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Abstract: We propose a Cox proportional hazards model with a change hyperplane

to allow the effect of risk factors to differ depending on whether a linear combina-

tion of baseline covariates exceeds a threshold. The proposed model is a natural

extension of the change-point hazards model. We maximize the partial likelihood

function for estimation and suggest an m-out-of-n bootstrapping procedure for in-

ference. We establish the asymptotic distribution of the estimators and show that

the estimators for the change hyperplane converge in distribution to an integrated

composite Poisson process defined on a multidimensional space. Finally, the numer-

ical performance of the proposed approach is demonstrated using simulation studies

and an analysis of the Cardiovascular Health Study.

Key words and phrases: Change hyperplane, m-out-of-n bootstrap, proportional

hazards model.

1. Introduction

The Cox proportional hazards model with a change point is often used to

identify subjects whose risk profiles are substantially different from others. These

subjects are characterized by a biomarker exceeding a threshold (Tapp et al.

(2006); Marquis et al. (2002); Zhao et al. (2014)). More recently, such mod-

els have been increasingly used in subgroup analyses of clinical trials in order

to determine treatment-respondents based on a threshold of some potentially

predictive biomarker. Inferences for the change-point model have been studied

extensively (Liang, Self and Liu (1990); Luo (1996); Pons (2002); Luo (1996);

Gandy, Jensen and Lütkebohmert (2005); Gandy and Jensen (2005); Jensen and

Lütkebohmert (2008); Luo and Boyett (1997); Pons (2003); Kosorok and Song

(2007)). In particular, Pons (2003) shows that the asymptotic distribution of

the maximum likelihood estimator for the change point is given by a composite

Poisson process.
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In practice, it is rather restrictive to assume a change point is determined

by a single biomarker. For example, Zhao et al. (2014) investigated the change

point of leukocyte telomere length (LTL) for diabetes incidence in the Strong

Heart Family Study. In the same study, the change point based on LTL has

been observed to depend on triglycerides and high-density lipoproteins (HDL),

indicating that the incidence of diabetes can change dramatically depending on

a combination of all these biomarkers. To better model this general change-point

pattern, a natural extension of the change-point model, considered here, is a

Cox proportional hazards model with a change hyperplane. More specifically,

we assume that the log-hazard ratios of some covariates differs, depending on

whether a linear combination of baseline biomarkers is larger than an unknown

threshold. In other words, the risk profiles for subjects whose baseline biomarkers

are above the hyperplane can be very different from those who are below.

Estimation and inference for the Cox proportional hazards model with a

change hyperplane are much more challenging. We propose maximum likelihood

approach for estimation in which all parameters, including the coefficients of the

change hyperplane, are estimated by maximizing the Cox partial likelihood func-

tion. Because the likelihood function is not continuous in the latter parameters,

we adopt a genetic optimization algorithm (Sekhon and Mebane (1998)) for op-

timization. For inference purposes, we suggest using an m-out-of-n bootstrap

procedure to construct the confidence intervals. Because the hyperplane is de-

fined by more than one biomarker, existing theory for the change-point model

is no longer applicable. To establish the asymptotic distribution of the estima-

tors for the change hyperplane, we need to carefully partition the support of the

hyperplane, and then show that its asymptotic distribution is determined by an

integrated composite Poisson process defined on a multidimensional space of the

covariates. To the best of our knowledge, this is a novel finding. Furthermore,

when there are no covariates except a constant term in the change plane, the

derived asymptotic distribution reduces to the change-point distribution given in

Pons (2003).

Note that although the proposed model can be viewed as one single-index

hazard model, which is studied in Wang (2004) and Huang and Liu (2006), the

link function for our model is discontinuous. In contrast, the usual single-index

model assumes a smooth link function. This leads to substantially different prop-

erties for the maximum likelihood estimators. For example, we show that the

estimators for the single index, that is, the coefficient in the hyperplane, has a

convergence rate of 1/n, in contrast to the standard 1/
√
n rate in Wang (2004)

and Huang and Liu (2006).



CHANGE HYPERPLANE COX MODEL 985

2. Methods

2.1. Model and parameter estimation

For subject i, let T̃i denote the failure time, Xi consist of the baseline

biomarkers of the p1-dimension and constant one and Zi(t) be the potential

time-dependent covariates with dimension p2. A Cox proportional hazards model

with a change hyperplane assumes that the hazard rate function for T̃i given

Wi(t) ≡
{
XT
i ,Z

T
i (t)

}T
takes the form

λ(t|Wi) = λ0(t) exp
{
βT

1 Zi(t) + β2I(ηTXi > 0) + βT
3 Zi(t)I(ηTXi > 0)

}
,

where λ0(t) is an unknown baseline function, β ≡
(
βT

1 , β2,β
T
3

)T
is a vector of

2p2 + 1 unknown parameters, and η = (η1, η2, . . . , ηp1 , η0)T is a vector of p1 + 1

unknown change-hyperplane parameters. Because the model remains the same if

we replace η with any rescaled η, for model identifiability, we further assume that

η2
1 + η2

2 + · · ·+ η2
p1 = 1 and η1 is positive. Additionally, we assume (β2,β

T
3 ) 6= 0;

otherwise, any η gives the same model. In the model, the change hyperplane

is given by η1Xi1 + η2Xi2 + · · · + ηp1Xip1 + η0. The effect of Zi(t) is β1 when

ηTXi ≤ 0, and becomes (β1 + β3) when ηTXi > 0. Furthermore, the hazard

ratio between two groups ηTXi > 0 and ηTXi ≤ 0 is exp
{
β2 + βT

3 Zi(t)
}

. When

p1 = 1, it reduces to the change-point model in Pons (2003).

Suppose that right-censored data are obtained from n independent and iden-

tically distributed (i.i.d.) subjects and we denote them as (Ti = T̃i ∧ Ci,∆i =

I(T̃i ≤ Ci),Wi), for i = 1, . . . , n, where Ci is the censoring time and is assumed

to be noninformative. We propose estimating all the parameters by maximizing

the observed likelihood function. After profiling the nuisance parameter for λ0(t),

we obtain the following partial likelihood to be maximized for the estimation:

Ln(η,β) =

n∏
i=1

(
exp [rη,β {Wi(Ti)}]∑n

l=1 I(Tl ≥ Ti) exp [rη,β {Wl(Ti)}]

)∆i

,

where rη,β {Wi(t)} ≡ βT
1 Zi(t) + β2I(ηTXi > 0) + βT

3 Zi(t)I(ηTXi > 0). We

adopt a similar two-step procedure (Luo and Boyett (1997)) to compute the

maximum likelihood estimators. In the first step, for any fixed value of η, we

obtain the estimates of β by applying the Newton–Raphson method to maximize

the logarithm of the partial likelihood function. The algorithm for this step

guarantees convergence to the global maximum, owing to the strict concavity of

the log-partial likelihood function in terms of β. In the second step, we apply

an evolutionary algorithm with a quasi-Newton method to maximize the profile
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function for η, subject to the constraints for η (Sekhon and Mebane (1998)).

This evolutionary algorithm has been widely applied to optimize the function

when the objective function is not a continuous function of the parameter of

interest. We iterate between these two steps till convergence. Finally, we denote

(η̂, β̂) = argmaxη2
1+η2

2+···+η2
p1

=1,η1>0,β ln(η,β), where ln(η,β) = logLn(η,β).

2.2. Inference

We prove that η̂ and β̂ are asymptotically independent, and that their con-

vergence rates are 1/n and 1/
√
n, respectively. In addition, the asymptotic dis-

tribution of β̂ remains normal, regardless of whether or not η is known. Conse-

quently, the inference of β̂ can be carried out in the same way as for the usual

Cox proportional hazards model, as if η̂ were a fixed constant. As a result, the

corresponding confidence intervals are generated by a normal approximation.

The inference for η is more challenging because the asymptotic distribution

of η̂ is no longer normal and, in fact, has no explicit expression. For parameters

like η̂ that are estimated at the nonstandard n-rate, Shao (1994), Bickel, Götze

and van Zwet (2012), Politis and Romano (1999), and Xu, Sen and Ying (2014)

proposed using the m-out-of-n bootstrap to generate the 95% confidence inter-

vals, where m is determined by a data-driven approach (Hall, Horowitz and Jing

(1995); Lee (1999); Cheung, Lee and Young (2005); Bickel and Sakov (2005);

Bickel and Sakov (2008)). Xu, Sen and Ying (2014) showed the theoretical con-

sistency of the m-out-of-n bootstrap for the Cox proportional hazards model with

a change point.

Therefore, for the inference in our approach, we suggest adopting a similar

m-out-of-n bootstrap algorithm. Specifically, we choose to adapt the algorithm

proposed by Bickel and Sakov (2008) to select m. In this algorithm, for each

j = 0, 1, . . . , p1, we first determine mj as the maximum sample size that achieves

the stable empirical distribution of the bootstrap estimators for ηj . Then, the

final m is defined as the minimum of mj . Both the standard error estimator for η̂

and the confidence interval for η are adjusted by n/m, based on the convergence

rate 1/n of η̂ (Theorem 3). In particular, the equal-tailed 95% confidence intervals

are generated as
(
η̂ − (Qη̂,0.95/(n/m)), η̂ + (Qη̂,0.95/(n/m))

)
, whereQη̂,0.95 is the

95th quantile of the absolute value |η̂ − η̂(b)
m |, for b = 1, 2 . . . , B.

2.3. Hypothesis testing for the change hyperplane

In practice, an important question is whether the change hyperplane exists.

Equivalently, we wish to test the null hypothesis H0 : β2 = 0,βT
3 = 0 in our pro-
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posed model. Because the estimation of the change hyperplane relies on either

β2 or β3 being not equal to zero, the model is not identifiable given that both β2

and β3 are zero under the null hypothesis. The supremum (SUP) test has been

proposed to verify the existence of the change point based on a single covari-

ate (Davies (1977), Davies (1987), Kosorok and Song (2007)). Here, we extend

this SUP test with score statistics to the case of multidimensional covariates.

Specifically, our test statistic is

SUPkp1 = sup
ηj∈{ηj1,...,ηjk},j=0,2,...,p1

U(η)TΣ(η)−1U(η),

where U(η) = ∂ln(η,β)/∂β, Σ(η) = −∂2ln(η,β)/∂β2, and {ηj1, . . . , ηjk} is

the set of k predetermined values for each ηj , for j = 0, 2, . . . , p1. We use a

permutation to generate the null distribution of the proposed test statistic. Under

the null hypothesis, there is no change-hyperplane effect on the response. Thus,

we randomly shuffle the covariate Xi to obtain the permutation distribution of

the proposed test statistics. We reject the null hypothesis at a significance level of

α if SUPkp1 is larger than the upper α-quantile of the permutation distribution.

3. Asymptotic Properties

The consistency and asymptotic distributions of the estimators for both the

change hyperplane and the regression parameters are established in this section.

Let τ be the study duration, which is assumed to be finite. First, we define

Yi(t) = I(Ti ≥ t) as the at-risk process for subject i, and let s(r)(t;η,β) =

E{Yi(t)Z̃⊗ri (t;η) exp[rη,β{Wi(t)}]}, for r = 0, 1, 2, and Z̃i(t;η) = {ZT
i (t), I(

ηTXi > 0),ZT
i (t)I(ηTXi > 0)}T. In addition to assuming η2

1 +η2
2 + · · ·+η2

p1 = 1

with η1 > 0, we assume the following conditions.

(C.1) The joint density of (Xi1, Xi2, . . . , Xip1) with respect to a dominating mea-

sure has a support containing zero and is assumed to be strictly positive,

bounded, and continuous in a neighborhood V0 = {x : |ηT
0 x| < ε}, where

η0 is the true value of η. In addition, each Zij(t) has a finite total variation

with probability one, and the joint density of {Zi1(t), . . . , Zip2(t)} given Xi

is assumed to be strictly positive and bounded for any t in [0, τ ].

(C.2) The matrix E{(1,Xi)
T(1,Xi)} has a full rank. In addition, conditional on

Xi, if with probability one, a(t) + bTZi(t) = 0 holds for any t ∈ [0, τ ] for

some deterministic function a(t) and constant b, then a(t) = 0 and b = 0.

(C.3) For any Vδ(η0) = {η : ‖η − η0‖ < δ}, the covariance matrix I(η,β) =
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0 v(t;η,β)s(0)(t;η,β)λ0(t)dt is positive definite, where

v(t;η,β) =
s(2)(t;η,β)

s(0)(t;η,β)
−
{
s(1)(t;η,β)

s(0)(t;η,β)

}⊗2

.

In addition, the smallest eigenvalue of
∫ τ

0 E [Yi(t){1,Zi(t)}⊗2 |ηT
0 Xi = 0]

dΛ0(t) is positive.

(C.4) We assume β is bounded by a known constant B, and λ0(t) is continuously

differentiable in [0, τ ]. Additionally, P{Y (τ) = 1} > 0.

(C.1) and (C.2) are needed for the identifiability of the change hyperplane and

the regression coefficients. (C.2) holds if Zi is time-independent and E{(1,Zi)(1,
Zi)

T |Xi} is full rank. (C.3) requires that λ0(t) is bounded and that the at-risk

probability is nonzero for t ∈ [0, τ ]. Condition (C.4) holds if the study ends

at a fixed time τ so subjects who are alive at τ are censored at τ . Our first

theorem establishes the identifiability of the change-hyperplane parameters and

the regression coefficient parameters.

Theorem 1. Under the condition that at least one of the elements in β2 or β3

is nonzero, the change-hyperplane parameters η and the regression parameters β

are identifiable.

Theorem 2 and Theorem 3 show the consistency and convergence rates of the

change-hyperplane estimators and the regression coefficients estimators. Theorem

3 implies that the convergence rates for η̂ and β̂ are 1/n and 1/
√
n, respectively.

These rates are applied in Theorem 4 to establish the asymptotic distributions

of the estimators.

Theorem 2. Under conditions (C.1)–(C.4), η̂ and β̂ converge in probability to

η0 and β0, respectively as n→∞.

Theorem 3. Under conditions (C.1)–(C.4), the following hold:

lim
A→∞

lim
n→∞

P0 (n ‖η̂ − η0‖ > A) = 0,

lim
A→∞

lim
n→∞

P0

(
n1/2

∥∥∥β̂ − β0

∥∥∥ > A
)

= 0.

In other words, ‖η̂ − η0‖ = Op(1/n) and
∥∥∥β̂ − β0

∥∥∥ = Op(1/
√
n).

To give the asymptotic distributions for η̂ and β̂, we use W for ηT
0 X, and
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let

η = ∆
[{
β20 + βT

30Z(T )
}]

+

∫ τ

0
φ(t)dΛ0(t),

where φ(t) = Y (t) exp
{
βT

10Z(t)
} [

1− exp
{
β20 + βT

30Z(t)
}]
. Additionally, we

define Γ(x, t) as a random process that is independent for any x and t, each with

the conditional distribution of η given W = 0 and X = x. Furthermore, v(ω, t)

is a multivariate Poisson process defined on Ω × (0,∞), where Ω is the prob-

ability measure space generating data, with Poisson intensity E{v(ω ∈ A, u ∈
[t, t + dt))} ≡ P (A)dt for any measurable set A in the σ-field of the probability

measure space and for any t > 0. Finally, we define the following integrated

compound Poisson process:

Q−(u1) ≡
∫

Ω

∫ max(0,X(ω)Tu1)

0
Γ(X(ω), t)v(dω, dt)

and

Q+(u1) ≡
∫

Ω

∫ max(0,−X(ω)Tu1)

0
Γ(X(ω), t)v(dω, dt).

That is, the integrals inside Q+ and Q− are both some compound Poisson process.

With these definitions, we have the following theorem.

Theorem 4. Under conditions (C.1)–(C.4), n(η0 − η̂) and n1/2(β0 − β̂) are

asymptotically independent. Furthermore, n(η0− η̂) converges weakly to inf{u1 :

arg maxQ(u1)}, where Q = Q+ − Q−, and n1/2(β0 − β̂) converges weakly to

N(0, I(η0,β0)−1), where I(η0,β0)−1 is the efficient information bound for β0,

assuming η0 is known.

Because the change hyperplane can be determined precisely by a finite num-

ber of observations near the true location, the estimator for the parameter in

the change hyperplane η̂ has a convergence rate in the order of n−1. Thus,

the randomness in η̂ has no effect on the random behavior of β̂, the variability

of which is in the order of 1/
√
n. This explains why the two distributions are

asymptotically independent. The proof of this theorem relies on the derivation

of the asymptotic process for Q(u1). Because the change hyperplane depends on

the random variable X, this derivation is more challenging than the case with a

change point. The proof is given in the appendix.
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4. Simulation Studies

We conducted simulation studies to evaluate the performance of our proposed

method. Our first set of studies was designed to assess the performance of the

estimators and the coverage rate of the confidence interval. We considered one

covariate Z ∼ Uniform(-1,1) and the change hyperplane with two covariates X1 ∼
N(2, 1.52) and X2 ∼ N(0, 1). We generated the survival times T̃i under the

proportional hazards model Λ(t|X1, X2, Z) = t exp{β1Z + β2I(η1X1 + η2X2 −
η0 > 0) + β3ZI(η1X1 + η2X2 − η0 > 0)}, where (β1, β2, β3) = (−1, 1.8, 0.5),

(η1, η2, η0) = (0.8,−0.6, 1.7), and η2
1 + η2

2 = 1. In order to obtain censoring rates

of 10%, 30%, and 50%, we generated the censoring time from Uniform (0,680),

Uniform(0,220), and Uniform(0,118), respectively. The number of subjects is 200

or 300. To use the m-out-of-n bootstrap, we consider a sequence of candidates,

[nk/10], where k = 1, . . . , 10 and [x] denotes the integer part of x. Following

Bickel and Sakov (2008) and the description in Section 2.2, we first determine

mj as the maximal sample size in this sequence for each ηj that gives the stable

bootstrap distribution. Then, the final m is chosen as the minimal size of these

mj . All results are based on 500 replications, and each m-out-of-n bootstrap

consists of 100 replicates.

In Table 1, the proposed method provides approximately unbiased estimates

for the change-hyperplane parameters η2 and η0. Here, we present only the

results for η2 and η0, because η1 and η2 satisfy η2
1 + η2

2 = 1. In addition, the

m-out-of-n bootstrap confidence interval generates proper coverage rates. When

the number of subjects increases or the censoring rate decreases, the bias of the

change point estimate and the variance estimates decrease. In Table 2, the results

show that the estimates for the regression coefficients β are also approximately

unbiased, and that the confidence intervals using a normal approximation have

proper coverage rates.

Our second set of simulation studies compare the type-I errors and power

of the SUP52 , SUP102 , and SUP202 tests under various scenarios. Because our

test is based on two change-hyperplane parameters, the SUP test is evaluated

on the set with k2 points, where k is the number of grids in the prespecified

range [−1, 1] for η2 and [−10, 10] for η0. The range for η2 is determined by

the conditions in Theorem 1. The range of η0 is determined by the range of

each covariate and the value of η2. For example, the test SUP52 is evaluated on

the grids (−1,−0.5, 0, 0.5, 1) × (−10,−5, 0, 5, 10). We examine the performance

of these tests with sample sizes 200, 300, and 400. The results for the type-I

errors and power are based on 10,000 and 1,000 replicates, respectively. All other
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Table 1. Simulation Results for the Change-Hyperplane Parameters.

Censoring Sample Parameters Bias SSD 95% CI Length

Rate Size (×10−2) (×10−2) (×10−2) (×10−2)

50% 200 η̂2 0.17 8.3 96.0 42.7

η̂0 1.11 15.7 95.2 73.9

300 η̂2 0.06 5.2 95.6 28.3

η̂0 0.83 9.5 94.6 50.6

30% 200 η̂2 0.40 6.4 96.4 32.5

η̂0 0.76 11.7 96.6 56.9

300 η̂2 -0.13 4.0 96.2 21.0

η̂0 1.23 7.7 95.0 37.3

10% 200 η̂2 -0.23 5.0 97.2 26.9

η̂0 1.81 9.8 95.8 46.8

300 η̂2 0.20 4.0 95.4 17.9

η̂0 0.86 7.1 95.6 31.7

NOTE: SSD stands for sample standard deviation. 95% CI is the coverage rate for the
95% confidence interval coverage. Length is the length of the 95% CI.

specifications are the same as the first set of simulations.

Table 3 shows that the type-I errors of all three tests are, in general, close

to 0.05. As the sample sizes increase and the censoring rates decrease, the type-I

errors get closer to 0.05. For the power, the performance of the supremum tests

is determined by the numbers of grids, sample sizes, and censoring rates. Given

the same sample size and censoring rate, the power stabilizes after the number

of grids reaches 10 for each parameter. Given the tests with the same number

of grids, the power increases as the sample size increases and the censoring rate

decreases.

5. Application to the Cardiovascular Health Study

Here, we apply the proposed method to the Cardiovascular Health Study

(CHS). The CHS recruited 5,888 participants aged 65 years and older from four

U.S. communities to study the development and progression of CHD and stroke.

We apply our approach to the cohort of male participants, who were free of CHD

at baseline. The data contains 995 subjects, after excluding those with missing

responses and covariates. Among them, 851 subjects developed CHD before the

end of the study. We include a linear combination of HDL, systolic blood pressure,

and cholesterol level to form the risk categories (high vs. low). We investigate

the association between these risk categories and the risk of CHD using a Cox
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Table 2. Simulation Results for the Regression Parameters.

Censoring Sample Parameters Bias SSD SSE 95% CI

Rate Size (×10−2) (×10−2) (×10−2) (×10−2)

50% 200 β̂1 -4.69 33.2 34.4 94.4

β̂2 11.63 25.5 24.4 94.4

β̂3 3.92 39.9 40.7 95.0

300 β̂1 -2.54 26.7 27.0 95.4

β̂2 6.57 20.4 20.5 95.0

β̂3 0.51 32.1 32.4 95.2

30% 200 β̂1 -3.46 25.0 24.5 96.2

β̂2 8.54 21.8 20.9 95.2

β̂3 1.89 32.0 31.4 95.6

300 β̂1 -2.40 20.2 20.6 94.8

β̂2 5.76 17.5 17.1 95.0

β̂3 0.35 25.9 26.4 95.6

10% 200 β̂1 -2.28 21.0 20.7 95.0

β̂2 6.92 19.7 19.1 95.2

β̂3 1.12 28.1 27.3 96.2

300 β̂1 -1.53 17.0 18.1 94.2

β̂2 4.57 16.0 16.9 92.6

β̂3 0.31 22.8 22.9 95.2

NOTE: See Table 1. SSE stands for average standard error estimate.

proportional hazards model, adjusting for the baseline confounding covariates of

age, hypertension, diabetes, and smoking status.

The analysis is conducted in two steps. First, we apply the SUP103 test to

verify the existence of these risk categories. The test is significant, with a p-value

of less than 0.01. Second, we obtain the parameter estimates to form the risk

categories by applying the two-step estimation procedures. The corresponding

95% confidence intervals are generated using the m-out-of-n bootstrap. The re-

sults are summarized in Table 4. All estimates are significant and included in the

final model. The change point in Table 4 refers to the estimated cut-off, which is

used to form the risk categories (high vs. low) based on this linear combination

for each individual subject. Based on these risk categories, the regression coeffi-

cient estimates are summarized in Table 5. Except for hypertension, all the other

covariates have statistically significant effects. The hazard ratio of CHD for the

low risk group I(ηTX > 0) versus the high-risk group I(ηTX < 0) is 0.652. To

show the survival functions of these two risk groups, we show the Kaplan-Meier
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Table 3. Type-I Errors and Power for SUP Tests for the Existence of the Change Hy-
perplane (×10−2)

Sample Size

(β20, β30) Censoring Rate Test 200 300 400

β20 = β30 = 0 10% SUP52 5.6 5.0 5.1

SUP102 5.1 5.3 5.2

SUP202 4.9 5.3 5.1

30% SUP52 5.4 4.8 5.3

SUP102 5.2 5.1 5.4

SUP202 4.9 5.8 5.4

50% SUP52 5.4 4.9 5.1

SUP102 5.5 5.0 5.2

SUP202 5.1 5.5 5.2

β20 = 0.8, β30 = −0.4 10% SUP52 14.4 26.0 29.4

SUP102 71.8 84.6 97.2

SUP202 74.8 94.0 99.6

30% SUP52 11.0 28.0 29.4

SUP102 70.0 85.2 95.8

SUP202 74.4 94.8 98.8

50% SUP52 9.4 19.6 23.2

SUP102 60.0 77.2 90.4

SUP202 60.2 87.6 96.0

Table 4. Change-Hyperplane Covariates Coefficient Estimates in the CHS

Change Hyperplane Covariate Estimate (×10−2) 95% CI (×10−2)

HDL 67.1 [33.8, 100.3]

SBP −60.4 [−79.6, −41.2]

CHOL −43.1 [−81.1, −5.1]

Intercept −20.9 −

curves in Figure 1.

6. Discussion

Although a number of approaches have been developed to estimate change

points based on a single covariate, no rigorous theory has been developed for

a change hyperplane based on multiple covariates. In this study, we developed

a novel two-step approach to estimate the change-hyperplane parameters and a

testing procedure to verify the existence of a change hyperplane for univariate

survival data. We have developed an adaptive m-out-of-n bootstrap to construct
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Table 5. Regression Coefficient Estimates in CHS

Estimate (×10−2) exp(Est) (×10−2) p−value (×10−2)

Age 7.1 107.3 < 1

Change Hyperplane −42.8 65.2 < 1

Diabetes 38.5 146.9 < 1

Smoke 31.5 137.0 < 1

Hypertension 2.7 102.8 70.7
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Figure 1. The Kaplan–Meier plot of the risk groups based on the change hyperplane
(logrank test: p< 0.001).

the confidence interval, and provide an easy way to determine the appropriate

m. We proved the asymptotic properties of the proposed change-hyperplane

estimators. To the best of our knowledge, no previous works have derived an

asymptotic distribution for a change-plane estimator. As shown in our simulation

studies, the estimator is approximately unbiased and its confidence interval has

a good coverage rate.

For the proposed test procedure, there is no general rule for choosing the

number of grids k. The SUP test based on a larger k is likely to detect a change

hyperplane under the alternative, and so may lead to greater power. However, for

a fixed sample size, a larger k introduces greater variability into the test, which

may reduce the power. Our numerical experience suggests k = 10 is a reasonable

choice in terms of both the type-I errors and the power, but a more thorough

investigation into the choice k is warranted.
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We have considered the situation in which the linear combination of the mul-

tiple risk factors has only one change point. In reality, the change hyperplane may

have multiple change points. Instead of categorizing the participants into low and

high risk groups, we may further define a moderate risk group. In this situation,

the inference procedures and the asymptotic properties cannot be extended di-

rectly to the change hyperplane with multiple thresholds. Thus, it is essential

to devise valid and efficient inference procedures for general change-hyperplane

models. Moreover, when the proportional hazards assumption is violated, we

could extend the change-hyperplane model to other survival models, such as the

additive hazard models and accelerated failure-time model. Such an extension

will have wide application in univariate survival analysis.

Appendix

A. Proof of Theorems

An equivalent constraint for η2
1 + η2

2 + · · · + η2
p1 = 1 with η1 > 0 is to

only restrict η1 = 1. The maximum likelihood estimator for ηj under this new

constraint is 1 for j = 1 and is η̂j/η̂1 for j > 1. The following proofs assumes this

new equivalent constraint.

For convenience, we define Vδ(η0) = {η : ‖η − η0‖ < δ}, Vε(β0) = {β :

‖β − β0‖ < ε},

s(r)+(t;η,β) = E
{
Y (t)I(ηTX > 0)Z⊗r(t)eβ

T
1 Z(t)+β2+βT

3 Z(t)
∣∣∣X} ,

s(r)−(t;η,β) = E
{
Y (t)I(ηTX ≤ 0)Z⊗r(t)eβ

T
1 Z(t)

∣∣∣X} ,
where r = 0, 1, 2.

Proof of Theorem 1. Suppose that two set of parameters, (η,β, λ0) and (η̃, β̃, λ̃0),

give the same likelihood functions. We set ∆ = 1 then after integrating the like-

lihood function from 0 to t, we obtain∫ T

0
λ0(s) exp

{
βT

1 Z(s) + β2I(X1 + η2X2 + · · ·+ ηp1Xp1 > η0)

+βT
3 Z(s)I(X1 + η2X2 + · · ·+ ηp1Xp1 > η0)

}
ds

=

∫ T

0
λ̃0(s) exp

{
β̃T

1 Z(s) + β̃2I(X1 + η̃2X2 + · · ·+ η̃p1Xp1 > η̃0)

+β̃T
3 Z(s)I(X1 + η̃2X2 + · · ·+ η̃p1Xp1 > η̃0)

}
ds.

Thus, letting X2 = · · · = Xp1 = 0, we have
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log λ0(s) + βT
1 Z(s) + β2I(X1 > η0) + βT

3 Z(s)I(X1 > η0)

= log λ̃0(s) + β̃T
1 Z(s) + β̃2I(X1 > η̃0) + β̃T

3 Z(s)I(X1 > η̃0)

for s ∈ [0, τ ].

If η0 6= η̃0, without loss of generality, we assume η0 > η̃0 then choose X1 to

be a value larger than η0 and another value between η̃0 and η0. We obtain

log λ0(s) + βT
1 Z(s) + β2 + βT

3 Z(s) = log λ̃0(s) + β̃T
1 Z(s) + β̃2 + β̃T

3 Z(s)

and

log λ0(s) + βT
1 Z(s) = log λ̃0(s) + β̃T

1 Z(s) + β̃2 + β̃T
3 Z(s).

This gives β2 + βT
3 Z(s) = 0 for all s ∈ [0, τ ] so β2 = 0 and β3 = 0 by condition

(C.2). This gives a contradiction to the condition in Theorem 3.1. We conclude

η0 = η̃0. This further gives

log λ0(s) + β2I(X1 > η0) = log λ̃0(s) + β̃2I(X1 > η0)

and

β1 + β3I(X1 > η0) = β̃1 + β̃3I(X1 > η0).

We immediately conclude λ0(s) = λ̃0(s), β2 = β̃2 , β1 = β̃1 and β3 = β̃3.

This further gives

I(X1 + η2X2 + · · ·+ ηp1Xp1 > η0) = I(X1 + η̃2X2 + · · ·+ η̃p1Xp1 > η0).

For fixed X2, · · · , Xp1 , the same arguments as before yield

η2X2 + · · ·+ ηp1Xp1 = η̃2X2 + · · ·+ η̃p1Xp1

so it holds ηj = η̃j for j = 2, . . . , p1. Theorem 1 is proved.

Proof of Theorem 2. To prove the consistency, since the class

[rη,β{W (t)} : η1 = 1, ‖β‖ ≤ B]

is a P-Donsker so P-Glivenko-Cantelli class (van der Vaart and Wellner (1996)),

it holds

sup
η,‖β‖≤B

∣∣∣n−1ln(η,β) + log n− l(η,β)
∣∣∣→ 0

almost surely, where

l(η,β) = E
[
∆ log rη,β{W (T )} − Ẽ(I(T̃ ≥ T ) exp[rη,β{W̃ (T )}])

]
,
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where Ẽ is the expectation with respect to (T̃ , W̃ ), which is an independent copy

of (T,W ).

Note that l(η,β) ≤ l(η0,β0) based on the standard result for the Cox partial

likelihood theory. Furthermore, the equality holds if and only if there exits some

λ(t) such that the two sets of parameters, (η0,β0, λ0) and (η,β, λ), give the same

likelihood functions. However, Theorem 1 implies that the equality holds if and

only if η0 = η and β0 = β. In other words, l(η,β) has the unique maximum

at (η0,β0). By Theorem 5.9 (van der Vaart (1998)), we conclude that (η̂, β̂)

converges to (η0,β0) almost surely. Thus, Theorem 2 holds.

Proof of Theorem 3. First, we define Uε(η0,β0) = {(η,β) : A < n1/2(‖η − η0‖+

‖β − β0‖2)1/2 ≤ n1/2ε} and Vε(η0,β0) = {(η,β) : (‖η − η0‖ + ‖β − β0‖2)1/2 <

ε}, for a given ε. From Theorem 2, P0 {(η,β) ∈ Vε(η0,β0)} > 1−ζ for any ζ > 0,

when n is large enough. Hence,

P0

{
n1/2

(
‖η̂ − η0‖+

∥∥∥β̂ − β0

∥∥∥2
)1/2

> A

}
= P0

{
(η̂, β̂) ∈ Uε(η0,β0)

}
+ P0

{
(η̂, β̂) ∈ V C

ε (η0,β0)
}

≤ P0

{
sup

η,β∈Uε(η0,β0)
Ln(η,β) ≥ Ln(η0,β0)

}
+ ζ

= P0

{
sup

η,β∈Uε(η0,β0)
Gn(η,β) ≥ 0

}
+ ζ,

where Gn(η,β) = logLn(η,β) − logLn(η0,β0). Let G(η,β) be the expectation

of Gn(η,β). The Taylor expression gives

G(η,β) = Ġη(η,β)(η − η0)T − 1

2
(β − β0)TI(η∗,β∗)(β − β0) + o(1),

where β∗ is between β and β0. The second order term in the expansion is

due to the fact that the second order derivatives of the observed log likeli-

hood function at the true value converges to the true negative information ma-

trix by the strong law of large numbers. By linearization, we can show that

Ġη(η,β)(η − η0)T is negative. In addition, the matrix I(η∗,β∗) is positive

definite by (C.3). Therefore, there exists a positive constant k0 which ensures

G(η,β) ≤ −k0(‖η − η0‖ + ‖β − β0‖2). Additionally, we split Uε(η0,β0) into

subsets
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Hn,j =

{
(η,β) : g(j) ≤ n1/2

(
‖η − η0‖+ ‖β − β0‖2

)1/2
< g(j + 1)

}
,

where g(j) = 2j , and j = 1, 2, . . .. Similar to Lemma 3 in Pons (2003), there

exists a constant k > 0 such that for any ε̃, E sup(η,β)∈Vε̃(η0,β0)∣∣n1/2 {Gn(η,β)−G(η,β)}
∣∣ ≤ kε̃ as n→∞. Thus, we obtain

lim sup
n

∑
j:g(j)>A

P0

[
sup
Hn,j

n1/2 {Gn(η,β)−G(η,β)} ≥ n−1/2g2(j)k0

]

≤ lim sup
n

∑
j:g(j)>A

E
[
supHn,j n {Gn(η,β)−G(η,β)}

]2

g4(j)k2
0

≤
∑

j:g(j)>A

k2g2(j + 1)

k2
0g

4(j)
→ 0,

as A goes to infinity. Hence, it gives limA lim supn P0{n1/2(‖η̂ − η0‖+ ‖β̂ − β0‖
2

)1/2 > A} = 0. Theorem 3 has been proved.

Proof of Theorem 4. Let η0 = ηn,u1
+ n−1u1, β0 = βn,u2

+ n−1/2u2, and Wi0 =

ηT
0 Xi, where u1 = (a1, a2, . . . , ap1)

T and u2 = (b1, b2, . . . , b2p2+1)T assumed to

have norm bounded by a large constant A. Note that from Theorem 3, the

probability n(η0− η̂) and
√
n(β0− β̂) bounded by A tends to 1 when A diverges.

First, after some algebra, we can rewrite ln(ηn,u1
,βn,u2

)− ln(η0,β0) as

ln(ηn,u1
,βn,u2

)− ln(η0,β0)

= (βn,u2
− β0)T

{
n∑
i=1

∫ τ

0
Z̃i(t;ηn,u1

)dNi(t)

}

−
∫ τ

0
log

{
S

(0)
n (t;ηn,u1

,βn,u2
)

S
(0)
n (t;η0,β0)

}
dN̄n(t)

+

n∑
i=1

∆i{β20 + βT
30Zi(Ti)}

{
I
(
0 ≥Wi0 > n−1XT

i u1

)
I(XT

i u1 < 0)

−I
(
0 < Wi0 ≤ n−1XT

i u1

)
I(XT

i u1 ≥ 0)
}
,

where N̄n(t) =
∑n

i=1 ∆iI(Ti ≤ t),

S(k)
n (t;η,β) ≡ n−1

n∑
i=1

Yi(t)Z
⊗k
i (t)erη,β(Wi(t))
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for k = 0, 1, and Wi0 = ηT
0 Xi. By the Taylor expansion for βn,u2

at β0,

log

{
S

(0)
n (t;ηn,u1

,βn,u2
)

S
(0)
n (t;η0,β0)

}
=
S

(0)
n (t;ηn,u1

,β0)− S(0)
n (t;η0,β0)

S
(0)
n (t;η0,β0)

− n−1/2uT
2

S
(1)
n (t;ηn,u1

,β0)

S
(0)
n (t;η0,β0)

+
n−1

2
uT

2 Vn(t;ηn,u1
,β0)u2 + op(n

−1),

where Vn(t;η,β) = S
(2)
n (t;η,β)/S

(0)
n (t;η,β)−{S(1)

n (t;η,β)/S
(0)
n (t;η,β)}⊗2 and

op(·), here and in the sequel, denotes the sequence of random variables converging

uniformly in u1,u2 in any bounded set. Thus, we have

ln(ηn,u1
,βn,u2

)− ln(η0,β0) = Qn(u1)− uT
2Cn(u1)− 1

2
uT

2 I(η0,β0)u2 + op(n
−1),

where

Qn(u1) =

n∑
i=1

∆i

[{
β20 + βT

30Zi(Ti)
}
×
{
I
(
0 ≥Wi0 > n−1XT

i u1,X
T
i u1 < 0

)
−I
(
0 < Wi0 ≤ n−1XT

i u1,X
T
i u1 ≥ 0

)}
−S

(0)
n (Ti;ηn,u1

,β0)− S(0)
n (Ti;η0,β0)

S
(0)
n (Ti;η0,β0)

]
,

and

Cn(u1) = n−1/2
n∑
i=1

∫ τ

0

{
Z̃i(t;ηn,u1

)− S
(1)
n (t;ηn,u1

,β0)

S
(0)
n (t;η0,β0)

}
dMi(t)

+n−1/2

∫ τ

0

n∑
i=1

Z̃i(t;ηn,u1
) (exp [rη0,β0

{Wi(t)}]

− exp
[
rηn,u1 ,β0

{Wi(t)}
])
dΛ0(t).

Using the uniform convergence property for the martingale process and noting

n−1/2
n∑
i=1

Z̃i(t;ηn,u1
)
(
exp [rη0,β0

{Wi(t)}]− exp
[
rηn,u1 ,β0

{Wi(t)}
])

converges to 0 uniformly in t, we obtain that Cn(u1) is asymptotically equivalent
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to

l̃n = n−1/2
n∑
i=1

∫ τ

0

{
Z̃i(t;η0)− S

(1)
n (t;η0,β0)

S
(0)
n (t;η0,β0)

}
dMi(t)

in probability, uniformly for u1 with ‖u1‖ ≤ A for the given constant A. Then

we have

ln(ηn,u1
,βn,u2

)− ln(η0,β0) = Qn(u1)− uT
2 l̃n −

1

2
uT

2 I(η0,β0)u2 + op(1).

Next, we derive the asymptotic distributions of Qn(u1) and l̃n. Clearly, the

variable −l̃n converges weakly to a Gaussian variable following the normal dis-

tribution Z = N(0, I(η0,β0)−1). Thus, if we can prove that Qn(u1) converges

to a tight process, say, Q(u1), then the argmax mapping theorem gives that

the maximizer for ln(ηn,u1
,βn,u2

)− ln(η0,β0), i.e., {n(η̂ − η),
√
n(β̂ − β0)} con-

verges in distribution to the maximizer for the limiting process, Q(u1) + uT
2 Z −

(1/2)uT
2 I(η0,β0)u2, which is

{argmaxQ(u1), I(η0,β0)−1Z}.

Furthermore, it is clear that the latter two random variables are independent.

We then obtain the theorem.

It remains to show that Qn(u1) converges weakly to Q(u1) in the Skorohod

space in u1. First,∫ {
S(0)
n (t;ηn,u1

,β0)− S(0)
n (t;η0,β0)

}{ dN̄n(t)

nS
(0)
n (t;η0,β0)

− dΛ0(t)

}
= op(1)

and

S(0)
n (t;ηn,u1

,β0)− S(0)
n (t;η0,β0)

= −n−1
n∑
i=1

Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]

× I
(
0 ≥Wi0 > n−1XT

i u1,X
T
i u1 < 0

)
+ n−1

n∑
i=1

Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]

× I
(
0 < Wi0 ≤ n−1XT

i u1,X
T
i u1 ≥ 0

)
.

We then obtain

Qn(u1) = Q+
n (u1)−Q−n (u1) + op(1),
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where

Q−n (u1) =

n∑
i=1

(
∆i

[{
β20 + βT

30Zi(Ti)
}]

+

∫ τ

0
φi(t)dΛ0(t)

)
× I

(
XT
i u1 ≥ 0, 0 < Wi0 ≤ n−1XT

i u1

)
,

Q+
n (u1) =

n∑
i=1

(
∆i

[{
β20 + βT

30Zi(Ti)
}]

+

∫ τ

0
φi(t)dΛ0(t)

)
× I

(
XT
i u1 < 0, 0 ≥Wi0 > n−1XT

i u1

)
with

φi(t) = Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]
.

Next, we aim to determine the asymptotic process for Qn(u1), which can

be viewed as a random process on the Skorohod space in Rp1 . To this end, we

first show that the finite dimensional convergence holds for Q−n (u1) (the same

holds for Q+
n (u1)), and we will identify its limit process based on this finite

dimensional convergence. Let v1,v2, . . . ,vS be a sequence of vectors then we

wish to obtain the limit distribution of any linear combination
∑S

s=1 qsQ
−
n (vs),

where q1, q2, . . . , qS are any fixed constants. Let

η = ∆
({
β20 + βT

30Z(T )
})

+

∫ τ

0
φ(t)dΛ0(t).

We let H(1), . . . .,H(S) be the ordered statistic of XTv1, . . . ,X
TvS , i.e., H(s) =

XTv(s). Correspondingly, we let q(1), . . . , q(S) be the corresponding sequence of

q1, . . . , qS . We then define set As =
{
H(s−1) < 0 < H(s)

}
for 1 ≤ s ≤ S and

let A0 be the set of H(S) ≤ 0. We have that the characteristic function for∑S
s=1 qsQ

−
n (vs) is given by

E

{
exp

(
it̃

S∑
s=1

qsQ
−
n (vs)

)}

=

(
P (A0) +

S∑
s=1

P (As)

[
E

{
I

(
0 < W <

H(s)

n

)
e(q(s)+···+q(S))it̃η

∣∣∣As}
+E

{
I

(
H(s)

n
≤W <

H(s+1)

n

)
e(q(s+1)+···+q(S))it̃η

∣∣∣As}+ · · ·

+E

{
I

(
H(S−1)

n
≤W <

H(S)

n

)
eq(S)it̃η

∣∣∣As}])n



1002 DENG, CAI AND ZENG

=

{
1 +

S∑
s=1

P (As)

(
E

[
I

(
0 < W <

H(s)

n

)
{e(q(s)+···+q(S))it̃η − 1}

∣∣∣As]
+E

[
I

(
H(s)

n
≤W <

H(s+1)

n

)
{e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣As]+ · · ·

+E

[
I

(
H(S−1)

n
≤W <

H(S)

n

)
{eq(S)it̃η − 1}

∣∣∣As])}n .
Since

P (As)E

[
I

(
H(s)

n
≤W <

H(s+1)

n

)
{e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣As]
= n−1E

[
(H(s+1) −H(s))I(As){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣W = 0
]
fW (0) +O(n−2),

we conclude that

E

[
exp

{
it̃

S∑
s=1

qsQ
−
n (vs)

}]

=

{
1 + n−1fW (0)

S∑
s=1

(
E
[
H(s)I(As){e(q(s)+···+q(S))it̃η − 1}

∣∣∣W = 0
]

+E
[
(H(s+1) −H(s))I(As){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣W = 0
]

+ · · ·

+E
[
(H(S) −H(S−1))I(As){eq(S)it̃η − 1}

∣∣∣W = 0
])

+O(n−2)

}n
so it converges to

exp

{
fW (0)

S∑
s=1

S∑
k=s

(
E
[
(H(k) −H(k−1))I(As){e(q(k)+···+q(S))it̃η − 1}

∣∣∣W = 0
])}

.

We want to show that the limit distribution of
∑S

s=1 qsQ
−
n (vs) is the same as∑S

s=1 qsQ
−(vs). Similarly, let xTv(k), k = 1, . . . , S denote the ordered value for

xTvk, k = 1, . . . , S and As denotes the set of x for which 0 is between xTv(s−1)

and xTv(s). To this end, we note

E

[
exp{it̃

S∑
s=1

qsQ
−(vs)}

]

= E

{
exp

(
it̃

S∑
s=1

qs

∫
Ω

[
I{X(ω)Tvs > 0}

∫ X(ω)Tvs

0
Γ(X(ω), t)v(dω, dt)

])}
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= E

(
exp

[
it̃

S∑
s=1

∫
Ω
I{X(ω) ∈ As}

×
S∑
k=s

q(k)

∫ X(ω)Tv(k)

0
Γ{X(ω), t}v(dω, dt)

])

=

S∏
s=1

S∏
k=s

E

(
exp

[
it̃

∫
Ω
I{X(ω) ∈ As}

× (q(k) + · · ·+ q(S))

∫ X(ω)Tv(k)

X(ω)Tv(k−1)

Γ{X(ω), t}v(dω, dt)

])
.

Note that the integration inside the above expectation is essentially the discrete

summation over ω and t where v(ω, t) has jumps. Since conditional on that v(ω, t)

has jumps at (ωj , tj), j = 1, . . . ,m, Γ{X(ω), t} is independent for any ω and t,

we have

E

(
exp

[
it̃

∫
Ω
I{X(ω) ∈ As}(q(k) + · · ·+ q(S))∫ X(ω)Tv(k)

X(ω)Tv(k−1)

Γ{X(ω), t}v(dω, dt)

])

= E

{
exp

(
it̃
∑
j

I{X(ωj) ∈ As}(q(k) + · · ·+ q(S))

× I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}]Γ{X(ωj), tj}

)}

= E

{∏
j

exp
(
it̃I{X(ωj) ∈ As}

× I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}](q(k) + · · ·+ q(S))Γ{X(ωj), tj}
)}

= E

[
exp

{∑
j

I{X(ωj) ∈ As} × I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}]

× logE
(

exp
[
it̃(q(k) + · · ·+ q(S))Γ{X(ωj), tj}

] ∣∣∣X, wj , tj

)}]

= E

{
exp

(∫
Ω
I{X(ω) ∈ As}
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×
∫ X(ω)Tv(k)

X(ω)Tv(k−1)

logE
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

]
v(dω, dt)

)}

= exp

[∫
Ω
I{X(ω) ∈ As}

∫ X(ω)Tv(k)

X(ω)Tv(k−1)

(
E
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

]
− 1
)
dP (ω)dt

]
,

where the last equality uses the fact that v(dω, dt) is independent Poisson with

rate dP (w)dt. Consequently, since the characteristics function for Γ(x, t) is in-

dependent of t, we obtain

E

[
exp

{
it̃

S∑
s=1

qsQ
−(vs)

}]

=

S∏
s=1

S∏
k=s

exp

[∫
Ω
I{X(ω) ∈ As}

∫ X(ω)Tv(k)

X(ω)Tv(k−1)

(
E
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

∣∣∣X]− 1
)
dP (ω)dt

]

= exp

{
fW (0)

S∑
s=1

S∑
k=s

E
(
{H(s) −H(s−1)}I(X ∈ As)

×
[
E
{
eit̃(q(k)+···+q(S))Γ(X,t)

∣∣∣X}− 1
] ∣∣∣W = 0

)}
,

which is the same as the characteristic function for the limit distribution of∑S
s=1 qsQ

−
n (vs). Similarly, we apply the same proof to Q+

n (u1) (by changing Wi0

to −Wi0 and Xi to −Xi) to obtain the finite dimensional distribution of Q+
n (u1)

to the the finite dimensional distribution of Q+(u1).

Finally, we can easily show E[|Q−n (v2)−Q−n (v1)||Q−n (v2)−Q−n (v1)|] is bounded

by ‖v2 − v1‖ times a constant. Thus, the processes Q−n is tight so converge

weakly to Q−, using the D-tightness criterion (Billingsley (2009)). Similarly, we

can prove that Q+
n converges weakly to Q+ in the Skorohod space. Therefore,

Qn(u1) converges weakly to Q(u1). We have completed the proof.
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