sk (21) = n*)[(Sk(21) = n*)} + Elz:1|P(Jz2| > 2¢/2logn)

= Bl + BQ + Bg.
By definition of Sk (x;) we have



24 RONG MA, TONY CAI AND HONGZHE LI

It follows from the standard bound for normal tail probability ®(—z) <

27 r¢(z) for z > 0 that

P(|z5] > 24/2logn) = 28(—24/2logn) < ﬁn—‘* (S3.5)
And in this case
E|z1| = 2¢(0). (S3.6)
It then follows that
Bs < 2¢(0) - L ! - (S3.7)

2/ logn W\/Qlognn

Now consider B,;. Note that for any random variable X and any constant

A >0,

E(XI(X > )\) <A 'E(X2(X > )\) < AV 'EXZ
This together with Lemma 2 yields that
By < E{(Sk(z1)I(Sk(z1) > n?)} < n ?E(S%(21)) Sn2logn. (S3.8)

Combining the three pieces together, we have

logn

|B:| < Bi+ By+ B3 S —5—
n
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We now consider the variance. It follows that

52 < Var(Sk(z1))P(y/2logn < |z9] < 24/2logn) + Var(|z,|)P(|zs| > 24/2logn)

+ (E§(21))? + (E|z1 )2 P(|z2| > 2¢/2logn) — 2ES(21)E|xy | P(|2s| > 24/21ogn)
1

<ESk(z1)n™" + (B3(21))” + [Ea] + (El21])* — 2B6(21)Elan[] - 5 Jrlogn

<K M2K? 4 nt logtn + 714—\/10@
<n 'logn
where we use the fact that
P(y/2logn < || < 2y/2logn) < P(/2logn < |z]) < ®(—/2logn) <n".
Case 2. 0 < |0 < /2logn. In this case
|Bo| = [E(6(x1))P(v/2log n < |a] < 2v/2logn) + E(|z1|) P(|z| > 2+/2logn) — |6]]
< |ESk(21) = [0l + E{(Sk (1) — n*)I (Sk(21) = n*)}

+ (E|z1]) P(|zo| > 24/2logn) + |0]|(1 — P(y/2logn < |zs| < 24/2logn))

=DBi+ DBy + B3+ By

From Lemma 2 we have

B; < +/logn.

Again, the standard bound for normal tail probability yields

1
P(|zo| > 24/2logn) < 2®(—4/2logn) < \/:n_l

mlogn
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Note that
E|z1| = 0] 4+ 2¢(0) — 2|0|®(—10]) < || +1 < y/2logn + 1.

Then we have

1
By < [ /21 1) ———n"'<3n7,
3_( ogn + ) —Wlognn < an

and
B, < 10| < +/2logn.

Note that B, follows (S3.8), and we have
|By| < B1 + By + B3 + By S +/logn.
For the variance, note that

(Ed(z1))? < E&*(zy)
= E(min{S% (z1),n*})
= B[Sk (1) = (Sk(@1) = n")[(Sk(21) > n")]
< ESk(21)

< logn,
and

Ex? + (E|zy])* — 2ES(z1)E|z| < Var(z;) + (Elz])* + (v/21logn)? < logn
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Then we have

52 < Var(Sk (1)) + Var(|z,|) P(|z2| > 2/2logn) + (Ed(x1))

+ (Ela1|)2P(Jaa| > 24/2logn) + 2[Ed(x1)]| - E|z1|P(|22| > 24/21logn)

< ESi(21) + (Ed(21))” + [Eaf + (Elz1])* + 2/Ed(21)| - Elaa] 1

n+/mlogn
5v/1
< 2logn + \/Egn
™
< logn.

Case 3 +/2logn < |0| < 4y/2logn. In this case,
|B.| = |E(6(x1))P(\/2logn < |zo| < 2+/2logn) + E(|x1])P(|z2] > 24/2logn) — |0]]

< [E(0(21)) — |0l + [E|z1| — |0]] + 0] P(|22| < 24/21logn)
< [ESk(x1) — |0]| + E{(Sk(z1) — n*)I(Sk(x1) > n?)} +2¢(0) + 4+/2logn
—2 —1
logn +n"“logn+n

logn.
For the variance, similarly since
Ex? + (E|zy|)? 4 2|ES(z1)| - E|z:1| < Var(z,) + (E|z1])? + (44/2logn)?

2M,
+ (4 2logn + —)4 2logn
K

64v/2logn

<14 (324324 32)logn +
TK

< logn,
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and then

7 < Var(Sk (1)) + Var(|z1]) + (Bd(x1))? + (Elz1])? + 2[Ed (1) - Ela |
< ES%(21) + (E6(21))* + [Ex] + (E|z1])? + 2ES (1) E|21 ]

< logn.

Case 4. |0] > 4y/2logn. In this case, the standard bound for normal tail

probability yields that

4

P(jas| < 24/2logn) < 20(—(0]/~21/21ogn)) < 20 (@) < (g)

In particular,

1
P < 24/21 < 20(—24/21 <—pn
(|ZE2| = Ogn) — ( Ogn) — 2\/@”

Also note that

Ed(z;) = Emin{Sk(z),n*}
= E(Sk(21)1{Sk(z1) < n°} + n*1{Sk(z1) > n’})

<n?
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Hence,

1B,| < [E(8(21)) P(v/21og 1 <[] < 24/21ogn) + E(|a1])P(|as| > 2/2logn) — |6]]
< [E(3(x1))|P(v/21ogn < |za] < 24/2logn) + |E|zy| — |6]|
+ Elay | P(Jz2| < 2v/2logn)
< |Elza| — 01| + ([ES(z1)] + El1|) P(|z2| < 24/2l0gn)
< 26(0) + (n” +10] + 1) P(|z2| < 2y/2logn)
< 2¢(f )+4¢<| |) %nQ
o3) 2

1
ﬁ.

IN
»

IN

For the variance, similarly we have

62 < Var(d(x1)) P(v/2logn < |za] < 21/2logn) + Var(|a4|)
+ (Elz1])* P(|z5| < 2¢/2logn) + (E6(21))* P(y/2logn < [as] < 2¢/2logn)
+ 2[R6(21)| - Elar|P(y/2Togn < |s] < 2¢/2Togn)
<1+ [Var(5(z)) + (B5(w))? + (Blar])? + 26 (zy)] - Ela |P(|2] < 24/3Togn)
<1+ [logn + (n* + |0] + 1) P(|z| < 2¢/21ogn)

=1+o0(1).

Obviously, the same argument holds for y;, yo and |p|.
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S3.2 Proof of Proposition 2

When 0] < L, < (v/2 — 1)y/Iogn, we have

|B:| = |E(0(z1))P(y/2logn < |z3] < 24/2logn) + E(|z1])P(|x2| > 24/2logn) — |6|]
< |ESk(z1) — |0]|P(v/2logn < |za] < 24/2logn)

+B{(Sk (1) = n)I(Sk(21) = n*)}

+ (Elz1]) P(|2a] > 24/21logn) + |0](1 — P(y/2logn < |z3] < 24/2logn))

=B +By,+ B3+ By
Note that
P(\/2logn < |z3] <24/2logn) < P(y/2logn < |xa]|)

< P(y/2logn — L, < |z|)
< 2®(—+/2logn + L,)

< 1
~ pl/2

From Lemma 2 we have

1
By < V/lognP(y/2logn < |z| < 24/2logn) < e

n

Again, the standard bound for normal tail probability yields

1
P(|zo| > 24/2logn) < 2®(—+/2logn) < Wn_l



53. PROOF OF PROPOSITIONS 1-531

Note that
E|zq| = |0] + 2¢(0) — 2|0|P(—|0]) < |0| + 1 < L, + 1.

Then we have

1
By < [ /21 1) ———n"'<3n7,
3_( ogn + ) —Wlognn < an

and

By < 0] < L.
Note that B, follows (S3.8), and we have
|By| < By + By + By + By S L.
For the variance, note that

(Ed(z1))* < E&*(zy)
= E(min{S% (z1),n*})
= B[Sk (1) = (Sk(@1) = n")[(Sk(21) > n")]
< ESk(21)

< logn,
and

Ex? + (E|zy])* — 2ES(z1)E|z| < Var(z;) + (Elzy])* + (vV/21logn)? < logn
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Then we have

52 < Var(Sk(z1))P(y/2logn < |12 < 24/2logn) + Var(|z,|)P(|xs| > 24/2logn)

1
ny/mlogn

S3.3 Proof of Proposition 3

We only prove the proposition for . The argument for y is the same. We

need the following lemma for the proof.

Lemma 4. Let X ~ N(0,1) and Sk(x) = S0, gox M " Hyp(z) with
M, = 8ylogn and K = rlogn for some r > 0. Then for all || <
4+/2logn,

aM, 1
(2K +1) ~ /logn’

\Esm) - |e|\ <

and ES%(X) < nb log® n.

Case 1. 6 = 0. Note that d(z;) can be written as

§(z1) = Sk (x1) — (Sg (1) — n*)I(Sk (1) > n?).
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Consequently,
|By| < [ESk(z1)] + E{(Sk (1) — n*)I(Sk(21) > n*)}

+ (|ESk (21)| + Ela1 [)P(|z2| > 2¢/21ogn)

= Bl + BQ -+ B3.
By definition of Sk (x;) we have
B =0. (S3.9)

It follows from the standard bound for normal tail probability ®(—z) <

2 t¢(z) for z > 0 that

P(|2s] > 2¢/2Tog n) = 20(—21/2logn) < ﬁn—% (83.10)
And in this case
El|z1| = 26(0). (S3.11)
It then follows that
Bz < 2¢(0) - e (S3.12)

2/ logn m/2logn

Now consider B,. Note that for any random variable X and any constant
A >0,

E(XI(X >)) <A\ EX2I(X > \) < A'EX2
This together with Lemma 4 yields that

By < B{(Sk(x))I(Sk(x1) > n?)} < n?E(S% (1)) < n®2log’n. (S3.13)
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Combining the three pieces together, we have
|B,| < By + By + Bs < n?log®n.
We now consider the variance. It follows from Lemma 3 and Lemma 4 that

52 < Var(Sk(z1))P(|zs] < 2+/2logn) + Var(|z1|) P(|ze] > 2+1/2logn)

+ [(Bd(21))? + (E|z1 )2 P(|w2| > 2v/21ogn) — 2ES(21)E|z1|P(|22| > 2+/21logn)
1

< ES} (@) + [B3(@) + (Bl ) — 2800 )Bla] - e

< n% log®n

as long as r < 3/4.

Case 2. 0 < |0] <+/2logn. In this case

|Bel = [E(6(1))P(|72| < 2y/21ogn) + E(|21]) P(|w2| > 2\/21ogn) — |6]]
< [E(8(21)) = |6]] + |Ela1| — 6] P (|22 > 2+/21og )
S [ESk(21) = 10]] + E{(Sk (1) — n*)I(Sk(21) = n*)} +n7"
< 1/y/logn +n%"2log®*n +n~*

< 1/4/logn

as long as r < 1/3. Similarly, note that

E5($1> = ESK(.’IZl) + BQ
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then

(Ed(21) — Elz1])* < 2(Ed(21))* + 2(Elzy])®
< 2(ESk(x1) + Ba2)* +2(|6] + 1)
< n% log®n.

Hence the variance can be bounded as follows.

52 <ES%(x1) + Ex3P(|ay| > 24/2logn)
+ (E6(21) — Ela1|)*P(|zo| > 24/2logn)

< n5 log® n.

Case 3. +/2logn < || < 4y/2logn. In this case
| Be| = [E(0(x1)) P(|22| < 2v/2logn) + E(|z1|) P(|z2| > 21/210gn) — |6]]
< [E(0(z1)) — 01| + [Elz] — 6]
S [ESk(@1) — 1011 + B{(Sk (1) — n*)I(Sk(21) = n*)} + 26(6)
< 1/y/logn +n52log*n +n~!

< 1/4/logn

as long as r < 1/3. The variance can be bounded similar to the Case 2.

Case 4. |0 > 4y/2logn. In this case, same argument follows from the

proof of Case 4 in Proposition 1.
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Proof of Proposition 4. Similar to the proofs of previous propositions, we

only prove the statements about . The argument for u is the same.

Case 1. 0 = 0. Note that |B,| = E(|z1|)P(|x2] > 2v/2logn). It follows
from the standard bound for normal tail probability ®(—z) < z71¢(z) for

z > 0 that

1
P > 24/21 =2P(—2+/21 < - pnt S3.14
(’5172| Ogﬂ) ( Ogn) = 2\/@” ( )

And in this case Elzi| = 2¢(0). It then follows that

2¢/7 log nn - m/2log nn

We now consider the variance. It follows that

IB.| < 26(0) - (S3.15)

1 1
=2
> 24/21 )<E < )
0y < (‘l'1| |SL'2| Ogn xl 277'4% ~ 7’1,4\/@
Case 2. 0 < |6| <+/2logn. In this case
|Ba| = |Ela1| P(|z2| > 24/2logn) — 0| < Elay|P(|z2| > 24/2logn) + |6].

The standard bound for normal tail probability yields

-1

1
P(‘LUQ’ > 2\/210gn) < 2@(—\/210gn) < mn

Note that

E|z1| = |0] + 2¢(0) — 2|0|P(—0]) < |0] + 1 < /2logn + 1.
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Then we have

1
|B,| < (\/2logn+1> " *1+|9\ <3n~'+/2logn.

On the other hand, since
Ex? < Var(z;) + (E|z1])? < 1+ 2logn.
we have

~2

1 Viogn
> 24/2logn) < E < :
U:p (|.T1| |ZL'2| gn xl n\/m ~ n

Case 3 +/2logn < |0| < 4y/2logn. In this case 2,

IB.] = [E(|e1|)P(|a| > 2/Z1ogn) — |6]
< [El| - 16]| + 6] P(Jz2] < 21/2Togn)

< /logn.

For the variance, similarly we have

52 < Ez? <logn.

Case 4. |0| > 4+/2logn. In this case, the standard bound for normal tail

probability yields that

P(|zs] < 2¢/2logn) < 20(—(]0] —2+/21logn)) < 2@(_@) < % (
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In particular,

1
P < 2¢/21 < 20(—24/21 < pt
(’.172‘ = Ogn)— ( Ogn)— 2\/@”

Hence,

|Bal < E(|21])P(|22| > 2¢/21ogn) — |0]] < [Elas| — [0]] + Elz1 | P(|2s| < 2+/21ogn)
< 26(0) + (18] + 1)P(|za] < 2/2Tog ) < 26(0) + 4¢(@) <2

For the variance, similarly we have

52 < Var(|z1]) + (E|z1)?P(|z2] < 24/2logn)

Proof of Proposition 5. In this case

|By| = |Elaa| P(|zs] > 24/210g ) — 0] < Elay| P(|z2] > 24/21ogn) + |9].

The standard bound for normal tail probability yields

1
P(|I’2| > 2\/ 210gn) S 2(13(—\/ 210gn) S Wn_l

Note that
Elz,| = 0] + 2¢(0) — 2|0|®(—[0]) < [0] +1 < L, + 1.

Then we have

n~ ' 40| < L.

1
B <|L,+1) —
1Bel < ( ) vmlogn
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On the other hand, since
Ex? < Var(z;) + (E|lz,)? <1+ (1 + L,)%

we have

~2

1 JIogn
52 < Var(|z1|) P(|z2| > 2¢/2logn) < Ea? - = S jf”

S4 Proofs of Technical Lemmas

Proof of Lemma 1. By Lemma 2 of Cai and Low (2011), for = € [—1,1],
we have

2
G <
Jmax [Grele) = lell < Ty

Then for 2’ € [—M,, M,], we have 2’ = Mz, and thus

2M,

T (S4.1)

max |G (a') — |']| <
m/

Set 2/ = 0, we obtain the statement.

Proof of Lemma 2. The first statement follows from Lemma 2 in Cai and

Low (2011) and that

K
2M,
ESx(X) — < M2k e 4.2
[ESx(X) — 16]] < Zg S+ e (542
4M,
= (S4.3)

< —
~ 12K 4+ 1)



40 RONG MA, TONY CAI AND HONGZHE LI

To bound ES%(X), it follows from Lemma 3 in Cai and Low (2011) and

that
K 2
ESL(X) < (Z |g%|M;2’“+1<EH§k<X>>”2) (54.4)
k=1
K 2
< 20K ( > Mn‘%“(ZME)’“) (S4.5)
k=1
< K M2K? (S4.6)

Proof of Lemma 3. For equation (S3.2), since events A and B are inde-

pendent of random variables X and Y, we have

Var(XI(A) + YI(B))
— E[X?I(A) + Y2I(B) + 2XYI(A)I(B)] — (EXP(A) + EY P(B))’
=EX?P(A) + EY?P(B) — (EX)*P?*(A) — (EY)*P?*(B)
— 2EXEY P(A)P(B)
= Var(X)P(A) + Var(Y)P(B) + (EX)?(P(A) — P?(A))

+ (EY)?(P(B) — P*(B)) — 2EXEY P(A)P(B)

Equation (S3.3) follows directly from the above derivation.
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Proof of Lemma 4. It follows from Lemma 2 in Cai and Low (2011) that

K
oM
ESk(X) —0|| = MR 0] + ———— S4.7
k00— ] = | gt o)+ ey (547
AM
< —" 4.
(2K +1) (54.8)
To bound ES%(X), it follows that when K = rlogn for some r > 0,
K 2
Bt 00 < (X leal M2 EL0M) (519
k=1
K 2
< 20K ( > M,;%“(zMj)k) (S4.10)
k=1
< KM K? (S4.11)
< n% log® n. (54.12)

S5 Supplementary Theoretical Discussions

S5.1 Minimax Optimal Rate When = 1/2

When 5 = 1/2, we consider the following estimator
To =2 Ui(z:)Ui(w),
i=1

where

Us(x:) = (Jeal — a) - I(Jza] > /2log 2),
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and

_ E[|¢]7(€* > 2log 2)]
P& >2log2)

for & ~ N(0,1).

Following the similar arguments as in the proof of Theorem 4 of Collier
et al. (2020) as well as the proof of Theorem 2 of the main paper, it can be
shown that

sup R(Ty) <

(07M721722)6D00(S7Ln) n

(S5.1)

Comparing the above risk upper bound to the minimax lower bound in

Theorem 1, we have, for § = 1/2 and L,, > /log(1 +n/s?) < 1,

272
- s°L

inf sup R(T) = —".
T (0,1,51,82)€DE (s,Ln) n

(95.2)

S5.2 Complexities from the Covariances

In the main paper, most of our theoretical results are obtained under the
assumption 3; = 3y = I, whereas our Theorem 4 essentially take the worst
case over these covariances. In this section, we discuss the cases with known

and unknown covariances and the corresponding estimators.

Known covariances. On the one hand, if the diagonals of the covariance
matrices are all 1’s, while the off-diagonal entries are known and possibly
nonzero, then in principle our proposed estimators can still be applied, al-

though the rate of convergence might not remain the same, nor does the
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minimax optimality property. Nevertheless, the analysis of these estima-
tors can be technically challenging. For example, obtaining the risk upper
bound of Tk (or f;?) requires calculation of the covariances between the
hybrid components V; x (2;) (or VlSK(a:l)) for correlated x;’s, which relies on
properties of Hermite polynomials. The final risk upper bounds will depend
on the specific covariance structure.

On the other hand, if the diagonals are not 1, then an extra rescaling
step is needed in our construction of the polynomial approximation based
estimators. Specifically, suppose ¥; and X, have diagonal entries {o?}7,
and {77}, respectively, then we can define the adjusted version of Tk as

n
f;{ =2 Z ‘A/Z/K(xl) Ai/,K(yi)’
i=1

where

A

‘/th(x’l) = 5IK(]§'11>I<‘.’E12‘ § 20’1'\/ 210gn) + ’(’Ell‘l(‘ngy > 20'1'\/ 210g n),

~

Vi i) = 0% (yi) I (|ya2] < 215v/21ogn) + |ya|I(Jyiz| > 274/21logn),
and
8 (1) = o; min{ Sk (z;/0;),n*}, 8 (y;) = 7 min{ Sk (y;/7:), n*}.

Similarly, one can define the adjusted version of YA}? that takes into account

the knowledge of the variances.
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Unknown variances. When the covariances are completely unknown, the
estimation problem will be extreme difficult since one may not be able to
distinguish the mean from the variance components based on the observed
data. Therefore, in the following, we only consider the cases where the
diagonals of 3; and 35 are unknown but identical, say, 3; = O'%I and
3, = 051, respectively.

In this case, based on the previous discussions, especially the definitions
of the adjusted estimators T\I’(, it is important to estimate the variances o3
and o3. Toward this end, if in addition we assume that both § and u are
sparse vectors in themselves, we may take advantage of such sparsity and
estimate o by the smaller observations since they are likely to correspond
to mean zero Gaussian random variables. Following the ideas in Collier

et al. (2017, 2018), we may estimate o1 and o by

0'1_9 ]7 (853)
\/L/2 S \/L Py Yor

where z(; < .. y and ya)y < yio) < ... < yYm) are ordered

statistics associated to x, and y,. With the above variance estimators, we
can estimate the T-score using the above adjusted estimators by plugging-in
the variance estimators.

Moreover, when 8 € (0,1/2), there is an extra advantage of the simple

thresholding estimator T'. Specifically, if we define D (s, Ly,) = {(9, 3, 39) ¢
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(0,1) € D(s),max(||0]|cc, [|ptlloc) < Ly, 1 = By = 02L,}, then by the

proofs of Theorems 1 and 3, it can be shown that

272
inf sup R(T) z s L

1 -min{o*logn, L2}, (S5.4)
T (0,4,81,2)€D (5, Ln)

and

~ _ 0%(L2 +0%logn)s?logn

sup R(T) < . (S5.5)
(0,1,21,32)€DG (s,Ln) n
Again, if in addition L,, < o+/2logn, then
~ LY o'logn  o?L%logn
sup RIT) s Zon 4 228 0 22080 (g5.6)
(0,1,21,%2)€D(s,Ln) n n n

Therefore, whenever L, = o, T is minimax optimal with the optimal rate

L3s® i f 2 2
n-min{o?logn, L, }.

of convergence being

S6 Supplementary Figures and Tables from Numeri-

cal Studies

Supplementary simulation results. In our Section 3, to generate depen-
dent observations from a non-identity covariance matrix, we considered the
block-wise covariances where 3 is block diagonal where each block is either
a 10 x 10 Toeplitz matrix or a 1000 x 1000 exchangeable covariance matrix

whose off-diagonal elements are 0.5. In particular, the 10 x 10 Toeplitz
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matrix is given as follows

1 09 08 0.7 06 05 .. 0.1
09 1 09 08 07 06 .. 0.2

08 09 1 09 08 07 .. 03

0.1 02 03 04 05 06 .. 1

Tables S6.1 and S6.2 include the empirical RMSE of the five estimators under

covariance structures 3, and X, respectively.

Real data analysis. In our gene set enrichment analysis, 5,023 biological
processes from Gene Ontology (GO) (Botstein et al. 2000) that contain at
least 10 genes were tested. Figure S6.1 presents the directed acyclic graphs
of the GO biological processes that linked to the most significant GO terms

from the simultaneous signal GSEA analysis.
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Figure S6.1: Directed acyclic graph of GO biological processes connected by some path

to the most significant processes from the GSEA analysis. Yellow: least significant; Red:

most significant; Rectangles: top GSEA results.
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Table S6.1: Empirical RMSE under covariance 3.

~ ~

S

Sparse Pattern 1 Sparse Pattern 11
50 |11.58 22.53 25.99 23.25 1909.3| 7.89 26.97 36.25 31.72 1908.5
100]10.16 21.44 28.93 26.60 954.7 | 7.82 26.55 36.19 31.98 953.9
15 200{10.74 23.10 31.72 28.66 476.0 | 7.23 25.19 34.72 30.5 4774
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800|10.24 21.56 28.53 25.76 118.8 | 8.44 26.04 34.06 30.19 118.6
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Table S6.2: Empirical RMSE under covariance Xs.

TS
TK

S
Tk

T

~

Tk

T

TS 7S
TR TR

~

T Tk

T

15

50

100

200

400

800

10.59

9.69

10.06

10.12

9.64

Sparse Pattern 1

23.56

24.12

23.47

21.66

21.88

31.26

33.90

30.95

29.35

30.18

28.15

30.13

27.58

26.38

27.14

1913.9
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