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S1 Notation

We denote by 8,9 and V the true coefficient, link and variance func-
tions, respectively, and V() = V(u) 4 p2. Denote f(z) = df(z)/dz and
f(w) = & f(x)/da? for any f(-). Let {(u) = (Ci(u), Go(w), .., Calw))', (u) =
(1 (u),72(u), -, ya(w))', 6(u) = (¢'(u), ' (u))', 8(2) = (91(2), 92(2))', V(w) =

(Vi(w), Va(w))’, where u,z,w are defined in Section 2.3. Let I; be a d x d
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identity matrix and 04 be a d X d matrix with all entries being 0.

Define

Ca = {C(*) : ¢(+)is continuous on [—1, 1], satisfying ||{(—=1)|| =1, (1(—1) > 0},
Ci ={a1 (") : ¢1(-)is continuous on [—1,1]},

Co = {Vi(+) : Vi(:) > 0 and V4(+) is continuous on [—1,1]}.

The following operators are used in Theorem 2:

By (0)(0) = B(Xa{XBU)} x 9{XB0} /v [ X0 1|t = ) i), Yo e s

Hafa)(u) = £ (X, [0(X600)] Xial) /1 [s (X:6(0)]

U; = u)fl(u), Vq € Cy;
Hayla)(2) = B XX} /7 [s (XIBWIY || XiBW) = =) 2le). Ve € Ca
Hav () = B (Vs (X80} 6XIB(0)) - 9{XIB(0E) + X.a(U}|o(XIB(0)) =)
X fs(w), Vq € Cy;
Hyv(0)) = B (o[ X8O}V [o{ XA} oI} = ) (o), Y s

where f1, f» and f3 are the density function of random variable U, X'3(U)

and g(X'B(U)), respectively. Define an operator matrix ¥ such that
Ha(a)(u)  Hy(g2)(u) 0
(g2, 00)(12,9) = | Hagla)(z) fol2)/Vig(2)} 0
Hav(a)(w) Hypv(gs)(w)  fi(w)

Denote by piz = [ aK (2)dz, Blu,z,w) i= (Byu), By (2), Blyo(w))
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where By(u) = 3B <X§Z3<u>Xz- [Q{Xéﬁ(UO }} 2 / V[g{XiBU)NIU; = u) fi(u)p,
Bai1(2) = 3123(2) fo(2) BV [g{XiB(U)}] | XiB(U:) = 2) and Byya(w) =
AV (@) + 2} fa(w).

Let v = [!, K*(z)dz. Then we can define M(u, z,w) = (M ;(u, z,w))

to be a semipositive definite matrix with the following elements

Maalu, ) - E[xx, A 0B)

U; = u} vfi(u),

Vg XIBU)Y]
B X8} QU = 2| £(2) F: (w
Magn(u:2) = B|Xig 2 mrg i [KIB(U) = 2| e 2) ulw)
_ vfa(2)
M1 a41(u, z) = Vig())

Md+2,d+2(w) = E[(YZQ - V[Q{X;ﬁ<Uz)}] - gz{Xgﬁ(U»})Q

H{XIBU)} = w|vfi(w),

Maar2(u,w) = E{ <Y¢2 - V[g{XiBU)}] - ¢ {X;/B(Ui)}> [Yi - g{Xéﬁ(Ui)}}
L Xag{XiBU) }

V]g{XiB(U)} ]

Mgy a2(2,w) = E{ (Y? = V[g{XiB(U)}] — #*{XiB(U;)})
Vi — g{XiB(U;)

V[g{X;B(Ui)}

o{X,B(U)} = w}ﬁ(u)fg(w),

]}] ‘g{X’Zﬂ(Ui)} = w}f2(2>f3(W).

The following notation is used in Theorem 3. We define a 2 x 2 operator

Ha(a)(u)  Hylga)(u) )

matrix ¥ such that ¥i(qy, g2)(u, z) =

Hgy(a,)(2) fa(2)/V{g(2)}
For any vector of function ¥'(u, z,w) = ({¥(u)}9_,,¥(2))’, due to linear-

ity of Wy, the following functions are well-defined: ({¢(u)}i_;, ¢(2)) =
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P(u, 2)U . Let 02 be

d 2
oy = E([Q {XiB(UN}D | Xijo (Us) + ¢g{X/5(Ui)}} /V [{XiB(U) }] )
j=1
We first introduce two Lemmas, which are useful to prove Theorems.

Lemma 1 Under (A1)-(A4) and suppose that g(z,y,z) is a bounded and

continuous function, then

sup |ea() — Bea(x)] = Op((logn)'/?(nh)~1/?),

z€[—1,1]

where c,(z) = 23" g(X;, (Xi — ) /h, 2) K (X; — ).

n

This Lemma is similar to Lemma 4 of |Chen et al. (2010) and follows from
Theorem 37 and Example 38 in Chapter 2 of [Pollard| (1984).

Note that Theorem 37 of Pollard (1984)) requires bounded random func-
tions, which is no longer valid, for example, when Y; is unbounded. To solve
this problem, we need to introduce another concentration inequality for

unbounded random variables in a Hilbert space (Pinelis and Sakhanenko,

1985)).

Lemma 2 Let & (i = 1,...,n) be independent random variables with values
in a Hilbert space such that E,; = 0. If for some constants M,V > 0, the

bound E||&||* < $00M2V holds for every 2 < { < oo, then

n 82
PT’Ob{H;éZ”ZFQ}SZGXp{—m} Ve > 0.



52. PROOFS OF THEOREMS 1-35

S2 Proofs of Theorems 1-3

Proof of Theorem 1. For any vector functions 8(-), g(-) and V(-), set

o0, Vi) = -3 (Yo [X'{c <u><Ui—u>}D il (X))
(w)g2 { X (U3) } Kn, (Ui — w),
S0(C. 8. Vi: 2) %Z i = 1) = 92(){XIC() = 2}] /Valon (XU} ]
x Kp, { X (U;) — 2} Wi(¢; 2)
Sl Vi) = 13 (2 = 04 60) ) = Vo) ln{ X000 —w})ﬂxw;c,gn
l— < Ky (91{XIC (U} — ).

where W;(¢;2), YT;(u) and Q;(w; ¢, g) is defined in Section 2. Then the
deterministic terms of Sg(8,g, Vi;u) , S,(¢, g, Vi; 2) and Sy (¢, g1, V;w) are
given by sg(¢, g, Vi;u) , s4(¢, 91, Vi; 2) and sy (€, g1, Vi; w) which are defined
in Section 3, respectively.

Denote Sgi1(6,g, Vi;u) and Sga(d, g, Vi; u) be the first and last d component

of Sg, respectively. Define
(Sﬁl(éa g, ‘/17 U), S,@Z((sa g, ‘/17 U’))
S(d.8, Viu, z,w) = Sy(¢. 8 Vis2) ’

SV(C7 g1, V? U.))/
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Then, the proposed iterative algorithm, under model (1.1), leads to
S([B, B],@, \Af; u, z,w) = 0, and the model show that s(3, [g, ¢o], V; u, 2, w) =
0 for any bounded function gs.

Define

BL={f: {0 < O, If(21) = F(22)]| < ellos — 2l + bra, 21,22 € [-1,2]7),
B = {f [ flloe < C.l1f(21) = () < ellzr = 2l o, 21,22 € -1, 1]},

Bi? = {f : flle < ClIF(21) = f(22)]| < ellzt = 20l + b3n, 21,20 € [1,1]3,

for some constants C' > 0 and ¢ > 0, where by, = {hi+ (nhy)~"2?(logn)'/?},
bon = {hy + (nhy) ™2 (logn)'/2}, bs, = {hs + (nhs)~"/?(logn)'/?}.

To show the uniform consistency of B , g and V, it suffices to prove the
following;:

(i) For any continuous function vectors ¢, g1, V4 and bounded functions

77927‘/'17

sup [|S(9,8, Viu, z,w) = s(€, 8, Vi u, 2,w)(1, 0)[| = 0p(1).

U,z w€[—1,1]3
(ii) sup,,. wer-1,1 158, 8, Viu, 2,w) — s(¢, 8, Vi u, 2,w) (1, 0)]| = o0,(1)
uniformly holds over ¢ € B%, g; € BL, Vi € B2 and bounded ~, g2, V.
(iii) P{B € BY,§ € B¥*,V € Bi+2} — 1.

Once (i)-(iii) are established, applying the Arzela-Ascoli theorem in B (k =

d,d+1,d+ 2) for all the estimators, we can show that for any subsequence
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of {B,ﬁ, ‘A/}, there exists convergence subsequences {,/B\,E, V}nk, such that
uniformly over u € [-1,1] , z € [-1,1] and w € [-1,1], {B,7,V}e —
{B*,g*, V*} in probability, and it follows that 3" € C4 and ¢g* € C;, V* € C,
where C is the continuous function class. Note that

~ -~

s(8", 197, 9], V=3 u, 2,w)(1,0) = s(8%, [97, 9], V3 u, 2,w)(1,0) — s({B, 8, V s u, 2,w) (1, 0)

+5({B, 8 Vi u, 2,w)(1,0) — SE[B, Bl & V Yok 1, 2, w).

~

It also follows from (ii) and (iii) that s(8%, [¢*,g], V*;u,z,w) = 0 over u €
[—1,1], z € [-1,1] and w € [—1,1]. Since s(¢, [g1,9], V;u, z,w) = 0 has a
unique root at [3, g, V], we have [3,g,V] = [3", ¢*, V*], which ensures the
uniform consistency of B , g and V . This completes the proof of Theorem
1.

Proof of (i). We only give the proof of ||Sg(d, g, Vi;u)—(14,04)'s5(¢, g, Vi u)].
Similar arguments result in the conclusions about Sy(¢, g, Vi; 2) and Sy (¢, g1, Vi w).

To estimate Sg(d, g, Vi;u)— (14, 04)'sg(¢, g, Vi; 1), we consider the following

decomposition:

Sﬁ<57g7 ‘/1; u) - ([d7 Od)lsﬁ<<,7 g, ‘/1; U)
= {58(6.8,Vi;u) — Sp([¢. 0], 8, Vi;u)} + {5p([¢, 0], 8, Vis;u) — (¢, 8, Vi;u)}
+ [gﬁ(C>g7 ‘/la U) - <]d7 Od)ls,@(C7 g, Vvl: u)]

E[1+[2+[3,
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where Sg is the mean of Sg([¢, 0], g, Vi;u).
First we consider ;. Let w, (h) be the modulus of continuity of g;. Ob-

serving that

Khl (Uz — u)

l & , /
I < 5 3w, [X ()0 = w3 I 0] o {(XEG(UD} e

For any given ¢ € {1,2,...,n} and any bounded function =, note that

wo (X0 01— 0} 0 < oG 00 e P
Khl( —u

/ ! )
< o, [X{O(: = W} Il < lon{ XG0} i

where C is a constant vector. And it is easy to show that
[ (U= 0, 0 = £ )0 = O, v ()
for v € [-1,1].
For any bounded functions ¢ and g, it follows that
E(| 1)) < Op{wy, (h1)}-

Hence, Lemma [I| implies that, for any given continuous functions ¢ and g,

sup ||11]| = Op(wy, (h1)) + O,((logn)?(nhy)1?) = 0 as n — oo.
u€[—1,1]
(S2.1)

To estimate I, it suffices to verify the conditions given in Lemma [2]

Condition (A1) means that Kj, lies in a Sobolev space denoted by H? with
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the property: || f|leo < c||f]luz, for any f € H2 Then using Condition (A3),

we have

sup || < Op((logn)l/z(nhl)_l/z). (S2.2)

u€[—1,1]

Next consider I3. By replacing ¢(u) with ¢(U;) in'sg(¢, g, Vi;u), a difference

controlled by wg,o¢) is caused for all u € [—1,1] we note that

/[—1 1] Xi [Q{X;ﬁ(Ul)} - gl{X;C(Uz)}]

92{ X (U:) }
Vi [91 {X;C(Uz)”

1
— [ H@)E (5 ~ o))y - sa(C.g Vi) as by >0,
—1

where F is the joint distribution function of Uj,

Huy) = B(X! o800} - (XG0} x (s {XIC 0D} Vil (X601 )

Ui = Uj).

By Lemma 1, it can be shown that

sup || 5] = Op{W(gra¢)(h1) }- (52.3)

u€[—1,1]
We complete the proof of (i) by combining (S2.1)), (52.2)) with (S2.3)).

Proof of (ii). Noting that u, z, w are bounded, the arguments used to
prove (ii) is essentially the same as those in |Chen et al.| (2010).

Proof of (iii). We only give the proof for B € B

Given any uy, up € [—1, 1] with |u; —ug| < hy. Since Sﬁ(B,Q, Viug) =0

and Sg(B,@, YA/;ug) = 0, by the Taylor expansion and Condition (A1) it
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follows that

g
ANy o X B 4 B (U — u {XiB(U)}
a2 GG RE ”}Dv[m{x;m}}

XK (Us = 1) = Ko, (Us = w2)) + 5 {X;@ [X;{Bwl) +Bw)(U; - m)}]

i=1

)

X (X; [ﬁ(ug) — Bluy) + (E(%) - E(Ul))(Ui — 1) = Blus)(uz — UI>D } VT;{?;?B((UZU);]

< { K (U = uz) } + o(<u2 — )+ [Blu) = Blan)] + bundBlus) — B} + bin),

By the similar discussion in Cai et al. (2000), we have

Ss(B,8, V;u1) — Sa(B,8,V; up)

o~ ~

= 0, (w2 = ur) + 0y (Xi{ Bluz) = Blun) } + Bluz)(ws — w)) + Op (bufBluz) — Blun)})

-~

+0( (w2 = w)? + [Blus) = Blwn)]”+ 0ua (Blur) — Blun)} +13, ).
Note that B is bounded, (iii) is held immediately.

Proof of Theorem 2. For convenience of notation, denote
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0, = max {h2 + (nhy)"2(logn)/2}, cin = sup [B(u) — Bu)],

1<k<3 u€[—1,1]

con = sup [mB(w) — B, din = suwp [g(z) - g(z)],
ue[—1,1] z€[—1,1]

don = sup [hag(z) = hag(2)], ern = sup [V (w) =V w)],
z€[—1,1] we[—1,1]

~ ~—1 .

3 = sup [§(2) = g(2)], ean = sup |3V (w) —hsV "} (w)],

z€[—1,1] we[-1,1]

n = hi + (nhy) "2 (log )2, by = {hy, + (nhy)~'/*(logn)'/?}, for k = 1,2,3;

First, we claim that uniformly over v € [—1,1] and let Sg; be the first d

component of Sg. We have

Sp1(18.81. 3.4, Vi) — S (18.8]. 9,41, V)
= —{Hp(B = B)(W) + Hy(5 — 9)(u) } + Oy (e1n + e1n + dun)asn + crn(ern + dia + 1)
+eonbin + doncin + dip(ern + din + dan) + dopbin |,
(S2.4)

where Hg is an integral-type map from C4 to C; and H, is an integral

operator on Cy, both of which are defined in 1 Notations.

To prove (S2.4)), we write

S1(18.81. 18,1, V:2) — Sa(18. 8. 9.4, Vi) = i + Jo + ]y
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where

Ty = 8118, 8,19, 81, Vi) — Sp1 (18, 81, [, 81, Vs ),
JQ = S@l([B,B], [gv.éLV’u) - Sﬂl([ﬁaﬁ]? [gag]’vau)v

Js = Sp1((8. 8], 19. 9], Viu) — S (18,81, [9, 9], V).

Similar to the proof of Theorem 1, we can show that 3 , ¢ and V are both
bounded with probability going to 1, furthermore ||3—3|| — 0, ||g—g|| — 0
and ||V — V|| = 0. Thus, by the uniform law of large numbers and Taylor

expansion of g(-), we conclude that
Jy = —Hg(B — B)(u) + O, [(cm + e1n + din)ain + cin(ern + din + cin) + Canbin + d2nc1n}] .
Similarly, we can obtain that
Jo = —Hy(§— g)(u) + O, [(aln + din)(e1n + din + dap) + d%bln] :
and
J3 = O(apern).

Consequently, this, together with Jy, Js, J3, yields the conclusion of ((S2.4)).
Next we consider Sg(ﬁ, [’g\,g],f/;z) — S4(B,19,9],V;z), which can be

decomposed as Jy + J5 + Jg, where

Ty = 54(8,19.9), Vi 2) — S,(B. 19,91 V3 2),
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A~ ~ ~

Js = S4(8,19, 9], Vi 2) — S4(B. 9,9,V 2),
and
J6 = Sg(ﬂ7 [9,9]7 VVZ) - Sg(/ﬂv [979]7 V’ Z)

By a simple calculation, we can easily obtain that

T = =Q5(2) - 9. 13{3(2) - 5(2)}] Fal2) /v {9}

Op [dlncln + (dln + eln)a2n + d2nb2n + Clneln:|
+

O, |:hf2d2ncln + hodinbay, + h2d2na2n:|

Similarly, we can have that

N O (eln + Cln>a2n + €1nCin
Js = _Hﬁg(ﬁ_ﬁ)fQ(Z)(Ovl)/_l_ p{ } )
Op{h201nbzn + C1nQ2pn + C%nh2}

and

Op(a2neln>
Jo =
Op(h2€1nb2n)

Hence, combining with J4, J5, Jg we have that

A~ ~

53,133 V:2) = 548,194, V)
= —Q§(2) — 9(2). B3{3(=) — 9()}] 1o(2)/V {0(2)} — Hy(B ~ BY()(1,0)

Op |:d1ncln + (dln + Cin + eln)a2n + d2nb2n + Clneln:|

O, [h2d2ncln + hadinbon 4 (hadan + honcin)aon + C%nhz]
(S2.5)
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Similarly, we can get

7w) — Sy (B, g, [V, V;w)

2
ja>
EQ>
“?>
<)

= —Q[Vw) - V(@) B{V() ~ V@)}] fs)  Hpv (B~ B)(1.0) ~ Hyp (5~ 9)(1.0)

Op{cln(b?m + dln) + (Cln + dln + eln)ai’)n + (Cln + d?n)eln + 62nb3n}
+

O, [Clnh3b3n + h3ct, 4 dinhsbs, + (cin + daon)eanhs + haeanas, + h361nbi’m:|
(S2.6)

On the other hand, using Condition (A1), Lemma |l| implies that

sup |[S([8, 81, [9. 4] [V, V] w, 2,w) || = Oplan).

(u,z,w)€[—1,1]3

Note that S([ﬁ,é], 4, 4], [V, ‘A/], u, z,w) = 0. From ([S2.4)), we can get ¢y, =

a1y, + (din + c1n)b1n + Cona1y + €1,01,,. Following the second components in

(S2.5) and (S2.6)), we can get da,, = agy, +danCrn+dinbay + (don+c1p)as, +c3,,

and €on = A3n + Clnb?m + C%n + dlnb?m + (Cln + d2n)62n + €2n0a3n + elnb?m-

Let Sy1 be the first component of Sy. It follows from (S2.5)) that

£2(2)/V{g(2)} (3 — 9)(2) + (Hgy) (B — B)(2) = S (8,9, 3], V; 2)

+Op [dlncln + (dln + Cin + eln)a2n + d?ann + Clneln] . (827)
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Let S,1 be the first component of Sy. It also follows from ([S2.6]) that

A

f(@)(V = V)(@) + (Hp) (G — 9)(w) + (Hpv) (B — B)(w) = S (B, 9,[V, V] )
—f-Op{Cln(bgn + dln) + (Cln —+ dln + €1n)a3n + (Cln + dgn)eln + 62nb3n}

(52.8)

This together with (S2.4) and (S2.7)), implies that

Hs = V{g(2)}/ (=), o Ha, | (B - B) (w)
= Sp1(18. 81, [9, 9], Vi) = V{9(2)}/ fo(2)Hy { S (B [9. 9], V'; 2) } (w)
+Op{(c1n + e1n + dip)ain + cin(ein + din + cin) + Conbin + doncin
tdin(e1n + din) + a2nbin + (din + c1n + €1n) a2, + agnbgn},

(52.9)

which holds because H, is a bounded operator on C;.
Following Condition (A7), [Hg — V{g(2)}/f2(z)Hy 0 Hgy] ! exists and
is bounded on Cy4, and hence the supremum norm of the left-side hand of

(S2.9)) is equivalent to cy,. Lemma [1] further implies that

156108, 81, [9. 1. Viu)=V{g(2) }/ fo(2)Hy {1 (B, [g. 9] Vs 2)}| = Op(ara-tazn).

By (S2.9), we have c¢1,, = Op(a1, + az,) + Op{(eln + dip)ar, + (din +
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€1n )2, + dgncln}. Consequently, we can get
Cin = Op(aln + af?n) = Op(dln)
C1np — Op(aln + agy + CL3n> = Op(an). (SQlO)

By Condition (A7), we note that ¥ is linear and so U~! is linear and

bounded on Cy x C; X C3. Combining ([S2.10)) with (S2.4] - S52.7)) and ((S2.8§]

we have
B-p Sa1(18, 81,19, 4], Vi u) Op(a1nan + a1nb1n)
Vi g-g |wzw)= S1(B,19. 9], V; 2) T | Oplaznan + aznbay)
Vv Su(B,9, V. V]iw) Op(ntn + aubs)
(S2.11)

On the other hand, note that Sg; (8, 8], [g, ¢], V; 1) can be expressed as

Se1(18, 81,1941, Viu) = Vaa(u) + Bpa(u)

where
1< / . / Kh1(Ui _ u)
= ; |:Y;‘ - g{Xz‘/B(Ui>}:|g{Xi/6(Ui)}V [g{X.B(U)]}] Xi,
= % 50X} KBV, — u? T T X 0,(07)

= V [o{XiB(U)}]

We apply Lemma [1] to show that

By alu) = %E(X X [o{xiB(}] /¥ [o{XiBUNIU: = u> frlu)psh?

+0p(hi (nh) ™2 (log n)'/?).
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Similarly, we can obtain

n

S8l 2) = 3 3 [¥i - a{XiB(0)} Kxﬁz[{;{(ﬁ(ﬁ%fi}}?

+ B (2)h; + Op(h3(nhs) ™12 (logn)V/?) + 0,(h3),

n

S8 9.3y =" (Y - V|g{xiBU)}] - gQ{Xm(Ui)})Khs XU} - o]

i=1

+Baga(w)hi + Op(h3(nhs) ™' (log n)'?) + 0,(h3),

where Bgy1(+) and Bgyo(-) are defined in Supplementary materials A.

Define Vn,d+1(2) Vidra(w) by

n

Voans(2) = 237 [ - gfxp(uy)] S X000 — 2]

n VI[g{XiBU)}]
Viaeale) = 1 3 (12 v [o{X0B00)] - X100} ) Ko [ o X180} - o]

We write A, (u, z,w) = (V,a(uw), Viar1(2), Vaaro(w)) and B(u, 2, w) = (Ba(u), Bay1(u), Bay2(u))'.

Then it follows from ([S2.11)) that

B - B O,(a1napn + a1,b17,)
Ul G-y (u, z,w) = A (u, z,w)+H*B(u, z,w)+0p(h%+h§+h§)+ Op(a2nty + aznbon) | -
V-V O,(asnan, + a,bsy,)
where H = diag(hy,- - , hq, ha, h3) and B(u, z,w) is defined in Supplemen-
d

tary materials A. The Central Limit Theorem implies that (nH)'2A,,(u, z, w)
is asymptotically normal with mean 0 and variance-covariance matrix M

where M is defined in Supplementary materials. Thus the proof of Theorem

2 is completed.
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Proof of Theorem 3.

First, we derive the asymptotic variance of Z;l:l f_ll B\](u)@/)](u)du +

f z)dz. Conditioned on hy and hgy, from (S2.11)), we have

d I 1
> / {5 - Bt [ @900

1 n [YZ_Q{X;IB(UJ}] 1 n [Yz_g{X;B(UZ)}] ,
D R DR o SR

=1

+Op(alnan + alnbln + Aon Gy, + ngan).

By Central Limit Theorem, we get

" Yz‘—g{X;ﬁ(Ui)} '8
%Z{v[g{xmwm}[g{ KBNS X0 + 000

i=1

A N(O,av),

where 02 is

ang([g{xa }ZXw% )+ o, {X'BU, }Q/V[g{xzﬁwi)}})-

Therefore, we can get

\/ﬁz_;/1 {gj(U) —5j(U)}¢j(u)du+ \/ﬁ/l(g—g)(z)%(z)dz — N(0,52).

(S2.12)

To show the asymptotic efficiency of 3¢ i1 f . BJ )i (u)du+ f (2)1y(2)dz

we consider the following parametric submodel with unknown parametric
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7
{B'(u,2,7),9(z,7)} = {B'(w),9(2)} +v{Ps(u,z), Py(2)}.
where
Plg(u, 2) = {@1(u,2),. .., Palu, )}, @yl(2) = 63(2)/[V{g() ()],
Du(.2) = [{ 306 EX, ) (2) +2ZEXU¢] )y (2)i(2)| /[dV {g ()} (=)

Obviously, 79 = 0 is the true value of . Based on the definition of the

quasi-likelihood (2.2), the score of this parametric submodel at 7y is

Y= g{XiB(U)}
%“ [V[Q{Xéﬂ(Ui)}]}[g{Xﬂ }ZW )+ (X8}

whose variance is o2. Thus, the maximum likelihood estimator of 7, denoted

by 7, satisfies
Vi —70) = N(0, (02)7h).
For any vector functions ' (u, 2) = ({¢(u ) iy #(2)Y', we observe that
/[ 1€[~1,1)2 |:{/6 (U z '7 Z ’7 } {/8 U,z ’70 g(z’%)}]’(f’,(u,Z)dudz

=(7{ - 70)/ {@g(u, 2), @y(2) }2' (u, 2)dudz. (52.13)
[u,2]€[-1,1]?

Moreover, we observe that

/ {@g(u,2), ®4(2) }9' (u, z)dudz = o
[u,2]€[—1,1]2
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Then it follows from ([S2.13)) that

Vi 18/, 2.7), ()} = {8/ (1,270, 9(2,70)} |/, 2)dud

[u,z]€[—1,1]2

N N(0,02).

This, together with (S2.12)), shows that the asymptotic variance of Z;l:l f_ll Bj(u)z/zj (u)du+

f_ll 9(2)14(2)dz is the same as that of f[u del1 1]2(,3'(u, 2,7), 9(z, 7))V (u, z)dudz.
As explained in Bickel et al.| (1998) , Z;l:l f_ll Bj(u)wj (u)du—l—f_l1 9(2)Yy(2)dz
is asymptotically efficient for the estimation of Z;.lzl fjl B, (u)du—i—fjl 9(2)14(2)dz.

Thus we complete the proof of Theorem 3.
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