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Abstract: Analyzing the tail quantiles of a response distribution is sometimes more

important than analyzing the mean in biomarker studies. Inferences in a quantile

regression are complicated when there exist a large number of candidate markers,

together with some prespecified controlled covariates. In this study, we develop

a new and simple testing procedure to detect the effects of biomarkers in a high-

dimensional quantile regression in the presence of protected covariates. The test is

based on the maximum-score-type statistic obtained from a conditional marginal

regression. We establish the asymptotic properties of the proposed test statistic

under both null and alternative hypotheses and propose an alternative multiplier

bootstrap method, with theoretical justifications. We use numerical studies to show

that the proposed method provides adequate controls of the family-wise error rate

with competitive power, and that it can also be used as a stopping rule in a for-

ward regression. The proposed method is applied to a motivating genome-wide

association study to detect single nucleotide polymorphisms associated with low

glomerular filtration rates in type 1 diabetes patients.

Key words and phrases: Conditional marginal regression, extreme value distribu-

tion, high dimensional, maximal score statistic, multiplier bootstrap.

1. Introduction

A genome-wide association study (GWAS) screens for associations between

a large number of single-nucleotide polymorphisms (SNPs) and phenotypes such

as disease symptoms and clinical indices. It is known that genes often do not

function individually, but tend to work together in a biological process; see, for

instance, Zou et al. (2004), de Leeuw et al. (2016), and Sun et al. (2019). There-

fore, it is important to identify gene sets, that is, classes of genes that jointly

have an association with disease phenotypes. Inferences in the context of gene

set detection face challenges in terms of both high-dimensionality and multiplic-

ity, because the number of genes in a set can be much larger than the sample
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size, and genes in different sets may overlap.

This study is motivated by a GWAS from the Diabetes Complication and

Control Trial (DCCT), which searches for SNPs associated with the glomerular

filtration rate (GFR) using genome-wide screening. The GFR is an important

clinical index for the risks of nephropathy, one of the major microvascular compli-

cations in diabetic patients. The study has three unique features. First, the mean

level of the GFR among participants is less clinically informative than the left tail

quantiles. This is because the mean values are usually driven by the majority of

participants without nephropathy, whereas the lower quantiles reflect the charac-

teristics of the subset of participants that progressed to nephropathy. Second, the

GFR data are skewed to the left, even after log-transformation; see Figure 2 in

Section 4. Third, the data contain a large number of SNPs and some “protected”

covariates that are known to impact GFR levels, such as age, duration of dia-

betes, and body mass index. Let Y be a scalar response variable corresponding

to the GFR, and let (Z>,X>)> be a pn-dimensional set of covariates, where n is

the sample size, Z is a q-dimensional (q is fixed) conditioning set corresponding

to the “protected” covariates, and X is the set of the remaining dn-dimensional

covariates, with dn = pn − q, corresponding to the SNPs. Our goal is to assess

the association between the SNPs and the lower tails of the GFR distribution in

order to identify SNPs and gene pathways associated with patients at higher risk

of kidney failure, after controlling the effect of the protected covariates.

In a GWAS, the most commonly used approach is to test trait-SNP as-

sociations (conditioning on Z) for one SNP at a time, followed by a multiple

comparison adjustment, such as a Bonferroni adjustment or a false discovery rate

(FDR) control. Although a Bonferroni adjustment controls the family-wise er-

ror rate (FWER) well, it is usually conservative, which may result in low power

under the alternative. An FDR control works differently to an FWER control,

which is suitable when there exist many important covariates. Other works based

on a GWAS focus mainly on mean-regression-based tests. Without including Z,

Zou et al. (2004) proposed a resampling procedure to assess the significance of

genome-wide quantitative trait loci mapping for Drosophila backcross. In ad-

dition, McKeague and Qian (2015) proposed an adaptive resampling test and

applied it to glioblastoma cancer data. Guo and Chen (2016) proposed test-

ing the overall significance of X conditional on Z, based on a quadratic form

of the score functions. Tang, Wang and Barut (2018) proposed a hybrid test

of maximum- and sum-squared-type statistics based on conditional marginal re-

gressions, where they regress Y on Z and each Xj separately. Based on the sum

of powered scores (Pan et al. (2014); Xu et al. (2016)), Wu, Xu and Pan (2019)
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proposed an adaptive test for generalized linear models, in which they assume

that the errors satisfy the subGaussian condition and pn = o(n2). However, none

of these mean-based methods are suitable for analyzing GFR data to meet the

research goals.

As a valuable alternative to the mean regression, a quantile regression pro-

vides a natural way to capture the impact of covariates on the tail of the response

distribution. A quantile regression does not, in general, require parametric dis-

tributional assumptions, and can accommodate skewed distributions and het-

eroscedasticity automatically. There exist various inference methods for quantile

regression, including Wald-type, quasi-likelihood-ratio, and rank score tests, as

well as resampling-based approaches; see Koenker (2005, Chap. 3), Kochergin-

sky, He and Mu (2005), Feng, He and Hu (2011), and Wang, Van Keilegom and

Maidman (2018). Unfortunately, the existing tests apply only to low-dimensional

covariates, and either have low power for large pn or are infeasible for cases with

pn ≥ n. For an inference with high-dimensional X, one may first select a subset

of predictors using a variable selection method (Wu and Liu (2009); Belloni and

Chernozhukov (2011); Wang, Wu and Li (2012); Sherwood and Wang (2016)),

and then conduct hypothesis testing on the selected model using conventional

methods. However, this practice ignores the uncertainty involved in the model

selection step and, thus, often leads to an inflated FWER (Leeb and Pötscher

(2003, 2005)).

To detect significant predictors while accounting for the uncertainty involved

in the selection stage, Wang, McKeague and Qian (2018) proposed a quantile

marginal effect test based on the maximum of the marginal t-statistics. In addi-

tion, Wang, Van Keilegom and Maidman (2018) considered wild residual boot-

strap inference for a penalized quantile regression, without the presence of Z.

However, their theories only work for a fixed dimension, and the method of Wang,

McKeague and Qian (2018) uses a computationally intensive double bootstrap

procedure to select the tuning parameter involved in the test calibration. Further-

more, in clinical studies, prognostic factors should be selected after accounting

for the effects of protected covariates with known impacts on the outcome. By

including Z, Park and He (2017) extended the rank score test for quantile regres-

sions with fixed dimensions to settings with diverging pn; however, this method

still requires pn < n.

We propose a conditional marginal score-type test for a quantile regression in

an ultrahigh-dimensional setting in order to detect the overall significance of X on

the quantile of Y in the presence of “protected” covariates Z. More specifically,

for j = 1, . . . , dn, we evaluate the additional effect of each Xj conditional on Z,
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using rescaled conditional marginal rank scores, and define the final test statistic

as the maximum of dn squared score statistics. In contrast to existing works, our

method allows the dimension dn to diverge with n and be much larger than n, for

instance, dn = O{exp(nc0)}, for some c0 > 0. Under some regularity conditions,

we establish the asymptotic properties of the proposed test statistic under null

and alternative hypotheses. To improve the finite-sample performance, we pro-

pose an alternative calibration method based on a multiplier bootstrap procedure

and provide theoretical justifications. Numerical studies show that the proposed

test provides adequate control of the FWER with competitive power. We demon-

strate that the proposed procedures are computationally efficient, taking much

less time than those methods that require intensive resampling or a double boot-

strap (McKeague and Qian (2015); Wang, McKeague and Qian (2018); Tang,

Wang and Barut (2018)). Combination tests are alternatives to the proposed

maximum-type statistic for determining group-wise significance. For instance,

the Cauchy combination test (Liu and Xie (2019, CCT)) combines the P -values

obtained from the individual covariate tests into a single P -value in order to as-

sess the group-wise significance. However, our simulation studies show that the

CCT tends to be conservative in high dimensions.

In addition to the nice properties presented above, the proposed test can

be used as a stopping rule in forward selection, where in each step, the prese-

lected set is treated as the conditioning set. In settings with high-dimensional

covariates, penalization and variable screening methods are commonly used to

select significant covariates. For example, Wu and Liu (2009), Belloni and Cher-

nozhukov (2011), Peng and Wang (2015), and others have proposed penalized

variable selection methods for quantile regressions. Zhao and Li (2014) proposed

a score-test-based variable screening method, and Li, Li and Tsai (2015) and

Ma, Li and Tsai (2017) proposed screening methods based on quantile partial

correlations. Screening and penalized selection methods can only tell us whether

a covariate is selected, whereas the proposed method can assess the significance

of the covariate by providing a P -value that is more informative.

The rest of the paper is organized as follows. In Section 2, we describe the

proposed conditional marginal score-type test, present the asymptotic properties

under the null and local alternative hypotheses, and introduce the multiplier

bootstrap method. In Section 3, the finite-sample performance of the proposed

test is assessed using simulation studies. In Section 4, we apply the proposed

method to the motivating GWAS data with GFR outcomes. In Section 5, we

conclude the paper. Additional simulation results and all technical proofs are

provided in the online Supplementary Material.
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2. Conditional Maximum-Score Test

2.1. Model settings

Let {(Yi,Zi·,Xi·), i = 1, . . . , n} be independent and identically distributed

(i.i.d.) copies of the triplet (Y,Z,X). Let Qτ (Yi | Zi·,Xi·) be the conditional τth

quantile of Yi given {Zi·,Xi·}. We assume the following linear quantile regression

model:

Qτ (Yi | Zi·,Xi·) = Z>i·αZ,0(τ) + X>i·βX,0(τ), i = 1, . . . , n, (2.1)

where αZ,0(τ) = (α1,0(τ), . . . , αq,0(τ))> and βX,0(τ) = (β1,0(τ), . . . , βdn,0(τ))>

are the quantile-specific coefficient vectors of Z and X, respectively. We are in-

terested in testing the existence of an association between X and the τth quantile

of Y , after accounting for the effect of Z; that is, we test

H0 : βX,0(τ) = 0dn versus Ha : βX,0(τ) 6= 0dn . (2.2)

The testing of (2.2) can be viewed as a first step in a GWAS to assess the overall

significance of a gene set, and if H0 is rejected, a second step can be conducted

to identify important SNPs in the gene set.

2.2. Proposed test statistic

We define

εi(τ) = Yi −Qτ (Yi|Zi·,Xi·) = Yi − Z>i·αZ,0(τ)−X>i·βX,0(τ), (2.3)

such thatQτ{εi(τ)|Zi·,Xi·} = 0. We let X = (X1·, . . . ,Xn·)
>, Z = (Z1·, . . . ,Zn·)

>,

X·j = (X1,j , . . . , Xn,j)
>, for j = 1, . . . , dn, and fτ = diag(f1,τ (0), . . . , fn,τ (0)),

where fi,τ (·) is the density of εi(τ)|{Xi·,Zi·}. To detect the significance of X in

the presence of Z, we construct a score-type test statistic as follows.

First, we estimate the marginal effect of Z as

α̂Z(τ) = argmin
α∈Rq

n∑
i=1

ρτ (Yi − Z>i·α),

where ρτ (t) = t{τ − I(t < 0)} is the quantile check loss function. To evaluate the

additional effect of each Xj conditional on Z, we project Xj on Z with weights

fτ to obtain

X∗·j,τ =
{

In − fτZ(Z>f2
τZ)−1Z>fτ

}
X·j

.
= (X∗1,j,τ , . . . , X

∗
n,j,τ )>, (2.4)

such that the jth component of X is orthogonal to Z in a weighted manner;
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that is, Z>fτX∗·j,τ = 0, for j = 1, . . . , dn. We consider the weighted projection

to account for the heteroscedasticity using fi,τ (·), thus eliminating the first-order

difference; see the proof of Theorem 1 in the Supplementary Material (equation

(S.16), Section S3.2) for more details. Similar projections can also be found in

the quantile literature; see for instance, Park and He (2017).

Second, we define the rescaled conditional marginal score statistic as

Sτ,j(αZ) =
1√
n

∑n
i=1X

∗
i,j,τψτ (Yi − Z>i·αZ)

{τ(1− τ)‖X∗·j,τ‖2/n}1/2
, j = 1, . . . , dn,

where ψτ (t) = τ − I(t < 0). The score statistic Sτ,j(αZ) is the rescaled negative

subgradient of
∑n

i=1 ρτ (Yi − Z>i·αZ − βjX∗i,j,τ ) with respect to βj evaluated at

βj = 0, which captures the association between the jth component of X and the

signs of the quantile residuals, after accounting for the effect of Z.

Finally, the proposed maximum-score test statistic is defined as

Tn,1(τ) = max
1≤j≤dn

S2
τ,j{α̂Z(τ)}

= max
1≤j≤dn

[
1√
n

n∑
i=1

X∗i,j,τψτ{Yi − Z>i· α̂Z(τ)}

]2/{
τ(1− τ)‖X∗·j,τ‖2

n

}
. (2.5)

In practice, fτ is unknown and has to be estimated and substituted in. We

propose estimating fτ using the quotient method (Siddiqui (1960)); that is,

f̂i,τ (0) =
2h

Q̂τ+h(Yi | Zi·,Xi·)− Q̂τ−h(Yi | Zi·,Xi·)
, (2.6)

and f̂τ = diag(f̂1,τ (0), . . . , f̂n,τ (0)), where Q̂τ (Yi | Zi·,Xi·) = (Z>i· ,X
>
i· )θ̂(τ), and

θ̂(τ) is the L1-penalized estimator of θ0(τ) = (αZ,0(τ)>,βX,0(τ)>)> (Belloni

and Chernozhukov (2011)). The bandwidth h is specified by the “bandwidth.rq”

function of the R package quantreg. By the proofs in Section S3 of the Supplemen-

tary Material, the effect of the plug-in estimator f̂τ can be ignored asymptotically.

Thus, we ignore the difference between fτ and f̂τ for ease of presentation, but we

need to be aware of the finite-sample difference.

The test statistic Tn,1(τ) can be simplified in the special homoscedastic case

such that fi,τ (·) ≡ fτ (·) for some fτ (·); that is, the errors εi(τ) have a common

distribution that does not depend on the covariates. In this case, fτ (·) cancels

out in expression (2.4), and the test statistic Tn,1(τ) reduces to

Tn,2(τ) = max
1≤j≤dn

S̃2
τ,j{α̂Z(τ)},
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where S̃τ,j(αZ) =
1√
n

n∑
i=1

X∗i,jψτ (Yi − Z>i·αZ)

{τ(1− τ)‖X∗·j‖2/n}1/2
,

with X∗·j = {I−Z(Z>Z)−1Z}X·j
.
= (X∗1,j , . . . , X

∗
n,j)
>. Note that the score function

S̃τ,j{α̂Z(τ)} used to construct the test statistic Tn,2(τ) is the same as the sample

quantile partial correlation between Y and Xj given Z, as defined in Ma, Li

and Tsai (2017). The test statistic Tn,2(τ) has a simpler form, and does not

depend on the unknown density function. In low-dimensional quantile regression

settings, it is known that a score test that assumes homoscedastic errors still

performs competitively well when the homoscedasticity assumption is violated;

see Wang and Fygenson (2009) and Park and He (2017). We show in Section

3 that the proposed test based on Tn,2(τ) is also robust against the violation of

homoscedasticity in the high-dimensional setting.

2.3. Asymptotic properties under the null

In this section, we present the asymptotic properties of Tn,k(τ), for k = 1, 2,

under the null hypothesis. We define the partial correlation matrix of X con-

ditional on Z, weighted by the density matrix fτ , as Rτ,X|Z = corr(X∗i,τ ) =

(rj,l)
dn
j,l=1, where X∗i,τ = (X∗i,1,τ , . . . , X

∗
i,dn,τ

)>. Under the special case of ho-

moscedastic errors, Rτ,X|Z = corr(X | Z). We assume the following conditions,

where Ck, for k = 1, . . . , 5, are some positive constants.

A1. (i) The dimension of Z, q, is fixed; (ii) the dimension of X is log(dn) =

o{n1/4/ log(n)3/4}; (iii) E(Xj) = 0 andXj is subGaussian; that is, E[exp{C1

X2
j /var(Xj)}] ≤ C2, for j = 1, . . . , dn.

A2. For Rτ,X|Z = (rj,l)
dn
j,l=1: (i) C−1

3 ≤ λmin(Rτ,X|Z) ≤ λmax(Rτ,X|Z) ≤ C3;

(ii) max1≤j<l≤dn |rj,l| ≤ r0 < 1, for some constant 0 < r0 < 1; (iii)

max1≤j≤dn
∑dn

l=1 r
2
j,l ≤ C4.

A3. The density function fi,τ (·) and its derivative f ′i,τ (·) are continuous and

bounded from above, and fi,τ (0) is bounded away from zero, for i = 1, . . . , n,

uniformly in n.

A4. Let h∗n be some positive sequence satisfying n1/5h∗n ≥ C5. For ν ∈ [τ −
h∗n, τ + h∗n], assume that Qν(Yi | Zi·,Xi·) = (Z>i· ,X

>
i· )θ0(ν), where sn =

maxν∈[τ−h∗n,τ+h∗n] ‖θ0(ν)‖0 is bounded, and Qν(Yi | Zi·,Xi·) is smooth in ν

and has a bounded third derivative with respect to ν.

For technical convenience, condition A1 (i) requires the dimension of Z to

be fixed, which is also practically reasonable in a GWAS. We can relax this con-
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dition by allowing q to diverge slowly. A possible relaxation is that h∗n
−1(q +

sn)
√

log(pn ∨ n)/n → 0, which is required in Lemma S.1. Our Lemma S.2 is

based on a fixed q. A more careful investigation is needed for diverging q. Condi-

tions A1 (ii) and (iii) describe the dimension and distribution of X, respectively,

and are standard in high-dimensional settings. Condition A3 is an assumption

on the density function that is standard in quantile regressions. Condition A4

ensures that fτ can be consistently estimated; see Lemma S.1 in the Supplemen-

tary Material for more details. Now, we discuss condition A2. By the assumption

that Xj is centralized, under H0, we have

corr(Sτ,j{αZ,0(τ)}, Sτ,l{αZ,0(τ)} | Z,X)

= corr

[∑n
i=1X

∗
i,j,τψτ{εi(τ)}

{τ(1− τ)‖X∗·j,τ‖2}1/2
,

∑n
i′=1X

∗
i′,l,τψτ{εi′(τ)}

{τ(1− τ)‖X∗·l,τ‖2}1/2
| Z,X

]

=

∑n
i=1X

∗
i,j,τX

∗
i,l,τ

‖X∗·j,τ‖‖X∗·l,τ‖
= rj,l +Op(n

−1/2).

Let Sτ{αZ,0(τ)} = (Sτ,1{αZ,0(τ)}, . . . , Sτ,dn{αZ,0(τ)})>. Then, corr[Sτ{αZ,0(τ)}
| Z,X] = Rτ,X|Z+Op(n

−1/2), where the convergence rateOp(n
−1/2) is component-

wise. That is, conditions A2 (i)–(iii) are essentially imposed on the score functions

under the null hypothesis, and are analogous to conditions 1 and 3 and that in

Lemma 6 of Cai, Liu and Xia (2014). Conditions A2 (i)–(ii) are mild, and A2

(iii) is needed to control the number of positively correlated covariates, which is

a key condition in the proof of the asymptotic results.

Theorem 1 presents the asymptotic null distribution of Tn,1(τ).

Theorem 1. Suppose that conditions A1–A4 hold. Then, for any x ∈ R, we

have

P [Tn,1(τ)− 2 log(dn) + log{log(dn)} ≤ x | H0]→ exp

{
− π−1/2 exp

(
− x

2

)}
,

as n, dn →∞.

The proof of Theorem 1 consists of two parts, where the first part controls

max1≤j≤dn |Sτ,j{α̂Z(τ)}−Sτ,j{αZ,0(τ)}|, and the second part is used to derive the

asymptotic distribution of max1≤j≤dn S
2
τ,j{αZ,0(τ)}. The derivation of the first

part is challenging because the asymptotic difference between αZ,0(τ) and α̂Z(τ)

is reflected in the indicator function. We overcome this challenge by applying the

Hoeffding inequality and a chaining argument, as in Lemma A.2 of Wang and He

(2007). We prove the second part by using the fact that for each j ∈ {1, . . . , dn},
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#{l : |corr[Sτ,j{αZ,0(τ), Sτ,l{αZ,0(τ)]| > d−γ0n } is well controlled by A2 (iii) for

some γ0 > 0, which is similar to the proof of Theorem 6 in Cai, Liu and Xia

(2014).

By Theorem 1, we can reject the null hypothesis at the significance level γ if

Tn,1(τ) > 2 log(dn)− log{log(dn)}+qγ , where qγ = − log(π)−2 log{log(1−γ)−1}.
Alternatively, we can calculate the P -value as

1− exp

(
− π−1/2 exp

[
− Tn,1(τ)− 2 log(dn) + log{log(dn)}

2

])
.

For the homoscedastic case, we have the following corollary.

Corollary 1. Assume that fi,τ (·) ≡ fτ (·), for some fτ (·) across i, and, conditions

A1–A3 hold. Then, for any x ∈ R, we have

P [Tn,2(τ)− 2 log(dn) + log{log(dn)} ≤ x | H0]→ exp

{
− π−1/2 exp

(
− x

2

)}
,

as n, dn →∞.

2.4. Asymptotic properties under the local alternative

In this section, we study the asymptotic properties of Tn,k(τ), k = 1, 2 under

the local alternative,

Ha : Qτ (Yi|Zi·,Xi·) = Z>i·αZ,0(τ) + X>i·βX,n(τ), i = 1, . . . , n,

βX,n(τ) = b0(τ)

√
log(dn)

n
, (2.7)

where b0(τ) = (b1,0(τ), . . . , bdn,0(τ))>. We assume that the number of nonzero

components in b0(τ), denoted as s0(τ), is fixed. Without loss of generality, we

assume that the first s0(τ) components of b0(τ) are nonzero.

To establish the asymptotic property of the test statistics under (2.7), we

make an additional assumption; see the discussion in Section S2.

A5. Let ω∗j,l,τ = E{fi,τ (0)X∗i,j,τX
∗
i,l,τ}/{τ(1 − τ)E(X∗2i,j,τ )}1/2. Assume that

max1≤j≤dn |
∑s0(τ)

l=1 bl,0(τ)ω∗j,l,τ | >
√

2 + ε, for some positive constant ε.

Theorem 2. Assume that conditions A1–A5 hold, and s0(τ) is fixed. Under the

local alternative (2.7), for any γ > 0, we have

P [Tn,1(τ)− 2 log(dn) + log{log(dn)} > qγ | Ha]→ 1, as n, dn →∞.

Because
√

log(dn)/n is the optimal convergence rate that can be obtained
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in a high-dimensional setting (Belloni and Chernozhukov (2011)), Theorem 2

indicates that the proposed test is asymptotically sharp.

2.5. Multiplier bootstrap

The asymptotic results in Theorem 1 and Corollary 1 provide a simple cali-

bration method for the proposed maximum-score test statistic. Our preliminary

results show that this asymptotic calibration performs well for large samples, but

that it tends to be conservative in finite-samples. To achieve better finite-sample

performance, we propose an alternative calibration method based on a multiplier

bootstrap procedure. Multiplier bootstrap are also considered in other settings

for low-dimensional data; see, for example, He and Zhu (2003), Zhang, Wang and

Zhu (2014), and Horowitz (2019). We shall show that the proposed multiplier

bootstrap method is computationally convenient and theoretically valid under the

high-dimensional setting. Below, we describe the procedure for the test statistic

Tn,1(τ), which includes Tn,2(τ) as a special case.

Step 1. Let

Tn,1(τ)∗ = max
1≤j≤dn

{
1√
n

n∑
i=1

wiX
∗
i,j,τψτ (ei)

}2/{
τ(1− τ)‖X∗·j,τ‖2/n

}
, (2.8)

where {ei; i = 1, . . . , n} is a random sample with the τth quantile zero, and

{wi; i = 1, . . . , n} is a random sample independent of ei with zero mean, unit

variance, and a finite third moment. We generate ei from N(−Φ−1(τ), 1),

and wi from a two-point distribution with P (w = 1) = P (w = −1) = 1/2.

Step 2. Repeat Step 1 M times to obtain the bootstrap statistics {Tn,1(τ)∗1, . . . ,

Tn,1(τ)∗M}, and calculate the P -value as M−1
∑M

b=1 I{Tn,1(τ)∗b > Tn,1(τ)}.

Unlike conventional bootstrap methods, the multiplier bootstrap does not

require reanalyzing the data repeatedly, and thus is computationally efficient.

An intuitive justification is given by (S.17) in Section S3.2, where we show that

Sτ,j{α̂Z(τ)} = Sτ,j{αZ,0(τ)}+Op

{
n−1/4(log n)3/4

}
=

1√
n

∑n
i=1X

∗
i,j,τψτ{εi(τ)}

{τ(1− τ)‖X∗·j,τ‖2/n}1/2
+Op

{
n−1/4(log n)3/4

}
under the null hypothesis. Theorem 3 provides a theoretical justification for the

multiplier bootstrap method in a high-dimensional setting. Similar results can

be obtained under conditions A1–A3 for the homoscedastic case.



CONDITIONAL MARGINAL TEST IN HDQR 879

Theorem 3. Suppose that conditions A1–A4 hold. Then, for any x ∈ R, we

have

PD [Tn,1(τ)∗ − 2 log(dn) + log{log(dn)} ≤ x|H0]→ exp

{
− π−1/2 exp

(
− x

2

)}
,

as n, dn → ∞, where the superscript D means conditional on the observed data

{(Yi,Zi·,Xi,·), i = 1, . . . , n}.

2.6. Forward selection using a sequential conditional test

The proposed conditional maximum-score test aims to assess the overall sig-

nificance of X. If the test leads to the rejection of H0, indicating that at least one

component of X is associated with the τth quantile of Y after accounting for the

effect of Z, the next natural question is to identify those important variables. The

proposed test can be used as a stopping rule in a forward regression to discover

significant components in X. To account for multiple testing in the sequential

procedure, we follow a two-stage selection similar to that in Tang, Wang and

Barut (2018).

In the first stage, we initialize the forward regression by sequentially applying

the proposed test. Specifically, we perform the conditional marginal test with

X(0) = X and Z(0) = Z. Let ĵ1 be the index of the predictor in X(0) that gives the

largest squared conditional marginal-score statistic, and let P1 be the associated

P -value. If P1 > γ, the prespecified significance level, we stop and declare that

there is no significant Xj . Otherwise, we move Xĵ1
from X(0) to Z(0), and repeat

the procedure until no further significant predictors are detected. Assume that

the selected covariate set is Z(K) = {Z, Xĵ1
, . . . , XĵK

}, with associated P -values

as {P1, . . . , PK}. In the second stage, we perform multiple test adjustments.

Suppose that K ≥ 1. Define K∗ = 1 if P1 > γ/K, otherwise K∗ = max1≤k≤K{k :

Pl ≤ γ/(K − l + 1), l = 1, . . . , k}. Finally, the selected covariate set is chosen as

Z(K∗) = {Z, Xĵ1
, . . . , XĵK∗

}.
Note that it is challenging to establish a formal theoretical justification for

the proposed two-stage method, owing to its sequential nature. However, our

numerical studies in Section 3 show that the method performs well in terms of

both false positives and false negatives for modest and large samples.

3. Simulation Study

3.1. Size and power study

We generate the simulation data from the following model:
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Yi = Z>i·αZ,0 + X>i·

√
log(dn)

n
b0 + (1 + a0Xi,1)εi, i = 1, . . . , n,

where Zi· = (1, Z̃>i· )
>, a0 is the parameter controlling the heterogeneity of the

noise, αZ,0 =1q=6, b0 =0dn=pn−q under H0, and b0 =δ(1, 0.8, 0.6, 0.4, 0.2, 0>dn−5)>

under Ha. We let δ ∈ (0, δmax,pn ] for some prespecified δmax,pn .

We consider three cases to examine the performance of the proposed test.

In Case 1, (Z̃>i· ,X
>
i· )
> ∼ N(0, I(pn−1)×(pn−1)) and εi ∼ N(0, 1), with a0 = 0. In

Case 2, (Z̃>i· ,X
>
i· )
> ∼ N(0,Σ), where Σ = (σl,l′)l,l′=1,...,pn−1, σl,l′ = 0.5|l−l

′|, and

εi ∼ t3, with a0 = 0. In Case 3, nonGaussian regressors with heteroscedastic

errors are considered. Specifically, we first generate Ui· = (Ui,1, . . . , Ui,pn−1)> ∼
N(0,Σ), where Σ is the same as in case 2. Then, we let Z̃i,l = 2

√
3Φ(Ui,l)−

√
3, for

l = 1, . . . , 5, and let Xi,l−5 = 2
√

3Φ(Ui,l)−
√

3, for l = 6, . . . , pn−1. Furthermore,

we let εi ∼ t3, with a0 = 1/2. Therefore, in this heteroscedastic case, the true

quantile coefficient of Xi,1 is β1,0(τ) = b0,1+a0F
−1
t3 (τ), which is nonzero and, thus,

corresponds to the alternative model for all τ 6= 0.5, even when b0 = 0dn . For all

cases, we consider pn = 10, 50, 200, 1000 and n = 200, 800, and set the nominal

level as γ = 0.05 and the number of repetitions in the multiplier bootstrap method

as M = 500. We also consider a case to mimic the motivating GFR study in

Section S1.2; the main observations are similar to Cases 1–3.

The following tests are compared: (i) four variations of the proposed test,

TEn,1(τ), TBn,1(τ), TEn,2(τ), TBn,2(τ), where the superscript indicates using the asymp-

totic extreme value distribution (E) or the multiplier bootstrap procedure (B) to

obtain the critical value; (ii) RS, the regularized rank score test of Park and He

(2017), with pn < n; (iii) QME, the quantile marginal effect test of Wang, McK-

eague and Qian (2018), with the tuning parameter set as λn = 3
√
τ(1− τ) log n;

(iv) BON, the Bonferroni adjustment method, where the individual P -values are

based on Sτ,j{α̂Z(τ)} and its asymptotic normality, for j = 1, . . . , dn, that is,

the proposed conditional marginal rank score statistics for heteroscedastic cases;

(v) CCT, the Cauchy combination test of Liu and Xie (2019), where the indi-

vidual P -values are the same as in BON; (vi) CAR, the conditional adaptive

resampling test of Tang, Wang and Barut (2018) for the mean model, and the

tuning parameter is set as λn = max
[
3(log n)1/2,Φ−1 {1− γ/(2dn)}

]
; and (vii)

GC, the partial test of Guo and Chen (2016) for the mean model, which is based

on a sum-squared-type U -statistic. The number of bootstraps is set as 500 for

both QME and CAR. In Wang, McKeague and Qian (2018) and Tang, Wang and

Barut (2018), the tuning parameter is selected using a double bootstrap, which

is computationally intensive; thus we fix the parameter to a value that performs
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relatively well to reduce the computation time. Table S.1 in the Supplementary

Material summarizes the average computing time for each method. The results

show that the methods that do not require an estimation of fτ , namely, RS,

Tn,2(τ), and GC, are computationally more efficient than those that do, namely,

Tn,1(τ), BON and CCT. In addition, the resampling-bootstrap-based methods

QME and CAR are computationally much more expensive than the other meth-

ods, even if a double bootstrap is not used for the tuning parameters.

Table 1 summarizes the rejection percentages of the various methods in Cases

1 and 3 with b0 = 0. The empirical sizes from Case 2 are similar to those from

Case 1, and thus are moved to Table S.2 in the Supplementary Material. In

all scenarios except Case 3 with τ = 0.25, the null hypothesis is true; thus,

the rejection rate corresponds to the empirical size. In Case 3 with τ = 0.25,

β1,0(τ) = (1/2)F−1
t3 (0.25), and thus the rejection rate corresponds to the power.

Under the null model, all four variations of the proposed test result in type-

I errors close to the nominal level. However, the tests based on the asymptotic

critical values are slightly more conservative, especially for n = 200. Even though

the test based on Tn,2(τ) assumes homoscedastic errors, the method still performs

competitively well in the heteroscedastic Case 3 in terms of both the type-I error

and power, and is computationally much simpler than the test based on Tn,1(τ).

The RS test performs well for small pn, but becomes quite conservative for larger

pn and is not applicable when pn ≥ n. The QME test is sensitive to the choice

of the tuning parameter; it gives a deflated type-I error in most scenarios, but

inflated type-I errors at τ = 0.25, for n = 200 and pn = 1000. The BON and CCT

tests control the type-I errors reasonably well. However, in the heteroscedastic

Case 3 with τ = 0.25, they are both more conservative than the proposed mul-

tiplier bootstrap method in terms of detecting signals, especially for n = 200.

Finally, the mean-based tests CAR and GC perform well in the homoscedastic

cases, but are not able to detect the signal at the tail quantiles caused by the

heteroscedasticity, as seen in Case 3.

The limited performance of QME is probably caused by three reasons. First,

the QME theory works only for fixed-dimensional covariates. Second, QME is

proposed for the marginal test. When adapting it to the conditional test, the

method treats the quantile residuals obtained from regressing Y on Z as the

new response, and then applies the marginal test over X. This may lead to an

inflated error rate if the components in Z and X are highly correlated, which is

often seen in high-dimensional settings, owing to the spurious correlation in the

sample. Third, the tuning parameter λn is chosen using the same rule of thumb

across the simulations, and thus is not data adaptive. Its performance may be
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improved by using a double bootstrap to select a data-adaptive λn. However, the

computation is heavily intensive and not practical for large pn.

To compare the power of different tests, we focus on τ = 0.5 and n =

200. We let the number of nonzero coefficients be s0(τ) = 5, and set b0 =

δ(1, 0.8, 0.6, 0.4, 0.2, 0>dn−5)>, where δ varies from zero to δmax,pn , with δmax,pn = 6

for pn = 10 and δmax,pn = 5 for pn = 50, 200, 1000. In the following analysis,

we exclude QME because it is difficult to control the type-I error, owing to its

sensitivity to the choice of the tuning parameter. We also exclude BON and CCT,

because they are shown in Table 1 to be more conservative in terms of detecting

signals in heteroscedastic cases with small samples.

Figure 1 presents the power curves of the different methods. Both CAR and

GC are designed to detect the mean effect. The CAR method gives higher power

in Case 1 with homoscedastic normal errors, but the method is less powerful for

models with heavy-tailed (Case 2) and heteroscedastic (Case 3) errors. The GC

test is based on a sum-squared-type test statistic, and so is less powerful in terms

of detecting the sparse signal in all four cases, especially for large pn. In addition,

neither CAR nor GC can identify the signal at the tails, as shown in Table 1.

The RS test performs competitively well for pn = 10, but it quickly loses power

for larger pn, and the method does not work for cases with pn ≥ n. The four

variations of the proposed test perform similarly, yielding either competitive or

higher power than the other three methods. Among the four variations, the tests

based on the multiplier bootstrap tend to be more powerful than their asymptotic

counterparts, and the tests based on Tn,2(τ) that assume homoscedastic errors

are slightly more powerful than those based on Tn,1(τ).

3.2. Forward selection

In this section, we assess the performance of forward selection by using the

proposed test as the stopping rule. Data are generated from the following model:

Yi = Z>i·αZ,0 + X>i·βX,0 + (1 + a0Xi,1)εi, i = 1, . . . , n,

where Zi· = (1, Z̃>i· )
>, αZ,0 = 16, and βX,0 = (0, 1, 1, 0.8, 0.8, 0>pn−11)>, with

n = 200 and pn = 200 and 1,000; (Z̃>i· ,X
>
i· )
> and εi are generated as in Cases

1 and 3, with a0 = 0 for Case 1 and 0.5 for Case 3, and 1,000 replicates are

considered with a nominal level γ = 0.05. We compare the following forward se-

lection procedures: (i) TBn,1(τ), a sequential test based on TBn,1(τ); (ii) L1, the L1-

penalized variable selection method of Belloni and Chernozhukov (2011), without

penalizing the coefficients of Z; (iii) QPCOR-L1, the quantile partial correlation
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Figure 1. Power curves of the methods in cases 1 (first row), 2 (second row), and 3
(third row), with n = 200 and τ = 0.5: TE

n,1(τ) (dashed), TB
n,1(τ) (line with solid square),

TE
n,2(τ) (line with solid dots), TB

n,2(τ) (line with triangle), RS (line with open circle),
CAR (dotted), GC (line with diamond). The gray horizontal line indicates the nominal
level of 0.05.
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screening method of Ma, Li and Tsai (2017), where we use their algorithm 3

to reduce the dimension of X from dn to n/ log n, followed by the L1-penalized

method of Belloni and Chernozhukov (2011); and (iv) CAR, a sequential test

based on CAR, with the same tuning parameter over the replicates as in Section

3.1. For the sequential-test-based methods TBn,1(τ) and CAR, multiple test ad-

justments are applied; see Section 2.6. For the quantile based methods, we focus

on τ = 0.5.

To evaluate the performance of the methods, we consider the percentages of

replicates in which Xj , for j = 1, . . . , 5, are selected (PS), the average number of

false positives (FP), the percentages of replicates of under-fit (UF) in which at

least one important Xj is not selected, and the percentages of the replicates in

which the exact true model (TM) is selected. We find the following: (i) the perfor-

mance of TBn,1(τ) is competitive or better in all scenarios; (ii) L1 and QPCOR-L1

both tend to over-fit the model (higher FP); further steps may be applied to the

selected model to refine the selection accuracy, but inherent uncertainty may ac-

cumulate; (iii) CAR performs well when the noise is homoscedastic normal (Case

1), but the under-fit percentages (UF) can be high when the noise is heavy-tailed

with heteroscedasticity (Case 3).

4. Analysis of the Glomerular Filtration Rate

An SNP is a substitution of a single nucleotide that occurs at a specific po-

sition in the genome, and some are linked to genes affecting specific phenotypes.

In this section, we apply the proposed test and forward selection procedure to

screen a large number of SNPs in a thorough search for mutations associated with

phenotypes of interest, in the presence of some “protected” demographic covari-

ates. Over a million SNPs are mapped in the GWAS of the DCCT, a randomized

clinical trial studying the effects of intensive monitoring of glucose levels on long-

term microvascular complications among type 1 diabetes patients. The response

variable of interest is the GFR, measured in percentages, a popular clinical index

of overall kidney function. Although multiple GFR measurements were collected

during follow-up, we are interested in the most severe status of nephropathy risk,

which is usually measured using the most recent kidney functions, that is, the

GFR measurement at the last visit. The “protected” covariates include gender,

treatment, age (in years, centered), duration of diabetes (in weeks, centered), and

body mass index (BMI, centered), where the duration of diabetes measures the

stage of nephropathy development in patients.
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Table 2. Forward selection results in Cases 1 and 3, n = 200.

Case pn Method PS FP UF TM

X1 X2 X3 X4 X5

1 200 TB
n,1(τ) 0.0 100.0 100.0 100.0 100.0 0.071 0.0 93.1

L1 0.0 100.0 100.0 99.6 99.9 0.085 0.5 91.5

QPCOR-L1 0.1 100.0 100.0 100.0 99.9 0.276 0.1 76.2

CAR 0.0 100.0 100.0 100.0 100.0 0.058 0.0 94.4

1,000 TB
n,1(τ) 0.0 100.0 99.8 99.8 99.8 0.071 0.2 92.9

L1 0.0 99.9 100.0 97.5 98.0 0.092 4.5 87.0

QPCOR-L1 0.4 100.0 100.0 99.9 100.0 0.688 0.1 50.0

CAR 0.0 100.0 100.0 100.0 100.0 0.071 0.0 93.3

3 200 TB
n,1(τ) 0.0 99.2 99.9 97.9 99.3 0.074 2.8 90.4

L1 0.6 100.0 100.0 100.0 100.0 0.112 0.0 89.9

QPCOR-L1 0.9 100.0 100.0 100.0 100.0 0.332 0.0 72.3

CAR 0.1 96.4 95.1 83.2 88.4 0.045 30.0 66.3

1,000 TB
n,1(τ) 0.0 98.7 98.7 94.2 98.0 0.071 8.1 85.5

L1 0.3 100.0 100.0 100.0 100.0 0.085 0.0 91.8

QPCOR-L1 0.5 100.0 100.0 100.0 100.0 0.813 0.0 43.4

CAR 0.1 93.2 92.8 75.7 83.1 0.033 43.9 54.6

TB
n,1(τ): forward selection based on TB

n,1(τ); L1: the L1-penalized variable selection method of Belloni

and Chernozhukov (2011); QPCOR-L1: the QPCOR of Ma, Li and Tsai (2017); CAR: forward select-
ion based on CAR of Tang, Wang and Barut (2018). PS: percentage of being selected; FP: average nu-
mber of false positives; UF: percentage of replicates in which at least one important Xj is not selected;
TM: percentage of replicates in which the exact true model is selected.

The GWAS of the DCCT contains 1.18 million candidate SNPs for 1,304

patients, which is far less than the number of SNPs. An important statisti-

cal issue concerns assessing the overall significance of groups of SNPs, that is,

whether SNPs exist in a set of genes that have an effect on the disease, while

controlling for the family-wise error rate. Most works based on a GWAS con-

sider mean-based tests. However, in this study, the mean of the GFR is less

important clinically than the tail quantiles, because the mean values are usually

driven by the majority of participants with normal kidney function, whereas the

lower quantiles reflect the characteristics of participants with elevated risks of

nephropathy. Furthermore, the GFR values are skewed to the left, even after a

logarithm transformation (Figure 2). Thus, a quantile regression at several lower

quantile levels could provide more clinically relevant information than that of

the mean regression, and it enables us to work on the original scale, providing a

better interpretation for clinicians and patients. For these reasons, we assess the

significance of SNPs on lower quantiles of the GFR to identify SNPs and gene
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Figure 2. Log-transformed GFR% from the type 1 diabetes patients at the last visit in
the DCCT study.

pathways associated with patients with a high risk of nephropathy; as such, we

consider quantile levels τ = 0.05, 0.1, 0.25 and 0.5.

To apply the proposed method, we focus on a subset of SNPs that be-

long to genes related to nephropathy in the MSigDB Curated Gene Sets (http:

//software.broadinstitute.org/gsea/msigdb/), including 2,908 SNPs after

deleting those not satisfying the Hardy–Weinberg equilibrium (Crow (1999)). For

further preprocessing, we (i) delete one female patient who has 98% of the SNPs

missing, (ii) delete SNPs with any missing values, (iii) delete SNPs with a minor

allele frequency of less than 5%, and (iv) prune highly correlated SNP pairs, de-

fined as correlation coefficients larger than 0.99. Finally, we have 1,303 patients,

consisting of 695 males and 608 females, and 981 SNPs. The SNPs are coded as

-1, 0, 1, that is, the number of minor alleles minus one. Previous works have sug-

gested that the risk factor mechanisms of nephropathy may be different in males

and females (Silbiger and Neugarten (2003)). Therefore, we study male and fe-

male participants separately. The forward selection presented later shows that

different sets of SNPs are identified for men and women, which further validates

our stratified analysis by gender.

We first apply all four variations of the proposed test as the overall signif-

icance test at different quantiles. Conditional on Z, all variations of the pro-

posed test suggest that significant (at the level of 0.05) SNPs exist in the male

group at τ = 0.05, 0.1, but not for the female group or other quantiles. We

also apply the CAR of Tang, Wang and Barut (2018) for the overall signifi-

cance test on the conditional mean. We consider the test with tuning parameter

λn = max
[
a(log n)1/2,Φ−1 {1− γ/(2dn)}

]
, a ∈ {3, 4, 5, 6, 7}. All λn lead to the

http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
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Table 3. Summary of SNPs selected in the random subsets for males.

τ SNP Frequency rvar rmean rQτ
0.05 rs9331949 C 11 17 3 1

rs12411439 A 8 66 5 11

rs6866731 G 7 18 38 49

rs4714956 T 6 576 11 10

0.1 rs11742097 A 27 22 14 94

rs463701 G 9 20 17 29

rs6866731 G 6 26 15 89

same P -values, namely, 0.572 and 0.324 for the male and female groups, respec-

tively, indicating that no SNP is significantly associated with the conditional

mean of the GFR.

Next we proceed to forward selection by applying TBn,1(τ) (sequentially), L1,

and QPCOR-L1 to select the significant SNPs. To account for the randomness in

the selection procedure, the covariate selection procedure is repeated in randomly

selected subsets of size 0.8n in each gender group. No SNP is selected by either

L1 or QPCOR-L1 in any random split, which is probably caused by weak signals

and/or over penalization. Table 3 presents the frequencies of the SNPs selected

at least 5 times by our method over 50 random subsets.

For further verification, we regress Y on Z at the τth quantile, obtaining

the residuals under the null model. In general, if one SNP has an effect on

the response, residuals with different genotypes have different distributions. We

calculate the variance, mean, and τth quantile of the residuals in genotype “AA”

and “Aa” for each SNP, and report the ranks of the differences between 981 SNPs

in Table 3. We find that most of the SNPs selected with high frequencies have

high ranks in at least one of the three criteria, providing further evidence of the

effects of the selected SNPs on the lower quantiles of GFR.

Furthermore, we searched PubMed for publications that studied the same

SNPs identified in our analysis as a source of validation from external data for

the functions of the reported SNPs. Specifically, rs9331949 has been found to

be associated with epilepsy, cognitive impairment, and Alzheimer’s disease (Yu

et al. (2013); Tan et al. (2016); Du et al. (2016); Xian et al (2017)). The six

SNPs belong to five different genes (ATP10B, CLU, FAM53B, ADGRF5, SPG7)

with rs11742097 and rs6866731 both locating within gene ATP10B. Therefore, we

carried out gene set enrichment analysis (GSEA), searching for functional gene

sets overlapping significantly with the selected SNPs.

The five identified genes all belong to gene set BAELDE DIABETIC NEPH-
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ROPATHY UP (P -value=4.68 × 10−14), which is a set of genes up-regulated in

glomeruli of kidneys from patients with diabetic nephropathy (type 2 diabetes

mellitus).

5. Discussion

The proposed method is based on a maximum-type test statistic, which is

known to be powerful when the signals are sparse. In some studies, the signals

may be weak and dense; that is, groups of markers may jointly affect the pheno-

type, while the signal of each marker is faint. To adapt different types of signals,

we consider a hybrid test statistic by taking a weighted average of the maximum-

and sum-squared-type statistics, tests as in Tang, Wang and Barut (2018). How-

ever, the existing literature on sum-squared-type tests requires smoothed loss

functions (Guo and Chen (2016)), limited dimensionality of the markers (Park

and He (2017)), or stronger conditions on the noise (Wu, Xu and Pan (2019)).

Further investigation is needed in this direction for high-dimensional quantile

regressions with possibly heavy-tailed noise.

Supplementary Material

The online Supplementary Material includes additional numerical results, a

discussion of condition A5, and proofs of Theorems 1–3.
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