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Abstract: It is important to quantify and predict rare events that have significant

societal effects. Existing works on analyzing such events rely mainly on either in-

flexible parametric models or nonparametric models that are subject to “the curse

of dimensionality.” We propose a new semiparametric approach based on the tail

single-index model to obtain a better balance between model flexibility and par-

simony. The procedure involves three steps. First, we obtain a
√
n-estimator of

the index parameter. Next, we apply the local polynomial regression to estimate

the intermediate conditional quantiles. Lastly, these quantiles are extrapolated to

the tails to estimate the extreme conditional quantiles. We establish the asymp-

totic properties of the proposed estimators. Furthermore, we demonstrate using

a simulation and an analysis of Los Angeles mortality and air pollution data that

the proposed method is easy to compute and leads to more stable and accurate

estimations than those of alternative methods.

Key words and phrases: Extreme quantile, local linear regression, semi-parametric,

single-index, tail.

1. Introduction

An important problem in fields such as econometrics, finance, hydrology,

and climate science is to model and predict events that are rare, but that have

significant consequences. Examples include a large financial loss, heavy snowfall,

extreme temperatures, high medical costs, and a low birth weight, among others.

For such data, modeling and estimating the tail quantiles are of more interest

than doing so for the mean. Numerous works have examined the estimation of

extreme quantiles for univariate data; see Embrechts, Klüppelberg and Mikosch

(2013) and De Haan and Ferreira (2006), and the references therein.

To predict rare events, it would be helpful to quantify the tail quantiles of

the response by accounting for information provided by relevant predictors (co-

variates). Studies on conditional tail quantiles can be roughly divided into two

classes. The first models extreme conditional quantiles by fitting either paramet-
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ric distributions, such as a generalized extreme value distribution or a generalized

Pareto distribution (GPD), or linear quantile regression models; see Davison and

Smith (1990), Beirlant and Goegebeur (2003), Beirlant and Goegebeur (2004),

Chavez-Demoulin and Davison (2005), Chernozhukov (2005), Wang and Tsai

(2009), Wang, Li and He (2012), Wang and Li (2013), and Li and Wang (2019).

These methods assume that the conditional quantiles are parametric functions of

the covariates and, thus, are not flexible in some applications. The second class

estimates extreme quantiles by fitting nonparametric models; see Gardes and

Girard (2010), Gardes, Guillou and Schorgen (2012), Daouia et al. (2011), and

Daouia, Gardes and Girard (2013). These methods are based on local estimations

using observations in a small neighbourhood. Thus, the finite-sample behavior

depends heavily on the richness of the data in the neighborhood. However, owing

to the “curse of dimensionality,” these methods generally do not work well when

the number of covariates increases.

To overcome the “curse of dimensionality,” while still allowing for model

flexibility, we propose a new extreme quantile estimation method based on a tail

single-index model. The single-index model is a semiparametric regression model

that captures the nonlinear relationship between the response and the covari-

ates using an unspecified univariate link function and the index, an unknown

linear combination of covariates. Therefore, the model provides a convenient

tool to overcome the “curse of dimensionality” encountered in nonparametric re-

gressions with multivariate covariates; see Powell, Stock and Stoker (1989) and

Hardle, Hall and Ichimura (1993). Some works have integrated the single-index

model and quantile regression; see Wu, Yu and Yu (2010), Zhu, Huang and Li

(2012), Kong and Xia (2012), and Zhong et al. (2016), among others. To the

best of our knowledge, only one work (Gardes (2018)) discusses the estimation

of extreme conditional quantiles for single-index and multi-index models. Gardes

(2018) proposed a new dimension-reduction approach and a conditional extremal

quantile estimator by considering the tail dimension-reduction subspace. How-

ever, this method is computationally complex, and the authors do not formally

establish the theoretical properties of the estimator when the index parameters

are unknown and have to be estimated from the data.

In this study, we consider a new tail single-index model that assumes there

exists a single-index structure at the tail and, thus, is less restrictive than the

global single-index models assumed in Zhu, Huang and Li (2012) and Zhong et

al. (2016). The estimation of the extreme conditional quantiles involves esti-

mating three unknown quantities, namely, the index parameter, link function,

and extreme value index that characterizes the heaviness of the tail distribu-
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tion. We propose a convenient three-step estimator for the extreme conditional

quantiles based on the tail single-index model. In the first step, we construct a√
n-estimator of the unknown index parameter under a misspecified linear quan-

tile regression model at a central quantile level close to the tail. In the second

step, we apply a local polynomial regression technique (Fan and Gijbels (1996))

to estimate the intermediate conditional quantiles. These estimates are then ex-

trapolated in the third step to extreme tails by adapting the univariate extreme

value theory to the regression setup. Our method provides a convenient and flex-

ible tool to analyze rare events by considering the effects of multiple covariates

with possibly large dimensions.

Our proposed method differs from existing works in the following ways. First,

to the best of our knowledge, this is the first work to systematically examine the

extreme quantile estimation using single-index models, and to provide theoretical

guarantees for cases with unknown index parameters. Second, the proposed tail

single-index model not only provides more flexibility than parametric models,

but also leads to a simple approach for estimating the index parameters with

a
√
n-convergence rate. As a result, this estimation does not affect the asymp-

totic properties of the final extreme quantile estimation. In contrast, the index

estimation method in Gardes (2018) is more complicated and numerically less

stable, and its theoretical properties and effects on the extreme quantile estima-

tion have not been studied formally. Third, instead of indirectly estimating the

conditional quantiles by inverting the conditional cumulative distribution func-

tion, as in Gardes (2018), our procedure is based on a direct estimation of the

conditional quantiles in all three steps. We show that this coherence helps reduce

errors from different layers of the modeling and ameliorates the tuning param-

eter selection, leading to numerically more accurate estimations. Furthermore,

the direct estimation helps quantify the effect of the covariates on the extreme

tails of the response in a more straightforward and interpretable way.

The rest of this paper is organized as follows. In Section 2, we present the

proposed method and investigate its theoretical properties. In Section 3, we

assess the finite-sample performance of the proposed method using a simulation

study and an analysis of Los Angeles mortality and air pollution data. Section 4

concludes the paper. All technical details are given in the online Supplementary

Material.

2. Methodology

2.1. Notation and the tail single-index model
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Let Y be the response variable of interest, and FY (·|X) be the cumulative dis-

tribution function (CDF) of Y conditional on the covariate X = (X1, X2, . . . , Xp)
T .

DenoteQτ (Y |X) as the τth conditional quantile of Y given X, namely, Qτ (Y |X) =

inf{y : FY (y|X) ≤ τ}. Suppose that we observe a random sample {(Xi, Yi), i =

1, 2, . . . , n} from (X, Y ). Our main objective is to estimate the extreme condi-

tional high quantile Qτ∗n(Y |X). Here, τ∗n may approach one at any rate, including

special cases, such as the intermediate quantiles with n(1 − τ∗n) → ∞ and the

extreme quantiles with n(1− τ∗n)→ c ≥ 0. For simplicity, we denote τ∗n = τ∗.

Throughout, we assume that the conditional distribution of Y |X for the

given X belongs to the maximum domain of attraction of some extreme value

distribution Hγ(X) with the extreme value index (EVI) γ(X), denoted by Y |X ∈
D(Hγ(X)). That means, for independent and identically distributed (i.i.d.) sam-

ple {Ui : i = 1, 2, . . . , n} from the conditional distribution of Y |X, there exist

an > 0 and bn ∈ R, such that

P

(
maxi=1,...,n Ui − bn

an
≤ u

)
→ Hγ(X)(u) := exp{−(1 + γ(X)u)−1/γ(X)},

as n → ∞, for all u with 1 + γ(X)u > 0. We assume γ(X) > 0, which means

that Y |X has a heavy-tailed distribution. Such distributions are common in

applications such as financial returns and insurance claims, and the heavy tails

often make the estimation of extreme quantiles more challenging.

Here, we consider a new tail single-index model, which assumes that there

exists β0 ∈ Rp and the unknown function Gτ (·), such that

Qτ (Y |X) = Gτ (XTβ0) for τ ∈ (τc, 1), (2.1)

where τc is a fixed quantile level close to one. For model identifiability, we assume

throughout that ||β0|| = 1, where || · || denotes the L2 norm. Model (2.1) requires

that the single-index structure holds only in the right tail, which is a weaker

assumption than the global single-index quantile regression model considered by

Zhu, Huang and Li (2012) and Zhong et al. (2016).

2.2. Three-step estimation

We propose a three-step estimation procedure. The first step estimates the

index parameter β0. The second step estimates the unknown link function Gτ
and the conditional quantile at intermediate quantile levels. In the third step, we

use extrapolation and extreme value theory to estimate Qτ∗(Y |X).

We first discuss the estimation of the index parameter β0. Zhu, Huang and Li
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(2012) and Zhong et al. (2016) showed that under the global single-index quantile

regression model and some conditions on X, the direction of β0 can be estimated

consistently using the slope estimation obtained by fitting a misspecified linear

quantile regression model. We show in Proposition 1 that this result still holds

under the tail single-index model (2.1) and a relaxed assumption on X.

Let ρτ (r) = τr − rI(r < 0) be the quantile check loss function (Koenker,

Chesher and Jackson (2005)), and Lτ (u,β) = E{ρτ (Y − u − XTβ) − ρτ (Y )}.
Define

(uτ ,βτ ) = argmin
u,β

Lτ (u,β), (2.2)

which are the population parameters resulting from fitting the misspecified linear

quantile regression model.

Proposition 1. Let τ ∈ (τc, 1) be a given quantile level. Under model (2.1), if

the covariate vector X satisfies

E(X|βT0 X) = CβT0 X, (2.3)

where C is a p-dimensional constant vector, then βτ = kβ0, for some constant

k.

When X follows an elliptically symmetric distribution (e.g., the normal dis-

tribution), the linearity assumption (2.3) is satisfied. Li (1991) and Hall and Li

(1993) showed that the linearity condition (2.3) is typically regarded as mild,

particularly when p is fairly large.

Proposition 1 implies that the direction of βτ , defined in (2.2) for τ ∈ (τc, 1),

is the same as that of β0. Obviously, because ||β0|| = 1, k is the L2-norm of

βτ . Hence, the conditional distribution of Y |(XTβ0) is equivalent to that of

Y |(XTβτ ). Based on the observed data, we obtain the sample version of (uτ ,βτ )

as (ûτ , β̂τ ) = argminu,βLτn(u,β), where Lτn(u,β) = n−1
∑n

i=1 ρτ (Yi−u−XT
i β).

We propose estimating the index parameter β0 using β̂τ0 at τ0 ∈ (τc, 1).

Theoretically, τ0 can be any value in (τc, 1), and this results in a
√
n-consistent

estimator of β0. The following proposition presents the asymptotic normality of

(ûτ0 , β̂τ0)
T .

Proposition 2. Let ε = Y −XTβτ0, and denote Fε(t|X) and fε(·|X) as the con-

ditional CDF and conditional density function of ε given X, respectively. Then,
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n1/2(ûτ0 − uτ0)
n1/2(β̂τ0 − βτ0)

)
d→ N(0,Σ),

where Σ = B−1VB−1, with

B =

(
E{fε(uτ0 |X)} E{XT fε(uτ0 |X)}
E{Xfε(uτ0 |X)} E{XXT fε(uτ0 |X)}

)
, V = V ar

(
Fε(uτ0 |X)− τ0

X{Fε(uτ0 |X)− τ0}

)
.

Remark 1. We propose estimating the index parameter using the linear quan-

tile slope estimator β̂τ0 at a central quantile level τ0, because this estimator is√
n-consistent to βτ0 . We can also use the estimator β̂τ0 at an intermediate ex-

treme quantile level τ0 → 1 and n(1 − τ0) → ∞. For this case, we can follow

similar arguments to those in Chernozhukov (2005) and Angrist, Chernozhukov

and Fernández-Val (2006) to establish the asymptotic normality of β̂τ0 , but this

estimator has a lower convergence rate of
√
nfY {Gτ0(x)|x}/

√
1− τ0, where the

fY {Gτ0(x)|x} is the conditional density function of Y evaluated at the τ0th con-

ditional quantile given X = x.

In the second step, we estimate the intermediate conditional quantiles of Y by

applying the local linear quantile regression, and then use the results to estimate

the EVI. For ease of presentation, let z = XT
0 βτ0 , ẑ = XT

0 β̂τ0 , Zi = XT
i βτ0 , and

Ẑi = XT
i β̂τ0 . Note that by Model (2.1) and Proposition 1, we have Qτ (Y |X) =

Qτ (Y |XTβ0) = Qτ (Y |XTβτ0). Using the pseudo sample data {(XT
i β̂τ0 , Yi) :

i = 1, 2, . . . , n}, we can estimate Gτ (XT
0 βτ0) for a given new X0 using a local

linear regression. For Z in the neighborhood of z, Gτ (Z) can be approximated

as Gτ (Z) ≈ Gτ (z) + G′τ (z)(Z − z). Define (â, b̂) = argmina,bn
−1∑n

i=1 ρτ{Yi −
a − b(Ẑi − ẑ)}K((Ẑi − ẑ)/h). Let Ĝτ (ẑ) = â and Ĝ′τ (ẑ) = b̂. We can estimate

Gτ (z) as Ĝτ (ẑ) at a sequence of quantile levels τj = 1−j/n, with j = dnηe, . . . , k,

for 0 < η < 1, where dae denotes the ceiling function that returns the smallest

integer greater than or equal to a, k satisfies k = k(n) → ∞, k/n → 0, and

dnηe = o(k1/2).

We can then estimate the EVI γ(x) = γ(z) based on the estimated intermedi-

ate quantiles {Ĝτj (ẑ) : j = dnηe, dnηe+ 1, . . . , k}. For heavy-tailed distributions,

a commonly used estimator for the extreme value index is Hill’s estimator. We

propose estimating γ(z) using the following Hill-type estimator:

γ̂(ẑ) =
1

k

k∑
j=dnηe

[
log{Ĝτj (ẑ)} − log{Ĝτk(ẑ)}

]
.

In the third step, we adapt the univariate extreme value theory and ex-
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trapolate from the intermediate quantile level to the extreme tail to estimate

the extreme conditional quantile Gτ∗(z) for τ∗ → 1. Specifically, by adapting

Weissman’s estimator to the conditional case (Weissman (1978)), we obtain the

extreme conditional quantile estimator,

Ĝτ∗(ẑ) =

(
1− τk
1− τ∗

)γ̂(ẑ)
Ĝτk(ẑ),

where τk = 1 − k/n. In addition to Hill-type estimators, we can consider al-

ternative methods for estimating the EVI, such as the moment estimator of Li

and Wang (2019), Pickands estimator of Daouia, Gardes and Girard (2013), and

peaks over random threshold (PORT) estimator of Santos, Alves and Gomes

(2006). Our numerical study (in Section S3 of the Supplementary Material)

suggests that the proposed extreme conditional quantile estimator is stable for

different EVI estimators.

3. Theoretical Properties

In order to derive the asymptotic properties of γ̂(ẑ) and Ĝτ∗(ẑ), we need to as-

sume some second-order condition. A positive function h is called regularly vary-

ing at infinity with index α ∈ R, denoted by h ∈ RV (α), if limt→∞ h(tx)/h(t) =

xα, for x > 0. Let U(t; z) = G1−1/t(z). We assume the following second-order

condition:

C1 There exists a function A(t; z) ∈ RV (%(z)), for some %(z) ≤ 0 and A(t; z)→
0, as t→∞, such that

U(tx; z)/U(t; z)− xγ(z)

A(t; z)
→ xγ(z)

x%(z) − 1

%(z)
, x > 0. (3.1)

Most families of continuous distributions satisfy condition (3.1), for instance, the

t distribution and the Pareto distribution. We also need the following regularity

conditions:

C2 The quantile function Gτ (Z) has a continuous and bounded second deriva-

tive G′′τ (Z) with respect to Z.

C3 The density function of XTβ is positive and uniformly continuous for β in

a neighborhood of β0. Furthermore, the density function of Z = XTβ0 is

continuous and bounded away from zero and infinity on its support.

C4 The conditional density of Y given xTβ0, fY (y|xTβ0), is continuous in
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xTβ0, for each y ∈ R. Moreover, there exist positive constants ε and δ

and a positive function f̄(y|xTβ0), such that sup||xTβ−xTβ0||≤ε fY (y|xTβ) ≤
f̄(y|xTβ0). For any fixed value of xTβ0,

∫
f̄(y|xTβ0)dy < ∞; further-

more, as t → 0,
∫
{ρτ (y − t) − ρτ (y) − ρ̇τ (y)t}2f̄(y|xTβ0)dy = o(t2), where

ρ̇τ (u) = {sgn(u) + (2τ − 1)}/2, for u ≤ 0 and ρ̇τ (0) = 0.

C5 The kernel function K(·) is symmetric with a compact support [−1, 1], and

satisfies the first-order Lipschitz condition.

C6 U(t; z) = G1−1/t(z) has the first-order derivative U ′(t; z) with respective to

t, and satisfies limt→∞ tU
′(t; z)/U(t; z) = γ(z) uniformly for z in a compact

support Z.

Condition C2 is a common assumption in semiparametric regression for the

true link function. Condition C3 presents assumptions on the density of the

single index. Condition C4 is a mild condition that is weaker than the Lipschitz

condition on the function ρ̇τ (·). Condition C5 requires the kernel function to be

a proper density function with a compact support. Condition C6 includes some

classic assumptions on the extreme value index and the distribution function in

extreme value theory.

Theorems 1-3 present the asymptotic properties of the conditional quantile

estimator at the intermediate order, extreme value index estimator, and extrap-

olation estimator of the extreme conditional quantile, respectively. Throughout

this paper, we denote µ2 =
∫ 1
−1 u

2K(u)du and ν0 =
∫ 1
−1K

2(u)du.

Theorem 1. Suppose that model (2.1) and conditions C2-C6 hold. Define T =

{τm < · · · < τk}, with m = dnηe for 0 < η < 1, τj = 1− j/n for j = dnηe, . . . , k,

where k satisfies k = k(n) → ∞, k/n → 0, and dnηe = o(k1/2). If h → 0 and

nh→∞ as n→∞, we have

{nh(1− τ)}1/2

γ(z)Gτ (z)

{
Ĝτ (ẑ)−Gτ (z)− 1

2
h2G′′τ (z)µ2

}
= Wn(τ){1 + op(1)}

uniformly for τ ∈ T , where Wn(τ) = {nh(1 − τ)}−1/2f−1Z (z)
∑n

i=1[τ − I{Yi ≤
Gτ (Zi)}]Ki, which converges to a Gaussian process with mean zero and covariance

Σ(τt, τs) = ν0{min (τt, τs)− τtτs}f−1Z (z)/
√

(1− τt)(1− τs), where Ki = K{(Zi −
z)/h} and fZ(z) is the density function of Z = XTβτ0.

Theorem 2. Suppose that the conditions in Theorem 1 and the second-order

condition (3.1) hold with γ(z) > 0 and %(z) < 0, and k and h satisfy kh → ∞,

(kh)1/2h2 log(n/k)→ λ1 ∈ R, and (kh)1/2A(n/k; z)→ λ2 ∈ R. Then, there exist
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a sequence of Brownian motions {W̃n(t) : t ∈ [0, 1]}, such that

(kh)1/2
{
γ̂(ẑ)− γ(z)− A(n/k; z)

1− %(z)
− Ĩ3n(z)

}
= γ(z)

√
ν0

fZ(z)

∫ 1

0
{x−1W̃n(x)− W̃n(1)}dx+ op(1),

where

Ĩ3n(z)=



h2µ2 log

(
n

k

)
(γ′(z))2, γ′(z) 6= 0,

1

2
h2µ2

d(z)(%
′
(z))2

c(z)

(
n

k

)%(z){
log

(
n

k

)}2 %(z)

1− %(z)
, γ′(z) = 0, %′(z) 6= 0,

−1
2h

2µ2

{
c
′′
(z)d(z)

c2(z)
− d

′′
(z)

c(z)

}(
n

k

)%(z) %(z)

1− %(z)
, γ′(z) = %′(z) = 0.

Remark 2. By Theorem 2, the asymptotic bias of γ̂(ẑ) consists of two parts,

Ĩ3n(z) and A(n/k; z)/{1 − %(z)}. The first Ĩ3n(z) is from the kernel estimation,

and the second A(n/k; z)/{1 − %(z)} is the result of the second-order approxi-

mation to the conditional distribution FY (y|X). The convergence rate of γ̂(ẑ) is

(kh)1/2, which is slower than k1/2 for the ordinary Hill estimator in the univariate

extreme analysis without a kernel estimation.

Theorem 3. Assume that the conditions in Theorem 2 hold. Then, we have

(kh)1/2

log{k/(npn)}

{
Ĝτ∗(ẑ)

Gτ∗(z)
− 1− 1

2
h2G−1τk (z)G′′τk(z)µ2 +A

(
n

k
; z

)
(k/(npn))%(z) − 1

%(z)

}

= γ(z)

√
ν0

fZ(z)

∫ 1

0

{
x−1W̃n(x)− W̃n(1)

}
dx(1 + op(1)),

where pn = 1− τ∗, τ∗ → 1, k/(npn)→∞, and (kh)−1/2 log{k/(npn)} → 0.

Remark 3. Similarly to γ̂(ẑ), the asymptotic bias of Ĝτ∗(ẑ) consists of two

parts. The first, (1/2)h2G−1τk (z)G′′τk(z)µ2, is from the kernel estimation, and the

second, −A(n/k; z)[{k/(npn)}%(z) − 1]/%(z), is from the second-order approxi-

mation of the conditional distribution of Y . The convergence rate of the ex-

treme conditional quantile estimator obtained under the single-index model is

(kh)1/2[log{k/(npn)}]−1, which slower than the rate of k1/2[log{k/(npn)}]−1 un-

der the parametric regression models. In addition, the condition k/(npn) → ∞
implies τ∗ approaches one at a faster rate than τk does, which makes the extrap-

olation feasible.
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4. Tuning Parameters Selection

4.1. Bandwidth selection

The bandwidth h balances the bias and the variance: a smaller h leads to a

smaller modeling bias, but a larger variance. We can choose h by minimizing the

mean squared error (MSE) of the nonparametric conditional quantile estimator

at an intermediate quantile level τ . By Theorem 1, at an intermediate quantile

level τ , where τ → 1 and n(1− τ)→∞, we have

MSE{Ĝτ (ẑ)} =
1

4
h4G′′2τ (z)µ22 +

γ2(z)G2
τ (z)ν0τf

−1
Z (z)

nh(1− τ)
.

Minimizing MSE{Ĝτ (ẑ)} gives

hopt(ẑ) =

[
γ2(z)G2

τ (z)ν0τf
−1
Z (z)

(1− τ){G′′τ (z)}2µ22

]1/5
n−1/5

≈
[

ν0τ(1− τ)f−1Z (z)

f2Y {Gτ (z)|z}{G′′τ (z)}2µ22

]1/5
n−1/5. (4.1)

The approximation in (4.1) is from fY {Gτ (z)|z} ≈ (1 − τ){γ(z)Gτ (z)}−1, by

Condition C6.

Fan and Gijbels (1996) showed that in local linear mean regression, the op-

timal bandwidth is

hoptm (ẑ) =

[
ν0σ

2(z)

µ22fZ(z){G′′(z)}2

]1/5
n−1/5, (4.2)

where G(z) and σ2(z) are the conditional mean and the variance of Y given the

covariate z, respectively.

Combining (4.1) and (4.2), we have

hopt(ẑ) ≈ hoptm (ẑ)

[
τ(1− τ){G′′(z)}2

σ2(z)f2Y {Gτ (z)|z}{G′′τ (z)}2

]1/5
. (4.3)

The optimal bandwidth in (4.3) depends on the unknown conditional density

function fY (·|z) and G′′(z). For simple calculation, we take the following ap-

proximations: (1) assume that the curvatures of the quantile function G′′τ (z) and

the conditional mean function G′′(z) are similar; (2) take σ2(z)f2Y {Gτ (z)|z} =

φ2{Φ−1(τ)} under the normal distribution, where φ(·) and Φ(·) are the standard

normal density and distribution functions, respectively.
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Finally, we choose the bandwidth using the following rule of thumb:

ĥopt(ẑ) = ĥoptm (ẑ)

[
τ(1− τ)

φ2{Φ−1(τ)}

]1/5
,

where ĥoptm (ẑ) can be attained using the plug-in method, using the “lpbwselect”

function in the R package nprobust.

4.2. Selection of τ0

The quantile level τ0 is involved in estimating the index parameter β0. As

discussed in Remark 1, we can choose a fixed τ0 ∈ (τc, 1), and this results in a√
n-consistent estimation of β0. Alternatively, we can choose τ0 at an intermedi-

ate quantile level, such that τ0 → 1, and n(1 − τ0) → ∞. Correspondingly, the

convergence rate of β̂τ0 is
√
nfY {Gτ0(x)|x}/

√
1− τ0, which is slower than

√
n

from a fixed quantile level. If τ0 also satisfies h(1− τ)/(1 − τ0) → 0 uniformly

for τ ∈ T , the conclusion of Theorem 1 still holds. The main reason is that by

Condition C6, we have fY {Gτ (z)|z} ≈ (1 − τ){γ(z)Gτ (z)}−1 and, consequently,√
nh(1− τ)/{γ(z)Gτ (z)}[

√
nfY {Gτ0(x)|x}/

√
1− τ0 ]−1 → 0. Therefore, the es-

timation error involved in β0 does not affect the asymptotic properties of the

estimators of the EVI and extreme conditional quantile in Theorems 2 and 3,

respectively. For instance, we can choose τ = 1 − nη/n and h = hopt(ẑ). Thus,

the condition hopt(ẑ)(1− τ)/(1−τ0)→ 0 is equivalent to n−(7−6η)/5/(1−τ0)→ 0;

that is, τ0 approaches one at a slower rate than n−(7−6η)/5. Because 0 < η < 1,

we suggest the following rule of thumb: τ0 = 1 − cn−1/5, where c is a constant.

Our numerical study in Section 5.1 suggests that this rule of thumb leads to a

stable estimation for c ∈ (0.1, 0.4).

5. Numerical Studies

In this section, we investigate the finite-sample performance of our pro-

posed method, referred to as the single-index model extreme quantile (SIMEXQ)

method, using a simulation study and an analysis of the National Morbidity,

Mortality, and Air Pollution Study (NMMAPS) data set of Los Angeles (LA).

5.1. Simulation

We consider the following three models to generate the simulation data:

• Case 1 (univarite x): Conditional on X = x, Y is distributed from F (y|x) =

exp{−y−1/γ(x)}, y > 0, where the extreme value index γ(x) = (1/2){(1/10)+

sin(πx)}[(11/10)− (1/2) exp{−64(x− 1/2)2}]. Therefore, the true extreme
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conditional quantile function is Qτ (Y |x) = (− log τ)−γ(x). The covariate X

is generated from the standard uniform distribution U(0, 1). This model

was also considered in Daouia et al. (2011).

• Case 2 (single-index model): Conditional on X = x, the response variable is

generated from Y = sin{2(xTβ0)} + 2 exp{−16(xTβ0)
2} + (xTβ0)ε, where

β0 = (2,−2,−1, 1, 0, . . . , 0)T /
√

10 is a p × 1 vector, the covariate vector

X = (X1, . . . , Xp)
T is multivariate normal with mean zero and covariance

matrix Cov(X) = (σij)p×p, with σij = 0.5|i−j|, and ε ∼ t(3) is the random

noise. Therefore, the extreme value index is γ(x) = 1/3. This model was

also considered in Zhu, Huang and Li (2012). We consider p = 4, 50, and

100.

• Case 3 (tail dimension-reduction subspace): Conditional on X = x, the

τth conditional quantile of Y for τ ∈ (0, 1) is defined as Qτ (Y |x) = {ln(1/

τ)}−g0(B>0 x)
[
1 + g1

(
B>1 x

)
exp

{
−(1− τ)−1

}]−1
, where xT = (x1, . . . , x4),

B>0 = (2, 1, 0, 0)/
√

5, B>1 = (0, 0, 1, 1), g0(z) = g̃(z; 1/3, 8/3), g̃(z; a, b) =

aI(−∞,0)(z) +
(
a+ b(exp(2z)− 1)/(exp(6/

√
5)− 1)

)
I[0,3/√5 )(z) + (a + b)

I[3/√5,∞)(z), and g1(z) = I(−∞,0)(z) + exp(5z)I[0,2)(z) + exp(10)I[2,∞)(z).

The covariates xj , for j = 1, . . . , 4 are generated as independent normal

variables with mean 1/2 and variance 1/9. Gardes (2018) also considered

this case, showing that the extreme value index γ(x) = g0
(
B>0 x

)
in this

model.

The EVI varies with the covariates in Cases 1 and 3, but is constant in Case

2. In Case 1, the conditional quantiles of Y depend on the univariate x. In Case 2,

the tail single-index model assumption in (2.1) is satisfied. Case 3 is a multi-index

model that depends on two indices and satisfies the TDR space assumption in

Gardes (2018). As τ → 1, the quantile of Y depends on x approximately through

the single index B>0 x. The sample size is set to n = 1,000. For each scenario,

the simulation is repeated 500 times. As suggested in Wang, Li and He (2012),

we choose k = d4.5n1/3e and η = 0.1 when estimating the EVI. We choose

τ0 = 1− 0.2n−1/5, resulting in τ0 = 0.95 for n = 1,000.

We include the following four methods for comparison: (i) the method of

Beirlant and Goegebeur (2004), denoted by BG, which is based on the local poly-

nomial maximum likelihood estimation and the generalized Pareto distribution,

fitted locally to excedances over a high specified threshold; (ii) the inverse CDF

method of Daouia et al. (2011), denoted by ICDF, which first gets the estimator

of the conditional kernel survival function, inverses it to get conditional quantile
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estimates, and then extrapolates these to estimate the extreme quantiles; (iii) the

tail dimension-reduction method of Gardes (2018), denoted by TDR, which first

estimates the unknown index to reduce the dimension of the covariate, and then

uses a kernel-based method to estimate the conditional extreme quantiles; and

(iv) the local linear estimator of Zhu, Huang and Li (2012), denoted by SIMQ,

which is developed for the single-index quantile regression model at central quan-

tiles. The tuning parameters ux and h in BG are chosen as the minimizers of the

asymptotic MSE of γ̂(x). The bandwidth parameter in ICDF is chosen using the

cross-validation method proposed in Daouia et al. (2011). The parameter and

kernel function of TDR are chosen in the same way as in Gardes (2018). The

TDR method is for general multiple-index models and we apply this method with

p = 1 when estimating the single index. The bandwidth h in SIMQ is chosen to

be the same as in SIMEXQ.

Estimation of extreme conditional quantiles. We first compare the per-

formance of the five methods when estimating the extreme conditional quantiles

Qτ (Y |x) at τ = 0.99, 0.995, and 0.999. For each simulation, we calculate the

integrated squared error (ISE), defined as

ISE =
1

L

L∑
l=1

{
Q̂τ (Y |x∗l )
Qτ (Y |x∗l )

− 1

}2

, (5.1)

where x∗1, . . . ,x
∗
L are evaluation points of the covariates, and we define the mean

integrated squared error (MISE) as the average ISE across 500 simulations. In

our simulation, we set L = 50. We choose fixed evaluation points x∗l = l/(1 +L),

for l = 1, 2, . . . , L, in Case 1, and let x∗l be random replicates of X in Case 2 with

p = 4 and in Case 3. Table 1 summarizes the MISE for different estimators of

the extreme conditional quantiles at τ = 0.99, 0.995, and 0.999. The values in

parentheses are the standard errors of the MISE.

In general, ICDF gives the least accurate estimators at high quantiles, while

the proposed SIMEXQ method performs best in most cases. The larger MISE

of ICDF is mainly due to the overestimation of the conditional quantiles. Case

1 can be regarded as a special case of the single-index model with β0 = 1, the

TDR methods, for which SIMQ and SIMEXQ do not involve an index estimation

error. In Case 1, the BG method performs reasonably well and better than TDR,

but its performance deteriorates quickly when the number of covariates increases.

In all the scenarios considered, SIMEXQ is more efficient than SIMQ, and the

advantage of SIMEXQ is more visibile at higher quantile levels. Compared to

SIMEXQ, TDR performs competitively when estimating the single index, but
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Table 1. The mean integrated squared error (standard errors) for different estimators of
the extreme conditional quantiles at τ = 0.99, 0.995, and 0.999.

Case Method τ = 0.99 τ = 0.995 τ = 0.999

Case 1, p = 1 BG 0.64 (0.12) 0.72 (0.37) 0.89 (0.23)

ICDF 1.51 (0.09) 2.94 (0.21) 12.23 (0.27)

TDR 0.87 (0.08) 1.35 (0.18) 2.67 (0.29)

SIMQ 0.16 (0.15) 0.24 (0.22) 0.37 (0.27)

SIMEXQ 0.15 (0.01) 0.18 (0.04) 0.27 (0.07)

Case 2, p = 4 BG 12.42 (0.04) 8.37 (0.07) 5.04 (0.11)

ICDF 6.22 (0.05) 11.23 (0.08) 57.38 (0.12)

TDR 0.18 (0.04) 0.67 (0.07) 0.89 (0.09)

SIMQ 0.06 (0.09) 0.13 (0.12) 0.24 (0.15)

SIMEXQ 0.04 (0.02) 0.05 (0.03) 0.07 (0.07)

Case 3, p = 4 BG 18.76 (0.14) 26.53 (0.27) 37.27 (0.91)

ICDF 12.43 (0.12) 31.26 (0.24) 52.31 (0.67)

TDR 0.64 (0.08) 0.86 (0.35) 1.51 (0.51)

SIMQ 0.41 (0.11) 0.98 (0.42) 1.67 (0.87)

SIMEXQ 0.16 (0.09) 0.41 (0.13) 0.99 (0.24)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail-dimension reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

is less stable and gives a larger bias when estimating the extreme conditional

quantiles.

Estimation of extreme value index. Because the estimation of the EVI is

very important in extremal analysis, we also compare the performance of BG,

ICDF, TDR, and the proposed SIMEXQ methods for estimating γ(x). For each

method, we calculate the MISE as the mean of the ISE across 500 simulations,

where

ISE =
1

L

L∑
l=1

{
γ̂(x∗l )

γ(x∗l )
− 1

}2

,

where x∗1, . . . ,x
∗
L are set in (5.1).

Table 2 summarizes the MISE of different estimators of γ(x) in Cases 1-

3. The four methods perform similarly in Case 1. However, in Cases 2 and 3,

BG and ICDF are clearly worse than SIMEXQ, with BG being the worst. The

TDR method suffers from its complex estimation procedure, and leads to a more

unstable estimation than that of SIMEXQ in Case 2. In Case 3, the quantile

function depends on two indices, except when τ → 1, and the TDR method is

based on estimating both indices, while SIMEXQ estimates only the single index.
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Table 2. The mean integrated squared error (standard errors) of different estimators of
γ(x).

Case BG ICDF TDR SIMEXQ

Case 1, p = 1 0.02 (0.10) 0.02 (0.02) 0.03 (0.06) 0.01 (0.03)

Case 2, p = 4 0.25 (0.09) 0.17 (0.07) 0.34 (0.12) 0.11 (0.07)

Case 3, p = 4 0.98 (0.09) 0.52 (0.05) 0.24 (0.04) 0.30 (0.09)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMEXQ: the proposed extreme quantile estimator.

The more accurate index estimation in the TDR method leads to smaller MISEs

in the EVI estimation in Case 3.

To better understand the performance of the different methods, we plot in

Figures 1-3 the true and estimated conditional quantiles and the corresponding

EVI estimators for BG, TDR, and SIMEXQ at τ = 0.995 from one typical ex-

ample in each case. For Case 1, the conditional quantile of Y is a sine function

of x, and the true quantile curve has two peaks. We can see in Figure 1 that

the proposed SIMEXQ method performs best, especially around the two sides of

the conditional quantile curve. The BG method captures the two-peak structure,

but overestimates them; hence, its MISE is large. The overestimation also occurs

in BG’s EVI estimation. For Case 2, the data are generated from a single-index

model, so the x-axis is the single index z = xTβ0. The conditional quantile curve

is smooth, but not symmetric. The BG estimators are conditioned on x, whereas

the TDR and SIMEXQ estimators are conditioned on their own index estima-

tors ẑ. That is why their conditional quantile estimation curves are not smooth

against the real index z. The EVI in Case 2 is a constant, so we present a box

plot of γ̂(ẑ) in Figure 2, which shows clearly that BG overestimates the EVI and

has outliers, while TDR has the biggest range. For Case 3, the data are gener-

ated from tail single-index models, so the x-axis is the single index z = xTβ0. In

Figure 3, we can see that BG also overestimates the extreme conditional quantile,

while TDR has more underestimation.

Performance in high dimensions. We also investigate the performance of

our proposed method when p is relatively large. Table 3 reports the MISE when

p = 50 and 100, together with the previously considered p = 4, for different

estimators in Case 2 with ε ∼ t(3). The results show that as p increases, the

MISEs of TDR, SIMQ, and SIMEXQ increase much more slowly than those of

ICDF and BG, manifesting the advantage of the dimension-reduction procedure

in the former methods. The SIMEXQ performs similarly to TDR for p = 4,



908 XU, WANG AND LI

0.0         0.2         0.4         0.6         0.8         1.0
x

BG
TDR
SIMEXQ

0 
   

   
   

   
5 

   
   

   
  1

0 
   

   
   

 1
5 

   
   

   
  2

0 
Q
0.
99
5(

y|
x)

Case1

0.0         0.2         0.4         0.6         0.8         1.0
x

BG
TDR
SIMEXQ 

0.
0 

   
 0

.5
   

  1
.0

   
  1

.5
   

  2
.0

   
  2

.5
   

  3
.0

EV
I

Case1 (EVI)

Figure 1. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at τ∗ = 0.995 (left), and the EVI γ(x)
(right) for one example in Case 1.
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Figure 2. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at τ∗ = 0.995 (left), and the EVI γ(x)
(right) for one example in Case 2 with p = 4.

but the former is consistently more efficient for p = 50 and 100. In addition,

SIMEXQ performs better than SIMQ across all of the scenarios and quantile

levels considered.

5.2. Mortality data analysis

For centuries, the impact of weather and air pollution on people has been

a public health concern. In this section, we analyse a subset of the National
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Figure 3. The truth (solid) and the estimations from BG (triangle), TDR (cross), and
SIMEXQ (circle) for the conditional quantiles at τ∗ = 0.995 (left) and the EVI γ(x)
(right) for one example in Case 3.

Table 3. The mean integrated squared error (standard errors) for different estimators of
the conditional quantiles with τ = 0.99, 0.995, and 0.999 in Case 2.

p Method τ = 0.99 τ = 0.995 τ = 0.999

4 BG 12.42 (0.04) 8.37 (0.07) 5.04 (0.11)

ICDF 6.22 (0.05) 11.23 (0.08) 57.38 (0.12)

TDR 0.05 (0.02) 0.06 (0.03) 0.07 (0.07)

SIMQ 0.13 (0.09) 0.13 (0.12) 0.24 (0.15)

SIMEXQ 0.04 (0.02) 0.05 (0.03) 0.07 (0.07)

50 BG 43.79 (0.21) 80.12 (0.25) 123.30 (0.38)

ICDF 12.57 (0.28) 36.21 (0.36) 64.78 (0.42)

TDR 0.32 (0.07) 0.41 (0.13) 0.57 (0.17)

SIMQ 0.35 (0.12) 0.59 (0.14) 0.98 (0.19)

SIMEXQ 0.27 (0.08) 0.39 (0.12) 0.52 (0.15)

100 BG 52.72 (0.27) 81.34 (0.28) 133.20 (0.41)

ICDF 11.84 (0.23) 42.67 (0.32) 69.83 (0.39)

TDR 0.36 (0.09) 0.53 (0.17) 0.68 (0.21)

SIMQ 0.52 (0.13) 0.65 (0.18) 1.02 (0.20)

SIMEXQ 0.31 (0.08) 0.45 (0.13) 0.59 (0.16)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

Morbidity, Mortality, and Air Pollution Study (NMMAPS) data to study the

influence of weather and air pollution on the high quantile of mortality. The
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NMMAPS database consists of daily data on mortality, weather, and air pollu-

tion (e.g., pm10) for 109 US cities for the period 1987-2000. We use data from

the city of Los Angeles (LA). The data set consists of daily mortality counts (all

causes, CVD, respiratory), weather (temperature, dew point temperature, rela-

tive humidity), and pollution factors (O3, NO2, SO2, CO). We are interested

in how the mortality count Ỹ in Los Angeles is affected by the following six

variables: temperature, relative humidity, O3, NO2, SO2, and CO, denoted by

X1, X2, . . . , X6, respectively. After deleting observations with missing values, we

have 4,017 observations; that is, n = 4,017. We scale all covariates to have a zero

sample mean and a unit sample variance. Peng, Dominici and Louis (2006) also

analyze mortality data from the NMMAPS database by fitting a Poisson regres-

sion to assess the effect of pollution on the mean of mortality. In contrast, we

estimate the extreme high quantiles of mortality and examine how they depend

on air pollution and weather.

Because the mortality Ỹ is count data, which are discrete, we perform the

jittering process of Machado and Silva (2005). Specifically, add an independent

random variable U from standard uniform distribution on Ỹ ; that is, Y = Ỹ +U .

Then, we consider the single-index model Qτ (Y |X) = Gτ (XTβ0), where X =

(X1, X2, . . . , X6)
T . After estimating Qτ (Y |X), denoted by Q̂τ (Y |X), we obtain

the estimation of the conditional quantile of Ỹ using Q̂τ (Ỹ |X) = dQ̂τ (Y |X)−1e.
To reduce the variability of the estimates, we repeat the jittering processes

20 times, and take the average as our final estimator. That is, for the lth

time, we estimate the extreme conditional quantiles based on the typo sam-

ple {(Y (l)
i ,Xi) : i = 1, 2, . . . , n}, where Y

(l)
i = Ỹi + U

(l)
i , U

(l)
i are drawn in-

dependently from U [0, 1], and l = 1, . . . , 20. As suggested in Section 4.2, we

take τ0 = 1 − 0.2n−1/5 = 0.96. We estimate the index parameter as β̂τ0 =

(−0.61,−0.29,−0.23,−0.13, 0.11, 0.66)T . Because all the covariates are scaled,

the absolute values of the estimators imply that the pollutant CO (X6) is likely

to have the largest impact on the mortality variable (Y ), and hence on the mor-

tality (Ỹ ), followed by the temperature variable (X1).

To better understand the performance of our proposed SIMEXQ method, we

compare it with that of SIMQ. We set τ0 = 0.96 for both methods, and choose

k = d4.5n1/3e and η = 0.1 when estimating the EVI. Figure 4 plots the estimation

of extreme conditional quantiles at τ∗ = 0.995 and 0.999 against ẑ = xT β̂0.96.

The plots shows that the SIMEXQ method gives a much smoother estimation

than that of SIMQ. When the quantile level increases, SIMQ cannot capture the

extreme behavior well, owing to the data sparsity. In addition, SIMQ also has a

quantile crossing issue.
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Figure 4. Estimation of the conditional quantile of mortality counts at τ∗ = 0.995 and
0.999 against ẑ = xT β̂0.96 by SIMEXQ (dashed) and SIMQ (lined).

To compare the performance of the methods for predicting the extreme con-

ditional quantiles of mortality counts, we carry out a cross-validation study. We

randomly divide the data set into a training set (20% of the data set, 827 obser-

vations) and a testing set (the remaining 80% of the data set, 3,190 observations).

We apply BG, ICDF, TDR, SIMQ, and SIMEXQ to analyze the training set, and

predict the extreme quantiles of the mortality counts conditional on the covariates

in the testing set. Let Q̂τ (Ỹ |Xi) and Qτ (Ỹ |Xi), with i = 1, 2, . . . ,m = 3,190, de-

note the estimated and the true conditional quantiles of the mortality counts for

subject i in the testing set, respectively. Conditional on Xi, I{Ỹi < Qτ (Ỹ |Xi)}
has mean τ and variance τ(1 − τ). We consider the following prediction error

(PE) measurement, PE = {mτ(1 − τ)}−1/2
∑m

i=1[I{Ỹi < Q̂τ (Ỹ |Xi)} − τ ]. We

repeat the cross-validation 500 times. Table 4 summarizes the mean absolute PE

of different methods at τ = 0.99, 0.995, and 0.999. The values in the parentheses

are the corresponding standard errors. The results suggest that SIMEXQ has the

highest prediction accuracy for extreme conditional quantile estimation, even for

τ = 0.99.

6. Discussion

We have proposed a the new tail single-index model to estimate the extreme

quantile conditional on multi-dimensional covariates. We propose an efficient

three-step procedure for estimating extreme conditional quantiles. We establish

the asymptotic properties of our new estimators for the extreme value index and

extreme conditional quantiles. The results of our numerical and empirical studies
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Table 4. Mean absolute prediction error (standard errors) of different methods at
τ = 0.99, 0.995, and 0.999 for predicting the extremal conditional quantiles of mortality
counts.

Method τ = 0.99 τ = 0.995 τ = 0.999

BG 3.79 (0.10) 5.02 (0.21) 9.73 (0.43)

ICDF 6.67 (0.07) 13.53 (0.12) 25.34 (0.18)

TDR 4.21 (0.08) 5.72 (0.09) 10.26 (0.14)

SIMQ 3.58 (0.12) 6.04 (0.23) 12.16 (0.31)

SIMEXQ 3.32 (0.03) 5.22 (0.07) 8.67 (0.13)

BG: the estimator proposed of Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension-reduction estimator; SIMQ: the single-index model estimator of Zhu, Huang
and Li (2012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

imply that the proposed SIMEXQ method performs more effectively and is more

stable than competing methods.

Although we assume heavy-tailed distributions, the proposed method can be

extended to general cases with γ(x) ∈ R by considering other types of estima-

tors for the extreme value index, such as the moment estimators of De Haan

and Ferreira (2006) and Li and Wang (2019). For single-index models with high

dimensional covariates, variable selection is important, and research in this di-

rection under the extreme quantile setting deserves further investigation.

Supplementary Material

The online Supplementary Material contains some remarks, additional sim-

ulation results, and all technical details.
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Embrechts, P., Klüppelberg, C. and Mikosch, T. (2013). Modelling Extremal Events: For Insur-

ance and Finance. Springer Science & Business Media.

Fan, J and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman and

Hall.

Gannoun, A., Girard, S., Guinot, C. and Saracco, J. (2004). Sliced inverse regression in reference

curves estimation. Comput. Statist. Data Anal. 46, 103–122.

Gardes, L. (2018). Tail dimension reduction for extreme quantile estimation. Extremes 21, 57–

95.

Gardes, L. and Girard, S. (2010). Conditional extremes from heavy-tailed distributions: An

application to the estimation of extreme rainfall return levels. Extremes 13, 177–204.

Gardes, L., Girard, S. and Lekina, A. (2010). Functional nonparametric estimation of conditional

extreme quantiles. J. Multiariate Statist. 101, 419–433.

Gardes, L., Guillou, A. and Schorgen, A. (2012). Estimating the conditional tail index by inte-

grating a kernel conditional quantile estimator. J. Statist. Plann. Inference 142, 1586–1598.

Hall, P. and Li, K. (1993). On almost linearity of low dimensional projections from high dimen-

sional data. Ann. Statist. 93, 867–889.

Hardle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. Ann.

Statist. 21, 157–178.

Kato, K. (2009). Asymptotics for argmin processes: Convexity arguments. J. Multiariate

Statist. 100, 1816–1829.

Kong, E. and Xia, Y. (2012). A single-index quantile regression model and its estimation.

Econom. Theory 28, 730–768.

Koenker, R., Chesher, A. and Jackson, M. (2005). Quantile Regression. Cambridge University

Press.

Li, K. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86,

316–327.

Li, D. and Wang, H. (2019). Extreme quantile estimation for autoregressive models. J. Business

Econom. Statist. 37, 661–670.

Li, B. (2018). Sufficient Dimension Reduction: Methods and Applications with R. CRC Press.

Machado, J. and Silva, J. (2005). Quantiles for counts. J. Amer. Statist. Assoc. 100, 1226–1237.



914 XU, WANG AND LI

Peng, R., Dominici, F. and Louis, T. (2006). Model choice in time series studies of air pollution

and mortality J. Roy. Statist. Soc. Ser. A 169, 179–203.

Powell, J., Stock, J. and Stoker, T. (1989). Semiparametric estimation of index coefficients.

Econometrica 57, 1403–1430.

Santos, P. A., Alves, M. I. and Gomes, M. I. (2006). Peaks over random threshold methodology

for tail index and high quantile estimation. REVSTAT 4, 227–247.

Shorack, G. R. (1979). The weighted empirical process of row independent random variables

with arbitrary distribution functions. Statist. Neerlandica 33, 169–189.

Wang, H. and Tsai, C. (2009). Tail index regression. J. Amer. Statist. Assoc. 104, 1233–1240.

Wang, H. and Li, D. (2013). Estimation of extreme conditional quantiles through power trans-

formation. J. Amer. Statist. Assoc. 503, 1062–1074.

Wang, H., Li, D. and He, X. (2012). Estimation of high conditional quantiles for heavy-tailed

distributions. J. Amer. Statist. Assoc. 107, 1453–1464.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest obser-

vations. J. Amer. Statist. Assoc. 73, 812–815.

Wu, T., Yu, K. and Yu, Y. (2010). Single-index quantile regression. J. Multivariate Anal. 101,

1607–1621.

Zhong, W., Zhu, L., Li, R. and Cui, H. (2016). Regularized quantile regression and robust

feature screening for single index models. Statist. Sinica 26, 69–95.

Zhu, L., Huang, M. and Li, R. (2012). Semiparametric quantile regression with high-dimensional

covariates. Statist. Sinica 22, 1379–1424.

Wen Xu

Department of Statistics, Fudan University, Shanghai, China.

E-mail: 18110690007@fudan.edu.cn

Huixia Judy Wang

Department of Statistics, George Washington University, Washington DC, USA.

E-mail: judywang@email.gwu.edu

Deyuan Li

Department of Statistics, Fudan University, Shanghai, China.

E-mail: deyuanli@fudan.edu.cn

(Received February 2020; accepted September 2020)

mailto:18110690007@fudan.edu.cn
mailto:judywang@email.gwu.edu
mailto:deyuanli@fudan.edu.cn

	Introduction
	Methodology
	Notation and the tail single-index model
	Three-step estimation

	Theoretical Properties
	Tuning Parameters Selection
	Bandwidth selection
	Selection of 0

	Numerical Studies
	Simulation
	Mortality data analysis

	Discussion

