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Abstract: In semi-supervised learning, a training sample comprises both labeled and

unlabeled instances from each class under consideration. In practice, an important,

yet challenging issue is the detection of novel classes that may be absent from the

training sample. Here, we focus on the binary situation in which labeled instances

come from the positive class, and unlabeled instances come from both classes. In

particular, we propose a semi-supervised large-margin classifier to learn the negative

(novel) class based on pseudo-data generated iteratively using an estimated model.

Numerically, we employ an efficient algorithm to implement the proposed method

using the hinge loss and ψ-loss functions. Theoretically, we derive a learning theory

for the new classifier in order to quantify the misclassification error. Finally, a

numerical analysis demonstrates that the proposed method compares favorably with

its competitors on simulated examples, and is highly competitive on benchmark

examples.

Key words and phrases: Biased SVM, iterative algorithm, large-margins, PU learn-

ing.

1. Introduction

In semi-supervised learning, a large amount of labeled and unlabeled data

are observed together in order to enhance the predictive accuracy of a classi-

fier (Vapnik (1998); Chapelle and Zien (2005); Wang and Shen (2007); Wang,

Shen and Pan (2009)). For most existing methods, instances from all classes are

required. Therefore, these methods cannot detect a novel class if it is absent

from the training sample. This sort of problem arises in many applications, such

as text classification (Liu et al. (2002); Denis, Gilleron and Tommasi (2002)),

where relevant documents are retrieved without labor-intensively labeling irrele-

vant documents, and disease gene prediction (Calvo et al. (2007)), where disease

genes are identified in the presence of positive instances, but not negative ones.

In this study, we consider the situation in which labeled instances come from one

(positive) class, and unlabeled instances come from both classes. By minimiz-
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ing the generalization error, we construct a semi-supervised learner capable of

detecting the novel class. In fact, any classification can be cast into the novel-

class-detection framework with labeled instances from only one class and a large

number of unlabeled instances from both classes.

We now briefly review the pertinent literature. In terms of text classifica-

tion, variants of one-class support vector machines (SVMs) have been proposed

to estimate the support of positive data without using unlabeled samples (Tax

and Duin (1999); Manevitz and Yousef (2001); Schölkopf et al. (2001); Geurts

(2011)). The naive Bayes approach has been applied to the positive and un-

labeled classification problem. Here, examples include the positive naive Bayes

approach (Denis, Gilleron and Tommasi (2002)) and the positive tree-augmented

naive Bayes approach (Calvo, Larrañaga and Lozano (2007)). However, either

they perform poorly when a large number of unlabeled instances are discarded

(Liu et al. (2003)), or the computation cost becomes high, with limited improve-

ment. Two-step algorithms have also been developed to solve the problem. The

first step extracts a fraction of the reliable negative instances from the unlabeled

sample, and then the second step trains classifiers based on the positive and reli-

able negative instances. These two steps are repeated iteratively until no reliable

negative instances can be identified in the unlabeled sample. Examples of such

algorithms include spy-EM (Liu et al. (2002)), positive example-based learning

(Yu, Han and Chang (2002)), and the SVM with a Rocchio extraction (Li and

Liu (2003)). Note that a scheme maximizing the number of negative classified

instances among unlabeled samples, while classifying positive samples correctly,

leads to good overall performance (Liu et al. (2002)). Moreover, by adjusting the

misclassification costs of the two classes due to asymmetry, weighted methods

are obtained. Here, examples include the weighted logistic regression (Lee and

Liu (2003)), biased SVM (BSVM) (Liu et al. (2003)), and re-weighting method

(Elkan and Noto (2008)). Liu et al. (2003) demonstrate experimentally that the

BSVM outperforms various two-step algorithms. Recently, bagging tactics have

been employed, yielding comparative performance (Mordelet and Vert (2014)).

Global and local learning from positive and unlabeled examples adapts the in-

trinsic geometric information in the training data set. A biased least square SVM

(BLSSVM) has also been proposed (Ke et al. (2018)). The learning theory on

the risk estimator for positive and unlabeled instances is partially established

and examined in, for example, Kiryo et al. (2017), Natarajan et al. (2018), and

Tanielian and Vasile (2019).

To detect the negative (novel) class, we propose a semi-supervised large-

margin classifier that combines the benefits of large margins and the BSVM
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method (Liu et al. (2003)), and iteratively generates pseudo-samples for training.

The proposed classifier incorporates the predicted values of unlabeled instances

appropriately, and then iteratively trains a biased model based on the pseudo-

training samples, with original labeled instances remaining unchanged at each it-

eration step. Additionally, the proposed method adjusts the weights adaptively to

tackle the imbalance issue, if there is any, yielding a more accurate classification.

This iterative scheme usually leads to an improvement at each iteration, thereby

outperforming its counterparts without a weight adjustment. To implement the

proposed large-margin classifier using the hinge loss and ψ-loss functions, we em-

ploy an inexact alternating direction method of multipliers (IADMM) algorithm

(Wang et al. (2013)), which decouples variables for efficient computation.

Our numerical analysis indicates that the newly proposed method compares

favorably with the state-of-the-art BSVM and bagging SVM (BASVM) in terms

of the generalization error (Mordelet and Vert (2014)). More importantly, the

proposed method achieves nearly the performance of the classifiers with complete

data, indicating that the re-weighting scheme does lead to an overall improve-

ment. Theoretically, we establish a novel learning theory for the ψ-loss, providing

insight into the connection between the performance of the proposed method and

the sample size, tuning parameter, and loss function in semi-supervised learning.

In particular, the theory confirms the simulation results.

The rest of paper is organized as follows. Section 2 presents a general

weighted large-margin classification model and the proposed method. Section

3 develops an algorithm based on the IADMM for implementation. Section 4

introduces a new tuning criterion with only positive labeled data and unlabeled

data. In Section 5, the proposed method is compared against its strong com-

petitors on two simulated examples and two benchmark examples. In Section

6, we investigate the theoretical properties of the proposed method. Section 7

discusses the proposed method and the underlying problem. All technical proofs

are deferred to the appendix.

2. Methodology

2.1. Weighted large-margin classification

Given a training sample (xi, yi)
n
i=1 with yi ∈ {1,−1}, for 1 ≤ i ≤ n, the

objective function of the weighted large-margin classification (Osuna, Freund

and Girosi (1997)) is
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min
f∈F

C+

∑
yi=1

L(yif(xi)) + C−
∑
yj=−1

L(yjf(xj)) + J(f), (2.1)

where F is the candidate set of decision functions, L(·) is the margin loss function

of the functional margin z = yf(x), J(·) is a regularization term that controls

the complexity of the decision function f , and C+ and C− are nonnegative tun-

ing parameters controlling the trade-off between the fits for the positive and

negative classes, respectively, and the complexity of the decision function. A

margin loss L(z) is called a large margin if it is decreasing in the variable z;

that is, a large margin loss penalizes small margins, pushing correctly speci-

fied instances away from the classification boundary. Given a decision function

f , the corresponding classification rule is sign(f(x)). For linear classification

problems, F = {f(x) = b0 + bTx ≡ (1,xT )b̄}, where b̄ = (b0,b
T )T , and the

commonly used regularizer is J(f) = ‖b‖2/2, the reciprocal of the geometric

margin. For nonlinear classification, F = {f(x) = b0 +
∑n

i=1 biK(x,xi)} and

J(f) =
∑

1≤i,j≤n biK(xi,xj)bj/2, where K(·, ·) is a reproducing kernel, see Gu

(2000) and Wahba (1990) for the reproducing kernel Hilbert spaces. Moreover,

different large-margin loss functions lead to different learning machines. In this

study, we consider a linear classification with the hinge loss L(z) = (1 − z)+

(Cortes and Vapnik (1995)) and the ψ-loss ψ(z) = min(1, (1 − z)+) (Shen et al.

(2003)). The hinge loss is the most commonly used loss function in classifica-

tion problems, owing to its good performance and convexity. However, the hinge

loss is not robust to outliers, because of unboundedness. Hence, a bounded loss

function, ψ-loss, is also used as an alternative. The numerical analysis in Section

5 shows that our proposed method with ψ-loss outperforms that with the hinge

loss. Our proposed method can also adapt to other loss functions as well.

2.2. Proposed method

In light of the preceding discussion, we propose the following cost function

based on (2.1):

S(f,y) = C

(
1

n+

∑
yi=1

L(yif(xi)) +
1

n−

∑
yj=−1

L(yjf(xj))

)
+ J(f), (2.2)

where n+ and n− are the numbers of instances of positive and negative classes,

respectively, in the training sample. This weighting scheme assigns a large weight

to the small class and a small weight to the large class, which mitigates the im-

balance and misclassification. Note that the tuning parameter C can be rescaled

to one by introducing another tuning parameter λ into J(f), controlling the level
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of the penalty.

The motivation for our proposed approach comes from model (2.1). The

BSVM (Liu et al. (2003)) fits (2.1) based on a pseudo-training sample consisting

of the original positive instances and unlabeled observations treated as pseudo-

negative instances. Obviously, such a scheme is biased owing to mislabeling of

unlabeled data. However, some correctly labeled negative instances, together

with the original positive instances, are useful for estimating the decision bound-

ary using (2.2). In addition, incorrectly labeled positive instances have little

impact on the decision boundary, given the missing-at-random assumption (As-

sumption 1 in Section 6). As a result, the classifier sign(f̂ (1)) based on (2.2)

yields a better decision boundary than that of the classifier sign(f̂ (0)), which la-

bels all unlabeled instances as negative. Furthermore, the subsequent refitting by

the classifier sign(f̂ (2)) trained based on the original positives and the predicted

labels of unlabeled data given by classifier sign(f̂ (1)) leads to a more accurate

classification. This is confirmed by Theorem 3. This iterative train-and-refit

procedure continues until a certain termination criterion is met when no further

improvement is possible.

For the following analysis, we denote the observations (xi, yi)
nl
i=1 in the train-

ing set as the labeled data, where yi = 1, for 1 ≤ i ≤ nl, and (xj)
n
j=nl+1 as the

unlabeled data. We summarize the iteration scheme below.

Algorithm 1

For k = 0, 1, . . .

Step 1 (Initialization): Train f̂ (0) using xi and yi = I(1 ≤ i ≤ nl)− I(nl + 1 ≤ i ≤ n),
for i = 1, . . . , n. Specify a precision ε > 0, and set up the initial pseudo-training
sample using the initial classifier sign(f̂ (0)): y0j = sign(f̂ (0)(xj)), for nl +1 ≤ j ≤
n, and y0i = yi = 1, for 1 ≤ i ≤ nl.

Step 2 (Iteration): Given the pseudo-sample (xi, y
k
i )ni=1, compute the classifier f̂ (k+1)

by minimizing S(f,yk), where yk = (yk1 , . . . , y
k
n)T . Reclassify the data as yk+1

i =

yi, for 1 ≤ i ≤ nl, and yk+1
j = sign(f̂ (k+1)(xj)), for nl + 1 ≤ j ≤ n.

Step 3 (Termination): If S(f̂ (k+1),yk+1) > S(f̂ (k+1),yk), terminate; otherwise, re-

peat steps 2 and 3 until |S(f̂ (k+1),yk+1)− S(f̂ (k),yk)| ≤ ε|S(f̂ (k),yk)|.

The final classifier f̂C is f̂ (K), where K is the number of iterations.

Note that in Algorithm 1, the minimization of S(f,y) with the hinge loss in

Step 2 appears to be a special case of the minimization problem with the ψ-loss

introduced in Section 3. This iterative scheme bears the properties described in

Theorems 1 and 2 below.
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Theorem 1. (Monotonicity) S(f̂ (k),yk) is a decreasing function in k. Hence,

the iterative algorithm converges as k → ∞. That is, for any given precision

ε > 0, the algorithm terminates in a finite number of steps.

Theorem 2. Suppose that P (
∑

Y ki =1 Xi/n
k
+ 6=

∑
Y kj =−1 Xj/n

k
−) > 0; for the

ψ-loss function, suppose further that an additional condition P (
∑

Y ki =1 Xi/n
k
+ 6=

0,
∑

Y kj =−1 Xj/n
k
− 6= 0) > 0 holds. Then, P (b̂k+1 6= 0) > 0, for any constant

C > 0.

Theorem 2 claims that as long as the covariates’ sample mean vector of the

positive class is not equal to that of the negative class, and both are away from the

zero vector in the kth iteration, the coefficient vector is estimated as nonzero with

a positive probability in the (k + 1)th iteration, such that the decision function

f(x) = b0 +bTx can be identified. Furthermore, the negative class that is absent

from the training data set is recovered with a positive probability.

3. Nonconvex Minimization, Difference Convex Programming, and

the IADMM

Often, when the hinge loss is used with J(f) = ‖b‖2/2, the objective function

(2.2) is convex. However, when the hinge loss is replaced by the ψ-loss, the

objective function becomes nonconvex. In what follows, we develop an efficient

algorithm for the nonconvex minimization. The objective function (2.2) with the

ψ-loss becomes

min
b̄

1

2
‖b‖2 +

n∑
i=1

Cyiψ(yif(xi)), (3.1)

where x̄i = (1,xTi )T , b̄ = (b0,b
T )T , f(xi) = x̄Ti b̄, and ψ(z) = min((1− z)+, 1).

To solve the above minimization, we employ a difference convex algorithm

(An and Tao (1997)) and the IADMM (Wang et al. (2013)). First, we decompose

the loss function ψ = ψ1 + ψ2, where ψ1(z) = (1 − z)+, which is the hinge loss,

and ψ2(z) = z1(z < 0), and replace ψ2 with its majorization. Specifically, given

the m-step solution b̄m, we substitute 〈Oψ2(b̄m), b̄〉 for ψ2(b̄) after ignoring the

constant term. Next, in the (m+ 1)-step, we solve the following sub-problem:

min
b̄

1

2
‖b‖2 +

n∑
i=1

Cyi

(
(1− yif(xi))+ + yif(xi)1(yif

m(xi) < 0)
)
, (3.2)

where 1(·) is the indicator function. After introducing the slack variables ξi and

ηi, (3.2) becomes
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min
b̄,ξ,η

1

2
‖b‖2 +

n∑
i=1

Cyi

(
ξi + yix̄

T
i b̄1(yix̄

T
i b̄m < 0)

)
, subject to

1− yix̄Ti b̄ = ξi − ηi, ξi ≥ 0, ηi ≥ 0, i = 1, . . . , n.

(3.3)

The corresponding augmented Lagrangian of (3.3) L(b̄, ξ,η,u) is

1

2
‖b‖2 +

n∑
i=1

Cyi

(
ξi + yix̄

T
i b̄1(yix̄

T
i b̄m < 0)

)
+ ρ

n∑
i=1

(yix̄
T
i b̄− 1 + ξi − ηi + ui)

2,

where u = (ui)
n
i=1 denotes the vectorized Lagrangian multipliers. Given b̄t, ξt,ηt,

and ut, we solve the following sub-problems iteratively using the alternating

direction method of multipliers (ADMM, Boyd et al. (2011)):

b̄t+1 = argmin
b̄

1

2
‖b‖2 +

n∑
i=1

Cyiyix̄
T
i b̄1(yix̄

T
i b̄m < 0)

+
ρ

2

n∑
i=1

(yix̄
T
i b̄− 1 + ξti − ηti + uti)

2, (3.4)

(ξt+1
i , ηt+1

i ) = argmin
ξi≥0,ηi≥0

n∑
i=1

Cyiξi +
ρ

2

n∑
i=1

(yix̄
T
i b̄t+1 − 1 + ξi − ηi + uti)

2, (3.5)

ut+1
i = uti + yix̄

T
i b̄t+1 − 1 + ξt+1

i − ηt+1
i . (3.6)

The whole iteration procedure completes using a certain termination rule, spec-

ified below. Specifically, to solve (3.4), we employ the IADMM, which updates

(3.4) by linearizing its last two terms and adding a proximal term ‖b̄−b̄t‖22. This

yields

b̄t+1 = argmin
b̄

1

2
‖b‖2 +

ζ

2
‖b̄− b̄t‖2 + ρb̄T v̄t, (3.7)

where ζ > 0 is a prespecified constant, and v̄t = (v0,v
T )T =

∑n
i=1(yix̄

T
i b̄− 1 +

ξi − ηi + ui − Cyi1(yix̄
T
i b̄m < 0)/ρ)yix̄i. The analytic solution of (3.7) is

bt+1
0 = bt0 −

ρ

ζ
vt0, bt+1 =

ζbt − ρvt

1 + ζ
. (3.8)

Similarly, problem (3.5) has the following closed-form solution:

ξt+1
i = max

(
− yix̄Ti b̄t+1 + 1− uti −

Cyi
ρ
, 0

)
, ηt+1

i = max(yix̄
T
i b̄t+1 − 1 + uti, 0).

(3.9)
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To give a stopping rule, let A = (y1x̄1, . . . , ynx̄n)T , and define

rt+1 =Ab̄t+1 − 1 + ξt+1 − ηt+1, st+1 = ρAT (ξt+1 − ηt+1 − ξt + ηt),

εpri =
√
nε+ εmax{‖Ab̄t+1‖2, ‖ξt+1 − ηt+1‖2, 1}, εdual =

√
pε+ ερ‖ATut+1‖2,

where ε > 0 is the tolerance. The iteration for (3.2) terminates when ‖rt+1‖2 <
εpri and ‖st+1‖2 < εdual, or it reaches the maximum number of iterations. The

computation strategy for solving (3.1) is summarized in the next algorithm.

Algorithm 2

Step 1 (Initialization): Specify b̄0, ξ0,η0,u0, ρ, and ζ.

Step 2 (IADMM iteration): Given b̄m, solve (3.2) to yield b̄m+1 using the IADMM
iteration by updating (3.6), (3.8), and (3.9) iteratively until ‖rt+1‖2 < εpri and
‖st+1‖2 < εdual, or it reaches the maximum number of iterations MADMM.

Step 3 (DCA iteration): Repeat Step 2 until ‖b̄m − b̄m+1‖/‖b̄m‖ < ε or it reaches
the maximum number of iterations MDCA.(DCA iteration): Repeat Step 2 until
‖b̄m− b̄m+1‖/‖b̄m‖ < ε or it reaches the maximum number of iterations MDCA.

With the hinge loss function, the minimization of S(f,y) can be solved using

the preceding algorithm without the ψ2 part in Step 2, followed by Step 3. The

solution to (2.2) with the hinge loss can serve as the initial value for the algorithm

with the ψ-loss. Importantly, an iterative improvement of the ψ-learning solution

is often seen over the corresponding SVM solution. In terms of convergence,

Algorithm 2 converges rapidly, owing to the finite-step termination property of

the DC algorithm and the IADMM.

4. Tuning Without Negative Instances

In classification, tuning parameters are usually selected using cross-validation

by minimizing the classification error over a tuning set of data with complete la-

bel information. However, in our problem, negative instances are unavailable for

the tuning set, which makes the cross-validation scheme infeasible. To overcome

this difficulty, Lee and Liu (2003) propose the criterion r2/Pr(sign(f(X)) = 1),

which is proportional to the square of the geometric mean of the precision and

the recall of retrieving the positive class. This criterion tries to mimic the be-

havior of an F-score, the harmonic mean of the precision and the recall. How-

ever, when a classifier’s performance is evaluated using the classification error,

this criterion may not be relevant, because it has no direct relationship with

the error. Consequently, to target the classification error, we propose a new
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criterion for selecting the tuning parameters, as follows. Note that the classi-

fication error Err(f) = Pr(sign(f(X)) 6= Y ) = 1 − Pr(sign(f(X)) = −1, Y =

−1)− Pr(sign(f(X)) = 1, Y = 1) can be rewritten as

Pr(sign(f(X)) = 1) + 2Pr(Y = 1)Pr(sign(f(X)) = −1|Y = 1)− Pr(Y = 1).

Therefore, because Pr(Y = 1) at the population level does not contain the tuning

parameter, minimizing the classification error with respect to this parameter is

equivalent to minimizing

Pr(sign(f(X)) = 1) + 2Pr(Y = 1)Pr(sign(f(X)) = −1|Y = 1)

=
(
wPr(sign(f(X)) = 1)

+ (1− w)Pr(sign(f(X)) = −1|Y = 1)
)
∗
(
1 + 2Pr(Y = 1)

)
∝ Err∗(f),

where w = 1/
(
1 + 2Pr(Y = 1)

)
, and

Err∗(f) =
(
wPr(sign(f(X)) = 1) + (1− w)Pr(sign(f(X)) = −1|Y = 1)

)
. (4.1)

It is clear that Pr(sign(f(X)) = −1|Y = 1) decreases as Pr(sign(f(X) = 1))

increases, and vice versa. Thus, by estimating Pr(sign(f(X)) = 1) and Pr(sign(

f(X)) = −1|Y = 1) using a tuning sample that contains instances with the posi-

tive class, the tuning parameter can be selected by minimizing the proposed cri-

terion Err∗(f) in (4.1) empirically, provided that we have knowledge of Pr(Y = 1)

and w. In real applications, the value of Pr(Y = 1) may either come from prior

information, such as the prevalence of a disease in the whole population, or be

estimated empirically using the percentage of positively labeled instances in the

training set. However, the latter approach tends to underestimate the proba-

bility, because positive instances in the unlabeled data are treated as unlabeled

instances. Our simulation shows that this criterion performs well for tuning.

5. Numerical Examples

This section compares the proposed method with two strong competitors

using simulations: the BSVM (Liu et al. (2003)) and the BASVM (Mordelet

and Vert (2014)). We denote the ψ-learning version of tbe BSVM as BPSI, and

denote our iterative methods with the hinge loss and the ψ-loss as ISVM and

IPSI, respectively. All methods are computed using R 3.5.0.

For the simulations, the test error (the classification error on the test set),
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averaged over 100 independent replications, is used to evaluate the performance

of a method. We define the amount of improvement of an iterative classifier over

its biased counterpart in terms of the Bayesian regret:

(T (biased)− T (Bayes))− (T (iterative)− T (Bayes))

T (biased)− T (Bayes)
, (5.1)

where T (·) and T (Bayes) represent the test error of a method and the Bayes

error, respectively. For real examples, because the Bayes rule is unknown, we

define the amount of improvement as

T (biased)− T (iterative)

T (biased)
, (5.2)

which may underestimate the amount of improvement compared to (5.1).

5.1. Simulated and real-data examples

Two simulated and two real-data examples are examined, in which unlabeled

instances are generated by dropping the labels of some instances. Examples 1

and 2 are simulated following the set up of Wang and Shen (2007), where the

two Bayes errors are 0.1587 and 0.089, respectively. The two real examples,

HEART and SPAM, are available in the UCI Machine Learning Repository (Lich-

man (2013)). Here, HEART focuses on heart disease classification, based on 13

numeric-valued clinical attributes, and SPAM discriminates spam from normal

e-mails based on 57 frequency attributes.

To generate the one-class situation, in two real examples, each class is treated

as a novel/negative class once, with the other treated as a positive class. Two

cases with different sizes of positively labeled and unlabeled samples are consid-

ered. In the first case, the data are split randomly into three parts, with five

positively labeled and 95 unlabeled instances for training, and 100 labeled in-

stances for tuning; the remaining 800 instances in Examples 1 and 2 and the 97

in HEART are used for testing. In the second case, the data are divided randomly

into three parts, with 10 positively labeled instances and 90 unlabeled instances

for training, and 100 labeled instances for tuning; again, the remaining 800 in

Examples 1 and 2 and the 97 in HEART are used for testing. For SPAM, the

sizes of the training and tuning samples increase to 200, and the remaining 4,201

instances are used for testing. Note that all 100 instances in the tuning set for the

two cases are considered labeled, which allows us to select the tuning parameters

of different methods using a usual criterion, such as the generalization error on

the tuning set.
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For tuning, the generalization error, defined as GE(f) = P (Y 6= sign(f(X))),

is minimized with respect to the tuning parameters over a set of grid points

within the tuning domain. More specifically, for the BSVM and BPSI, there

are two tuning parameters, C+ and C−; for the BASVM, there are four tuning

parameters, C+, C−, the size of the bootstrap samples K, and the number of

bootstraps T ; for the BLSSVM, there are four tuning parameters, C+, C−, a

radial basis function kernel parameter σ, and a parameter λ in the regularization

term for local discrepancies in the labels. For our iterative methods ISVM and

IPSI, there is only one parameter C.

The search set of C and C− is {10−4+j/10; j = 0, . . . , 80}, and that of w =

C−/(C+ +C−) is {0.01, . . . , 0.15}. For the BASVM, to reduce the computational

cost, we tune the parameter C and the other parameters using the default setting

of Mordelet and Vert (2014); that is, w = n+/(n+ +n−), the size of the bootstrap

samples K = nl, and the number of bootstraps T = 35 if K ≤ 20; otherwise,

T = 11. For σ and λ in the BLSSVM, both vary in the set {2j ; j = −6,−5, . . . , 6},
as suggested in the setting of Ke et al. (2018).

For testing, a classification model with estimated tuning parameters is evalu-

ated over a test set. The averaged test error based on 100 replications is reported

in Table 1.

As indicated in Table 1, ISVM and IPSI outperform their counterparts BSVM

and BPSI in all cases. In particular, in the simulated examples, the amounts

of improvement of ISVM and IPSI over BSVM and BPSI range from 1.43%

to 34.91%, respectively. In the real examples, the amounts of improvement of

the iterative method over its biased counterpart range from 7.35% to 23.46%.

This shows that an iterative improvement does occur with the proposed method

over its biased counterpart. Compared with the BSVM, the BASVM performs

relatively poorly in most cases, indicating that the suggested criterion does not

work well in our examples. Note that the improvements of our proposed method

over the BSVM in cases 1 and 2 for Example 2 in Tables 1 and 2 are both

significant, considering 500 repetitions at a 5% significance level. To ensure a

fair comparison with other data sets, we still use 100 repetitions. The proposed

method with the ψ-loss, BPSI, performs better than its SVM counterpart, BSVM,

in most cases, primarily because of the difference in the loss functions.

5.2. Performance with the proposed tuning criterion

When the tuning data set contains only unlabeled data, the generalization

error is not applicable directly, as described above. Therefore, this section exam-

ines the performance of the four methods using the tuning criterion proposed in
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Table 1. Averaged test errors tuned using the generalization error based on the tuning
sample with all labels known, as well as the corresponding standard errors (in parenthe-
ses), over 100 independent replications. In Case 1, nu = 19nl, nl = 5 in Eg. 1, Eg. 2,
and HEART, nl = 10 in SPAM. In Case 2, nu = 9nl, nl = 10 in Eg. 1, Eg. 2, and
HEART, nl = 20 in SPAM. The amount of improvement is defined in (5.1) and (5.2).

Data Example 1 Example 2 HEART HEART SPAM SPAM

(n, dim) (1,000, 2) (1,000, 2) (297, 13) (297, 13) (4,601, 57) (4,601, 57)

Novelty -1 -1 absent present no yes

Case 1

BASVM 0.2237(0.0072) 0.1914(0.0074) 0.2545(0.0084) 0.2807(0.0076) 0.1762(0.0048) 0.2629(0.0054)

BSVM 0.1974(0.0053) 0.1543(0.0056) 0.2544(0.0077) 0.2642(0.0076) 0.1904(0.0047) 0.2391(0.0051)

BLSSVM 0.1913(0.0051) 0.1519(0.0052) 0.2395(0.0071) 0.2477(0.0077) 0.1881(0.0042) 0.2287(0.0052)

ISVM 0.1871(0.0047) 0.1488(0.0072) 0.2053(0.0069) 0.2044(0.0063) 0.1512(0.0045) 0.2055(0.0077)

Improv. 24.10% 7.86% 16.19% 20.51% 18.83% 12.61%

BPSI 0.1958(0.0042) 0.1507(0.0064) 0.2175(0.0073) 0.2189(0.0064) 0.1669(0.0045) 0.1850(0.0051)

IPSI 0.1879(0.0047) 0.1474(0.0072) 0.1949(0.0078) 0.2028(0.0077) 0.1331(0.0028) 0.1529(0.0044)

Improv. 21.31% 5.33% 10.38% 7.35% 20.25% 17.38%

Case 2

BASVM 0.1921(0.0039) 0.1497(0.0048) 0.2161(0.0047) 0.2505(0.0056) 0.1345(0.0017) 0.2178(0.0041)

BSVM 0.1812(0.0030) 0.1275(0.0028) 0.2172(0.0049) 0.2267(0.0056) 0.1517(0.0022) 0.1904(0.0041)

BLSSVM 0.1803(0.0030) 0.1276(0.0029) 0.2037(0.0046) 0.2102(0.0053) 0.1466(0.0023) 0.1755(0.0042)

ISVM 0.1742(0.0023) 0.1269(0.0033) 0.1863(0.0041) 0.1819(0.0038) 0.1289(0.0015) 0.1387(0.0022)

Improv. 28.62% 1.43% 12.18% 17.24% 14.36% 23.46%

BPSI 0.1834(0.0031) 0.1327(0.0030) 0.2093(0.0045) 0.1990(0.0045) 0.1465(0.0021) 0.1489(0.0026)

IPSI 0.1748(0.0024) 0.1277(0.0033) 0.1816(0.0039) 0.1810(0.0037) 0.1290(0.0015) 0.1376(0.0021)

Improv. 34.91% 11.39% 13.2% 9.02% 11.94% 7.58%

(4.1) in Section 4, in the absence of labeled instances from a novel class.

Specifically, the data are divided randomly into three parts in case 1, with five

labeled positive instances and 95 unlabeled instances for training, five labeled

positive instances and 95 unlabeled instances for tuning, and the remaining in-

stances used for testing in Examples 1 and 2 and HEART. In case 2, the data

are divided randomly into three parts, with 10 labeled positive instances and 90

unlabeled instances for training, 10 labeled positive instances and 90 unlabeled

instances for tuning, and the remaining instances used for testing in Examples 1

and 2 and HEART. For SPAM, the sizes of the training and tuning samples are

doubled, and the remaining 4,201 instances are used for testing in both cases.

For the proposed tuning criterion in (4.1), w is specified by its definition, where

Pr(sign(f(X) = 1) is replaced by 0.5, owing to the prior information that the

generated data are balanced. Then, the tuning criterion is minimized over the
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Table 2. Averaged test errors tuned using our criterion in Section 4 based on the tuning
sample with labeled positive instances, and unlabeled instances, as well as the corre-
sponding standard errors (in parentheses), over 100 independent replications. In Case 1,
nu = 19nl, nl = 5 in Eg. 1, Eg. 2, and HEART, nl = 10 in SPAM. In Case 2, nu = 9nl,
nl = 10 in Eg. 1, Eg. 2, and HEART, nl = 20 in SPAM. The amount of improvement is
defined in (5.1) and (5.2).

Data Example 1 Example 2 HEART HEART SPAM SPAM

(n, dim) (1,000, 2) (1,000, 2) (297, 13) (297, 13) (4,601, 57) (4,601, 57)

Novelty -1 -1 absent present no yes

Case 1

BASVM 0.2163(0.0065) 0.2034(0.0072) 0.2762(0.0078) 0.2919(0.0082) 0.1762(0.0043) 0.2696(0.0052)

BSVM 0.2362(0.0071) 0.2123(0.0085) 0.3007(0.0091) 0.3178(0.0089) 0.2158(0.0061) 0.3117(0.0090)

BLSSVM 0.2213(0.0068) 0.2011(0.0076) 0.2812(0.0086) 0.2912(0.0086) 0.1962(0.0058) 0.2888(0.0083)

ISVM 0.1916(0.0057) 0.1712(0.0080) 0.2251(0.0088) 0.2481(0.0083) 0.1574(0.0048) 0.2390(0.0083)

Improv. 46.12% 27.13% 20.02% 18.54% 25.78% 24.12%

BPSI 0.2041(0.0055) 0.1712(0.0075) 0.2538(0.0086) 0.2419(0.0080) 0.1736(0.0049) 0.2254(0.0070)

IPSI 0.1818(0.0055) 0.1627(0.0082) 0.2201(0.0082) 0.2383(0.0081) 0.1377(0.0030) 0.1693(0.0059)

Improv. 27.22% 7.36% 15.13% 2.99% 22.84% 24.71%

Case 2

BASVM 0.1941(0.0041) 0.1614(0.0049) 0.2285(0.0055) 0.2613(0.0065) 0.1389(0.0024) 0.2202(0.0045)

BSVM 0.2001(0.0044) 0.1489(0.0042) 0.2476(0.0062) 0.2696(0.0076) 0.1702(0.0036) 0.2621(0.0081)

BLSSVM 0.1912(0.0044) 0.1453(0.0041) 0.2372(0.0058) 0.2402(0.0071) 0.1588(0.0040) 0.2284(0.0076)

ISVM 0.1752(0.0026) 0.1321(0.0035) 0.2009(0.0049) 0.1963(0.0045) 0.1281(0.0015) 0.1497(0.0041)

Improv. 40.24% 23.06% 15.14% 24.24% 21.98% 36.24%

BPSI 0.1891(0.0030) 0.1351(0.0037) 0.2202(0.0047) 0.2100(0.0060) 0.1512(0.0025) 0.1586(0.0040)

IPSI 0.1722(0.0023) 0.1287(0.0032) 0.1988(0.0051) 0.1989(0.0050) 0.1265(0.0014) 0.1413(0.0031)

Improv. 40.62% 13.29% 9.80% 7.03% 15.75% 9.02%

tuning set, and the tuning parameters with the smallest criterion value are se-

lected. Finally, we test the fitted model using the selected tuning parameters over

the testing set. The averaged test errors based on 100 replications are reported in

Table 2. We also set Pr(sign(f(X) = 1) as the sample proportion of the labeled

class, finding that the performance of the classifiers was similar. The result is

omitted to conserve space.

As suggested by Table 2, the ISVM and IPSI outperform the BSVM and

BPSI in all cases. The amounts of improvement range from 7.36% to 46.12%.

Compared with Table 1, the performance of the biased methods deteriorates after

tuning. Interestingly, although the BASVM underperforms against the BSVM in

Table 1, it outperforms the BSVM after tuning. One possible explanation is that

a higher tuning error is anticipated because the BASVM involves more tuning
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parameters than those of the other methods. Overall, a comparison of Tables

1 and 2 shows that the tuning criterion performs well in terms of selecting the

tuning parameters, leading to good accuracy of classification.

6. Statistical Learning Theory

6.1. Theory

In binary classification, the Bayes classifier is defined as f̄B = sign(P (Y =

1|X = x)−1/2), which is a global minimizer of the generalization error GE(f) =

P (Y 6= sign(f(X))). Let sign(f̂C) be the corresponding classifier defined by the

ψ-loss in Algorithm 1. In what follows, we establish an error bound in terms

of the Bayesian regret e(f̂C , f̄B) = GE(f̂C) − GE(f̄B) ≥ 0, which is the differ-

ence between the generalization errors of our classifier and the Bayes rule. In

particular, we establish a probability error bound for e(f̂C , f̄B) as a function of

the complexity of the candidate decision function set F , the sample size of the

labeled data nl, the sample size of the unlabeled data nu, the tuning parameter

λ = (nC)−1, the error of the initial classifier δ
(0)
n , the sample proportion of neg-

ative instances rn, and the maximum iteration step K. Moreover,we also show

that, in the absence of labeled negative instances, the proposed method is still

able to recover the performance of supervised ψ-learning based on complete data

in terms of the rate of convergence under certain assumptions. Let Z = (X, Y ),

V (f,Z) = ψ(Y f(X)) and eV (f, f̄B) = E(V (f,Z) − V (f̄B,Z)), the Bayesian re-

gret under the loss V (f,Z), which is ψ(Y f(X)). Furthermore, we assume the

following conditions hold.

Assumption 1. (Distribution) Let P (x, y) denote the joint distribution of (X, Y ).

Then, (xi)
nl
i=1 are drawn independently from the conditional distribution PX|Y=1(

x, y), and (xi)
n
i=nl+1 are drawn independently from the marginal distribution

PX(x, y).

Assumption 2. (Approximation) For a positive sequence ηn → 0 as n → ∞,

there exists f∗ ∈ F , such that eV (f∗, f̄B) ≤ ηn.

Assumption 3. (Smoothness) There exist positive constants α, β, ζ, and ai, for

i = 0, 1, 2, such that for any sufficiently small δ > 0,

sup
{f∈F :eV (f,f̄B)≤δ}

e(f, f̄B) ≤ a0δ
α, (6.1)

sup
{f∈F :eV (f,f̄B)≤δ}

‖sign(f)− sign(f̄B)‖1 ≤ a1δ
β, (6.2)



AN SEMI-SUPERVISED APPROACH TO NOVELTY DETECTION 975

sup
{f∈F :eV (f,f̄B)≤δ}

Var(V (f,Z)− V (f̄B,Z)) ≤ a2δ
ζ . (6.3)

Assumption 2 is also used by Shen et al. (2003), and it ensures that the

Bayes rule f̄B can be well approximated by decision functions in F . Assumption

3 measures the local behavior of e(f, f̄B), ‖sign(f)−sign(f̄B)‖1, and Var(V (f,Z)−
V (f̄B,Z)) within a neighborhood of f̄B. A similar assumption is used in Wang,

Shen and Pan (2009).

To describe Assumption 4, we introduce the L2-metric entropy with bracket-

ing for the function class F . Given any ε > 0, {(f li , fui )}Ii=1 satisfying ‖f li−fui ‖2 ≤
ε, for i = 1, . . . , I, is called an ε-bracketing function set of F if for any f ∈ F ,

there exists i such that f li ≤ f ≤ fui . Then, the L2-metric entropy with brack-

eting for the function class F is defined as the smallest log(I), and is denoted

by HB(ε,F). Using the above notation, Assumption 4 is formally given in the

following.

Assumption 4. (Complexity) For some constants ai > 0, for i = 3, 4, 5, and

εn > 0,

sup
k≥2

φ(εn, k) ≤ a5n
1/2, (6.4)

where φ(ε, k) =
∫ a1/2

3 Nmin(1,ζ)/2

a4N
H

1/2
B (u,F(k))du/N , F(k) = {V (f, z) − V (f∗, z) :

f ∈ F , J(f) ≤ k}, N = N(ε, λ, k) = min(ε2 + λ(k/2 − 1)J∗, 1), and J∗ =

max(1, J(f∗)).

Refer to Shen et al. (2003) for more details on Assumption 4. Combining the

technical assumptions from 1 to 4, the following results are established.

Theorem 3. Under Assumptions 1–4 and δ2
n = min(max(ε2

n, 4ηn), 1) ≥ 4λJ∗,

there exist some positive constants a6 and a7, such that

P
(
e(f̂C , f̄B) ≥ a0 max(δ2α

n , (ρn(δ(0)
n )2)αmax(1,BK)

)
≤ P

(
eV (f̂ (0), f̄B) ≥ ρn(δ(0)

n )2
)

+ 24K exp(−a6nl(λJ
∗)2−min(1,ζ)) +

24K exp
(
− a7nu

(
rn − a1ρ

β
n(ρn(δ(0)

n )2)βmin(1,BK)
)
(λJ∗)2−min(1,ζ)

)
+Kρ−βn ,

where B = 2βζ/(1 + max(0, 1 − β)), K is the finite number of iterations of

Algorithm 1 at termination, ρn > 0 is a real number, and rn denotes the sample

proportion of truly negative instances.

Theorem 3 establishes a finite-sample probability bound for e(f̂C , f̄B). The

parameter B measures the level of difficulty of the underlying problem, with
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smaller B indicating more difficulty. Note that B is proportional to β and ζ in

Assumption 3. As nl, nu →∞, we obtain the convergence rate of the IPSI, which

is determined by the error rate of the corresponding supervised ψ-learning with

complete data, error rate of the initial classifier, and maximum iteration steps K.

Corollary 1. Under the assumptions of Theorem 3, as nl, nu →∞,

|e(f̂C , f̄B)| = Op

(
max

(
δ2α
n , (ρn(δ(0)

n )2)αmax(1,BK)
))

and

E|e(f̂C , f̄B)| = O
(

max
(
δ2α
n , (ρn(δ(0)

n )2)αmax(1,BK)
))
,

provided that the initial classifier satisfying P
(
eV (f̂ (0), f̄B) ≥ ρn(δ

(0)
n )2

)
→ 0,

with ρn → ∞ and ρn(δ
(0)
n )2 → 0, a1ρ

β
n(ρn(δ

(0)
n )2)βmin(1,BK) < rn, and the tuning

parameter λ is selected such that nl(λJ
∗)2−min(1,ζ) and nu

(
rn − a1ρ

β
n(ρn(δ

(0)
n )2

)βmin(1,BK)
)
(λJ∗)2−min(1,ζ) are bounded away from zero.

The parameter B describes two cases. When B > 1, the IPSI reaches the

convergence rate of its supervised counterpart with complete data (Shen et al.

(2003)). However, this is not guaranteed when B ≤ 1.

6.2. A theoretical example

We apply Theorem 3 to a specific learning example to obtain an error rate

for the proposed method IPSI in terms of the Bayesian regret. Consider a linear

classification problem in which the unlabeled data X = (X1, X2)T form a sample

from a marginal density q(x) = (1/2)(1 + θ1)|x|θ1 , for −1 ≤ x ≤ 1, with θ1 > 0.

Given x = (x1, x2)T , the conditional distribution of the positive label is P (Y =

1|x) = (1/2)sign(x1)|x1|θ2 + (1/2) with θ2 > 0, where the parameters θ1 and

θ2 describe the shape of the marginal density near the origin and the shape of

the conditional class probability around 0.5, respectively. The labeled data are a

random sample from P (x|Y = 1). Note that fB = x1.

Assumption 1 is easily satisfied. We now verify Assumptions 2–4. For

simplicity, we restrict F to F1 = {f(x) = (1, x1)w : w ∈ R2} because X1

and X2 are independent. For assumption 2, let f∗ = nfB. Then, we have

eV (f∗, f̄B) ≤ P (|nfB(X1)| ≤ 1) ≤ (1 + θ1)/n = ηn. Because eV (f, f̄B) ≥
e(f, f̄B), (6.1) in Assumption 3 holds for α = 1. Direct calculations yield that

there exist constants c1, c2 > 0 such that for f ∈ F1, eV (f, f̄B) ≥ e(f, f̄B) =

c1(−d0/(1 + d1))1+θ1+θ2 and E|sign(f)− sign(f̄B)| = c2(−d0/(1 + d1))1+θ1 , with

wf = wfB + (d0, d1)T , which implies that β = (1 + θ1)/(1 + θ1 + θ2) in (6.2). To

check (6.3), by the triangle inequality, Var(V (f,Z) − V (f̄B,Z)) ≤ E|V (f,Z) −
V (f̄B,Z)| ≤ ∆1+∆2, where ∆1 = E|l(f,Z)−V (f̄B,Z)| ≤ E|sign(f)−sign(f̄B)| ≤
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c3eV (f, f̄B)(1+θ1)/(1+θ1+θ2),∆2 = E(V (f,Z)− l(f,Z)) = E(V (f,Z)−V (f̄B,Z)) +

E(l(f̄B,Z)− l(f,Z)) ≤ 2eV (f, f̄B), and c3 is a constant. Hence, (6.3) holds with

ζ = (1 + θ1)/(1 + θ1 + θ2). For (6.4), let φ1(ε, k) = a3(log(1/N1/2))1/2/N1/2. By

Lemma 6 of Wang and Shen (2007), solving (6.4) yields εn = (logn/n)1/2 when

C/J∗ ∼ δ−2
n n−1 ∼ (logn)−1. Therefore, B = 2(1 + θ1)2/((1 + θ1 + 2θ2)(1 + θ1 +

θ2)). Applying Theorem 3 yields E|e(f̂C , f̄B)| = O(max(n−1logn, (ρn(δ
(0)
n )2

)max(1,BK))). When B > 1 or, equivalently, 1 + θ1 > (3 +
√

17)/2θ2, the rate

is O(n−1logn) for sufficiently large K, and is O(ρn(δ
(0)
n )2) otherwise.

It is clear that our proposed method achieves a fast rate n−1logn when θ1 is

larger than θ2, indicating that the marginal density q(x) is low around the origin.

This is in accordance with the low density separation condition of Chapelle and

Zien (2005) for semi-supervised learning.

7. Discussion

This study develops a large-margin semi-supervised classifier for detecting a

novel class with labeled instances from only one class. In particular, the proposed

method achieves higher prediction accuracy. The numerical analysis illustrates

that our method is highly competitive against the state-of-the-art BSVM and

BASVM. The theoretical results show that it can recover the performance of

its supervised counterpart with complete data. Note that the proposed method

involves only one tuning parameter, as opposed to the two tuning parameters for

the BSVM, reducing the cost of tuning numerically. Finally, a generalization of

the proposed method to multiclass learning may require further investigation.
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Appendix

A. Proofs

Proof of Theorem 1: Note that S(f̂ (k+1),yk+1) ≤ S(f̂ (k+1),yk) and f̂ (k+1)

minimizes the objective S(f,yk). Then S(f̂ (k+1),yk+1) ≤ S(f̂ (k),yk). That is,

S(f̂ (k),yk) is decreasing in k. Therefore, Algorithm 1 converges as k → ∞ and

terminates finitely for any given precision ε. This completes the proof.

Proof of Theorem 2: Let b̂k+1
0 = argminb0 S((b0,0p); Y

k), then it suffices to

show that P (∂S((b̂k+1
0 ,0p))/∂b 6= 0p) > 0. It is easy to see that b̂k+1

0 can be any

constant in [−1, 1]. Furthermore, ∂S((b̂k+1
0 ,0p))/∂b =

∑
Y ki =1 ∂L(b̂k+1

0 )Xi/n
k
+ −∑

Y kj =−1 ∂L(−b̂k+1
0 )Xj/n

k
−, where ∂ represents the partial sub-gradient. For the

hinge loss L(z) = (1−z)+, ∂S((b̂k+1
0 ,0p))/∂b 6= 0p is equivalent to

∑
Y ki =1 Xi/n

k
+

6=
∑

Y kj =−1 Xj/n
k
−. For the ψ-loss, we need

∑
Y ki =1 Xi/n

k
+ 6= 0 and

∑
Y kj =−1 Xj

/nk− 6= 0 additionally. Therefore, under the conditions of Theorem 2, P (b̂k+1 6=
0p) > 0.

Proof of Theorem 3: Firstly, we bound the probability of the ratio of incor-

rectly classified unlabeled instances using sign(f̂ (k)) by the tail probability of

eV (f̂ (k), f̄B). Denote by Df = {sign(f̂ (k)(Xj)) 6= sign(f̄B(Xj)), nl + 1 ≤ j ≤ n}
the set of incorrectly classified instances and nf = #Df . By Markov’s inequality,

the fact that E(nf/n) = (nu/n)E‖sign(f̂ (k))− sign(f̄B)‖1, and (6.2), we obtain

P

(
nf
n
≥ a1(ρ2

n(δ(k)
n )2)β

)
≤ P

(
‖sign(f̂ (k))− sign(f̄B)‖1 ≥ a1(ρn(δ(k)

n )2)β
)

+P

(
nf
n
≥ ρβn‖sign(f̂ (k))− sign(f̄B)‖1

)
≤ P

(
eV (f̂ (k), f̄B) ≥ ρn(δ(k)

n )2
)

+ ρ−βn . (A.1)

Then we will establish the connection between P (eV (f̂ (k+1), f̄B) ≥ ρn(δ
(k+1)
n )2)

and P (eV (f̂ (k), f̄B) ≥ ρn(δ
(k)
n )2), where ρn(δ

(k+1)
n )2 = (ρn(δ

(k)
n )2)B and B =

2βζ/(1 + max(0, 1− β)). For simplicity, let δ2
k = ρn(δ

(k)
n )2. Moreover, Zj =

(Xj , Yj) with Yj = sign(f̂ (k)(Xj)), nl + 1 ≤ j ≤ n. Define a scaled empir-

ical process Enk+(V (f∗,Z) − V (f,Z)) = (1/nk+)
∑

Yi=1(V (f∗,Zi) − V (f,Zi) −
E(V (f∗,Zi)− V (f,Zi))).

By the definition of f̂ (k) and (A.1), we have

P
(
eV (f̂ (k+1), f̄B) ≥ ρn(δ(k+1)

n )2
)
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≤ P
(
nf
n
≥ a1(ρ2

n(δ(k)
n )2)β

)
+ P ∗

(
sup
Nk

1

nk+

∑
Yi=1

(
V (f∗,Zi)− V (f,Zi)

)
+

1

nk−

∑
Yj=−1

(
V (f∗,Zj)− V (f,Zj)

)
+ λ(J(f∗)− J(f)) ≥ 0,

nf
n
≤ a1(ρ2

n(δ(k)
n )2)β

)

≤ P
(
eV (f̂ (k), f̄B) ≥ ρn(δ(k)

n )2
)

+ ρ−βn + I1 + I2,

where Nk = {f ∈ F : eV (f, f̄B) ≥ δ2
k+1}, I1 = P ∗

(
supNk(1/n

k
+)
∑

Yi=1(Ṽ (f∗,Zi)

− Ṽ (f,Zi)) ≥ 0, (nf/n) ≤ a1(ρ2
n(δ

(k)
n )2)β

)
, I2 = P ∗

(
supNk(1/n

k
−)
∑

Yj=−1(V (f∗,

Zj)− V (f,Zj)) ≥ 0, (nf/n) ≤ a1(ρ2
n(δ

(k)
n )2)β

)
, and Ṽ (f,Z) = V (f,Z) + λJ(f).

To bound I1, we partition Nk into a sequence of sets As,t with As,t = {f ∈
F : 2s−1δ2

k+1 ≤ eV (f, f̄B) < 2sδ2
k+1, 2

t−1J∗ ≤ J(f) < 2tJ∗} and As,0 = {f ∈
F : 2s−1δ2

k+1 ≤ eV (f, f̄B) < 2sδ2
k+1, J(f) < J∗}; s, t = 1, 2, . . . Thus it suffices to

bound I1 and I2 separately over each As,t. To bound I1, we need to bound the

first and second moments of Ṽ (f,Z) − Ṽ (f∗,Z)|Y = 1 over each As,t. Without

loss of generality, assume that eV |Y (f, f̄B) ≥ c1eV (f, f̄B), δ2
k ≥ δ2

n, J(f∗) ≥ 1,

and thereby J∗ = max(J(f∗), 1) = J(f∗).

For the first moment, since δ2
k+1 ≥ 4λJ(f∗), we obtain

inf
As,t

E(Ṽ (f,Z)− Ṽ (f∗,Z)|Y = 1) ≥
(
c12s−1 − 1

4

)
δ2
k+1 + λ(2t−1 − 1)J(f∗)

= M(s, t),

inf
As,0

E(Ṽ (f,Z)− Ṽ (f∗,Z)|Y = 1) ≥
(
c12s−1 − 1

2

)
δ2
k+1 = M(s, 0),

where s, t = 1, 2, . . ..

For the second moment, note that Var(V (f,Z)−V (f∗,Z)) ≤ 2(Var(V (f,Z)−
V (f̄B,Z)) + Var(V (f∗,Z)− V (f̄B,Z))). By Assumption A3,

sup
As,t

Var(Ṽ (f,Z)− Ṽ (f∗,Z)|Y = 1) ≤ sup
As,t

Var(V (f,Z)− V (f∗,Z))

1− r

≤ 4a2

1− r
M(s, t)ζ = ν(s, t)2,

where r is the population proportion of truly negative instances and s = 1, 2, . . . , t =

0, 1, . . .

Note that I1 ≤ I3+I4, where I3 =
∑∞

s,t=1 P
∗( supAs,t Enk+(V (f∗,Z)−V (f,Z)) ≥

M(s, t)
)

and I4 =
∑∞

s=1 P
∗( supAs,0 Enk+(V (f∗,Z)− V (f,Z)) ≥M(s, t)

)
. By As-

sumption A4, a direct application of the Theorem 3 of Shen and Wong (1994)
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with M =
√
nk+M(s, t), ν = ν(s, t)2, ε = 1/2, T = 2 leads to that

I3 ≤
∞∑

s,t=1

3 exp

(
−

(1− ε)nk+M(s, t)2

2(4ν(s, t)2 + 2M(s, t)/3)

)

≤
∞∑

s,t=1

3 exp
(
− a6nlM(s, t)2−min(1,ζ)

)
≤

∞∑
s,t=1

3 exp

(
− a6nl

((
c12s−1 − 1

4

)
δ2
k+1 + λ(2t−1 − 1)J(f∗)

)2−min(1,ζ))

≤ 3
exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)(

1− exp(−a6nl(λJ∗)2−min(1,ζ))
)2 ,

where a6 > 0 is a constant.

Similarly, I4 ≤ 3 exp
(
−a6nl(λJ

∗)2−min(1,ζ)
)
/
(
1−exp(−a6nl(λJ

∗)2−min(1,ζ))
)2

.

Therefore, by combining the bounds of I3 and I4, we have that

I1 ≤ 6
exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)(

1− exp(−a6nl(λJ∗)2−min(1,ζ))
)2 .

For simplicity, assume exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)
≤ 1/2. Hence I1 ≤ 24 exp

(
−

a6nl(λJ
∗)2−min(1,ζ)

)
. Similarly, I2 ≤ 24 exp

(
− a7nu(rn − a1(ρ2

n(δ
(k)
n )2)β)(λJ∗

)2−min(1,ζ)
)
, where rn is the sample proportion of truly negative instances.

By substituting the upper bounds of I1 and I2 into (A.2), P (eV (f̂ (k+1), f̄B) ≥
ρn(δ

(k+1)
n )2) ≤ P (eV (f̂ (k), f̄B) ≥ ρn(δ

(k)
n )2)+ρ−βn +24 exp(−a6nl(λJ

∗)2−min(1,ζ))+

24 exp(−a7nu(rn−a1(ρ2
n(δ

(k)
n )2)β)(λJ∗)2−min(1,ζ)). Iterating this inequality yields

that

P
(
eV (f̂ (K), f̄B) ≥ (ρn(δ(0)

n )2)max(1,BK)
)

≤ P
(
eV (f̂ (0), f̄B) ≥ ρn(δ(0)

n )2
)

+ 24K exp
(
− a6nl(λJ

∗)2−min(1,ζ)
)

+

24K exp
(
− a7nu(rn − a1ρ

β
n(ρn(δ(0)

n )2)βmin(1,BK))(λJ∗)2−min(1,ζ)
)

+Kρ−βn .

Then Theorem 3 follows from Assumption A3 and δ2
k ≥ max(ε2

n, 4ηn) = δ2
n for

any k.

Proof of Corollary 1: It follows from Theorem 3 immediately.
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