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Abstract: Generalized varying-coefficient models have emerged as a powerful tool

for modeling nonlinear interactions between covariates and an index variable when

the outcome follows a non-normal distribution. The model often stipulates a link

function and a variance function, which may not be valid in practice. For ex-

ample, a large-scale study of loan payment delinquency related to the purchase

of expensive smartphones in China, found that parametric functions may not ade-

quately characterize the data and may yield biased results. We propose a generalized

varying-coefficient model with unknown link and variance functions. With a mas-

sive data set, the simultaneous estimation of these functions and the large number

of varying-coefficient functions poses challenges. Thus, we further propose a global

kernel estimator and a series of linear approximations that achieves computational

and statistical efficiency. The estimators can be expressed explicitly as a linear

function of outcomes and are proven to be semiparametrically efficient. Exten-

sive simulations demonstrate the superiority of the method over other competing

methods. Lastly, we apply the proposed method to analyze the aforementioned

smartphone loan payment data.

Key words and phrases: Asymptotic properties, generalized varying coefficient mod-

els, local linear smoothing, quasi-likelihood, semiparametric efficiency.

1. Introduction

For non-normal response data, generalized varying-coefficient models (

GVCMs) are widely used to model the nonlinear interactions between an index

variable (or effect modifier) and important covariates; see Hastie and Tibshirani

(1993), Xia and Li (1999), Cai, Fan and Li (2000), Zhang and Peng (2010), Ku-

ruwita, Kulasekera and Gallagher (2011), Xue and Wang (2012), Huang et al.

(2014), and Zhang, Li and Xia (2015). The models have been applied in longi-
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tudinal data analysis (Hoover et al. (1998); Wu, Chiang and Hoover (1998); Fan

and Zhang (2000); Lin and Ying (2001); Fan, Huang and Li (2007); Lin, Song

and Zhou (2007)), time series analysis (Chen and Tsay (1993); Cai, Fan and

Li (2000); Huang and Shen (2004)), survial analysis (Zucker and Karr (1990);

Murphy and Sen (1991); Gamerman (1991); Murphy (1993); Marzec and Marzec

(1997); Martinussen, Scheike and Skovgaard (2002); Cai and Sun (2003); Tian,

Zucker and Wei (2005); Fan, Lin and Zhou (2006); Chen, Lin and Zhou (2012)),

and functional data analysis (Ramsay and Silverman (2002)). Like generalized

linear models, GVCMs specify link and variance functions to associate the means

and variances of outcomes with predictors. The functions are typically specified

according to the data type of the outcomes and for mathematical convenience.

For binary outcomes, a logit link and a variance µ(1−µ) as a function of the mean

µ are chosen; for count data, a logarithmic link and an identity variance function

of the mean are specified; and for continuous outcomes, an identity link and a

constant variance are chosen. However, misspecified link and variance functions

may cause biased and inefficient estimates, leading to erroneous conclusions.

Our study is motivated by a large-scale data set on the loan payment delin-

quency of young customers who have purchased expensive smartphones in a major

city in China. The data set consists of payment delinquency records for the pe-

riod 2015 to 2016 (recorded as Y = 1 if the loan was not paid back on time, and

zero otherwise) for 105,548 customers, along with each customer’s credit score,

age, monthly income, downpayment ratio, loan amount, and number of credit

cards owned. Preliminary analyses found that the effects of risk factors may

depend on the loan amount. For example, the effect of age increases with the

loan amount, and the effect of the credit score is significant only when the loan

amount is in the range (2,000, 4,000). We examine whether and how these factors

affect loan payment behavior by applying a GVCM. Using the proposed nonpara-

metric methodology, the estimated link and variance functions (see Figures 3 and

4) deviate significantly from the commonly used link and variance functions for

binary data, suggesting they are unsuitable for this data set. Furthermore, Table

4 shows that the method with data-driven link and variance functions performs

better, with smaller prediction errors, than the logistic varying-coefficient model

for the independent testing data. In many applications, the estimation of vari-

ance structures is of interest. Recent examples include a study of the variability

in propensity-score matching (Austin and Cafri (2020)), an evaluation of the vari-

ability in aggregate stock returns (Pyun (2019)), the effects on employment of

several state-level policy shifts (Pustejovsky and Tipton (2018); Deriso, Maunder

and Skalski (2007)), and analyses of several functional or longitudinal data sets
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(Lin, Raz and Harlow (1997); Wang and Lin (2005); Zhang and Paul (2014)).

Two related works nonparametrically estimate link functions for varying-

coefficient models (Kuruwita, Kulasekera and Gallagher (2011); Zhang, Li and

Xia (2015)). Kuruwita, Kulasekera and Gallagher (2011) consider a model Y =

g{X′β(U)}+ ε for continuous response data with a constant variance. For non-

continuous response data, Zhang, Li and Xia (2015) propose a class of GVCMs

with an unknown link, but a known variance function. These methods focus

on estimating mean functions, while specifying variance functions that are be

constant or have a known structure. However, our simulation (see Example 3 in

Section 4) shows that misspecifications of variance functions lead to considerably

large biases for the link and varying-coefficient functions. In addition, because

Zhang, Li and Xia (2015) used a local likelihood method to estimate the link and

coefficient functions, the number of parameters to be estimated is of the same

order as the sample size. This method is not applicable to our loan payment

data set, which has more than 100,000 samples. Moreover, Zhang, Li and Xia

(2015) and (Kuruwita, Kulasekera and Gallagher (2011)) estimated g(·) using a

two-dimensional kernel, which may not be efficient.

We propose a new class of GVCMs with unspecified link and variance func-

tions (GVULV). Let Y be the response variable, X = (X1, . . . , Xd)
′ be the vector

of covariates, and U be a univariate index variable, for example, the loan amount.

The GVULV model is specified as

µ = E(Y |X, U) = g{X′β(U)},
V ar(Y |X, U) = V (µ), (1.1)

where g(·) and V (·) are the unknown link and variance functions, respectively,

and β(·) is a vector of unknown varying-coefficient functions.

Using one-dimensional kernel functions, we propose a quasi-likelihood-based

approach to estimate g(·) and β(·), and show that the proposed estimators are

uniformly consistent, asymptotically normal, and semiparametrically efficient in

the sense of Bickel et al. (1998). To the best of our knowledge, semiparametric

efficiency has never been established for similar models. In addition, using a

series of linear approximations, we propose an iterative algorithm, that is com-

putationally efficient and easily implementable, because each step involves only

closed-form one-dimensional smoothing.

The remainder of paper is organized as follows. Section 2 presents the model

formulation and introduces the local quasi-likelihood estimation, and Section 3

establishes the asymptotic results. Section 4 gives numerical comparisons with



850 LIN ET AL.

competing methods, and Section 5 applies the proposed method to analyze loan

payment data. We conclude the paper with a discussion in Section 6. Technical

proofs are relegated to the Supplementary Material. The R code for the proposed

method is available at https://github.com/LinhzLab/gvcm_code.

2. Estimation of the GVULV Model

2.1. Model formulation

With n random samples from an underlying population, the observed data,

(Yi,Xi, Ui), for i = 1, . . . , n, are independent and identically distributed(i.i.d.)

copies of (Y,X, U) satisfying (1.1). Following Zhang, Li and Xia (2015), we

specify the following identifiability conditions:

β1(u) > 0, for any u, and ‖β(Un)‖ = 1, (2.1)

where ‖β(u)‖ = {β(u)Tβ(u)}1/2, and β1(·) is the first component of β(·).
We fit model (1.1) using the maximum quasi-likelihood and kernel smoothing.

To proceed, let µi = g{X′iβ(Ui)}, and write the log quasi-likelihood function of

β(·), g(·) and V (·) as

Q(β, g, V ) =

n∑
i=1

L(µi, Yi), (2.2)

with L(µi, Yi) defined as

∂L(µi, Yi)

∂µi
= V (µi)

−1(Yi − µi). (2.3)

The following three subsections detail the proposed approach, which esti-

mates β(·), g(·), and V (·).

2.2. Estimation of β(·) when g(·) and V (·) are given

Applying the Taylor expansion to β(·) yields

β(Ui) ≈ β(u) + β̇(u)(Ui − u) (2.4)

when Ui is in a small neighborhood of u. With (2.3), the quasi-likelihood esti-

mator of δ = (ζ, γ)′ ≡ (β(u), β̇(u))′ solves

Sβ(δ;g, V ) =̂
1

n

n∑
i=1

[
Yi − g

{
X′i
(
ζ + γ(Ui − u)

)}]
Υi(u)

https://github.com/LinhzLab/gvcm_code
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×ġ
{
X′iβ(Ui)

}Kh1
(Ui − u)

V (µi)
= 0, (2.5)

where Υi(u) = (X′i,X
′
i(Ui − u))′, Kh(·) = K(·/h)/h, K(·) is a non-negative sym-

metric kernel function on [−1, 1], and h1 is a bandwidth.

Using the Newton–Raphson iteration to compute δ = (ζ, γ)′ is intensive

because of the repetitions over all u in the support of Ui, given g(·) and V (·).
We explore a local linear approximation. Applying Taylor’s expansion to g(·) at

X′β(Ui) for Ui around u, we have that

g
[
X′i
{
ζ + γ(Ui − u)

}]
= g
[
X′iβ(Ui) + X′i

{
ζ + γ(Ui − u)

}
−X′iβ(Ui)

]
≈ g{X′iβ(Ui)}+ġ{X′iβ(Ui)}

[
X′i
{
ζ + γ(Ui − u)

}
−X′iβ(Ui)

]
. (2.6)

Substituting (2.6) into (2.5), we obtain an explicit expression for the estimators

of (β(u), β̇(u))′,(
β̂(u)
ˆ̇
β(u)

)
=

{
n∑
i=1

ρ2iΥi(u)Υi(u)′
Kh1

(Ui − u)

V (µi)

}−1

×
n∑
i=1

[
Yi − g{X′iβ(Ui)}+ ρiX

′
iβ(Ui)

]
Υi(u)ρi

Kh1
(Ui − u)

V (µi)
, (2.7)

where ρi = ġ
{
X′iβ(Ui)

}
.

2.3. Estimation of g(·) when β(·) and V (·) are given

A Taylor expansion yields

g
{
X′iβ(Ui)

}
≈ g(z) + ġ(z)

{
X′iβ(Ui)− z

}
(2.8)

when X′iβ(Ui) is in a small neighborhood of z. With (2.3) and (2.8), the quasi-

likelihood estimator of g = (g1, g2) ≡ (g(z), ġ(z))′ solves

Sg(g;β, V )=̂
1

n

n∑
i=1

{
Yi −Wi(z;β)′g

}Wi(z;β)

V (µi)
Kh2

{
X′iβ(Ui)− z

}
= 0, (2.9)

where Wi(z; β) =
(
1, X′iβ(Ui) − z

)′
, and h2 is the bandwidth. A closed-form
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expression is available with

(
ĝ(z), ˆ̇g(z)

)′
=

[
n∑
i=1

Wi(z;β)Wi(z;β)′Kh2

{
X′iβ(Ui)− z

}
V (µi)

]−1

×
n∑
i=1

Wi(z;β)Kh2

{
X′iβ(Ui)− z

}
Yi

V (µi)
. (2.10)

2.4. Estimation of V (·) when β(·) and g(·) are given

Because E(Y 2
i |Xi, Ui) = V ar(Yi|Xi, Ui) + E2(Yi|Xi, Ui) = V (µi) + µ2i ≡

Ṽ (µi), it suffices to estimate Ṽ (·) for V (·). Using the Taylor expansion gives

Ṽ (µi) ≈ Ṽ (ω) + ˙̃V (ω)(µi − ω) (2.11)

when µi = g
{
X′iβ(Ui)

}
is in a small neighborhood of ω. Then, the estimating

equation for V = (Ṽ (ω), ˙̃V (ω))′ becomes

SV (V;β, g) =̂
1

n

n∑
i=1

[
Y 2
i − Ṽ (ω)− (µi − ω) ˙̃V (ω)

]
Ωi(ω;β, g)Kh3

(µi − ω)

= 0, (2.12)

with Ωi(ω;β, g) = (1, µi − ω)′, and h3 being the bandwidth. The estimator for

(Ṽ (ω), ˙̃V (ω))′ is(
ˆ̃V (ω),

ˆ̃̇
V (ω)

)′
=

[
n∑
i=1

Ωi(ω;β, g)Ωi(ω;β, g)′Kh3
(µi − ω)

]−1

×
n∑
i=1

Ωi(ω;β, g)Kh3
(µi − ω)Y 2

i . (2.13)

The estimator for V (ω) is V̂ (ω) = ˆ̃V (ω)− ω2. Because (2.12) uses the squared

observations, Y 2
i , rather than the squared residuals (Yi − µi)

2, the procedure

avoids using the unknown mean function, adding robustness to the estimation of

V (·) (Lin and Song (2010)).

2.5. An algorithm for estimating g(·), β(·), V (·)

We choose the initial values of β(0)(u), g(0)(z) and ġ(0)(z), with u and z in

the support of U and X′β(U), respectively. Because the variance estimation does

not affect the asymptotical distribution of the estimator for the mean structure,
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we choose the initial values based on a model with a constant variance. For

the same reason, as long as the estimate of V (0)(µ
(0)
i ) is consistent, the variance

function V (µi) in (2.5) and (2.9) does not need to be updated in the iterative

process. The estimate of V (·) only needs to be updated after the final estimates

of g(·) and β(·) are obtained. This further reduces the computational burden. In

addition, because the objective function for estimating g(·) and β(·) is different

to that for V (·), the iterative algorithm may not guarantee convergence Boyd

and Vandenberghe (2004). We conducted simulations by updating β(·), g(·), and

V (·) iteratively, and found that the algorithm frequently fails to converge.

Using the local linear smoothing technique presented in Section 2.4, we esti-

mate the initial values V (0)(ω) of V (ω) for ω in the support of µ(0) = g(0){X′β(0)(

U)}, which, by the kernel theory (Fan, Lin and Zhou (2006)), are consistent

estimates of V (g{X′β(U)}). Let β(r−1)(·), g(r−1)(·), and ġ(r−1)(·) be esti-

mators of β(·), g(·), and ġ(·) respectively, at the (r − 1)th iteration, and let

µ
(r−1)
i = g(r−1){X′iβ(r−1)(Ui)} and ρ

(r−1)
i = ġ(r−1){X′iβ(r−1)(Ui)}. We obtain the

updated values of β(·) and g(·) at the rth iteration as follows:

• For each u in the chosen grid points {u1, . . . , un1
}, we estimate β(u) and

β̇(u) using (2.7). All unknown quantities on the right side of (2.7) are

replaced by their updated values at the (r−1)th iteration, such as β(r−1)(·),
g(r−1)(·), ġ(r−1)(·), µ(r−1)i , and ρ

(r−1)
i , except that V (µi) is replaced by V (0)(

µ
(0)
i ). We then standardize β̂(u) to obtain β(r)(u) = β̂(u)/‖β̂(Un)‖, with

β
(r)
1 (u) > 0.

• Let Zi = X′iβ
(r)(Ui), for i = 1, . . . , n. We choose n2 points in the sup-

port of Z, denoted as {z1, . . . , zn2
}. For each z ∈ {z1, . . . , zn2

}, as outlined

in Section 2.3, we estimate (g(z), ġ(z))′ using (2.10). Again, we replace

all unknown quantities on the right side of (2.10) with their updated val-

ues, except that we replace V (µi) with V (0)(µ
(0)
i ). We denote the updated

estimates of g(z) and ġ(z) as g(r)(z) and ġ(r)(z), respectively.

• The convergence is defined as supu ||β(r)(u)−β(r−1)(u)|| < ε0 and supz |g(r)(
z) − g(r−1)(z)| < ε0, where ε0 > 0 is a prespecified small number. Denote

the final estimators for β(u) and g(z) as β̂(u) and ĝ(z), respectively.

• Let {ω1, . . . , ωn3
} be the grid points in the support of {ĝ(X′iβ̂(Ui)) : i =

1, . . . , n}. For each ω ∈ {ω1, . . . , ωn3
}, we use (2.13) to obtain the estimate

of V (ω), with β and g replaced by β̂ and ĝ, respectively.

Remark 1. We calculate g(·), β(·), and V (·) at fine grids, and use linear interpo-

lation to fill in the rest. In contrast, Zhang, Li and Xia (2015) needed to estimate
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g(·) at all of the observed data points, which is infeasible for a large-scale data

set.

Remark 2. If g(·) is known, the estimator of β̂(u) based on (2.5) reduces to the

existing local quasi-likelihood estimator (Carroll et al. (1997); Chiou and Müller

(1998)). If β(·) is known, the proposed estimator of ĝ(z) is the estimator for the

generalized nonparametric regression model. As such, the asymptotic properties

could be established using the kernel theory (Fan and Gijbels (1996)). However,

because β(·) and g(·) are both unknown, our estimator is defined implicitly as the

limit of an iterative algorithm, which needs substantial work in order to establish

the asymptotic theory.

Remark 3. We substitute the local approximations (2.4) and (2.8) into the quasi-

likelihood function, avoiding the use of two-dimensional kernels, and improving

the efficiency of the estimator. In fact, the proposed estimator is shown to be

semiparametrically efficient in the sense of Bickel et al. (1998). On the other hand,

the local approximation (2.6) yields a closed-form expression when updating the

estimate of β(·), which expedites and simplifies the computation. Hence, the

proposed estimators possess theoretical and computational efficiency.

The proposed estimation of β(·), g(·), and V (·) involves selecting the band-

widths h1, h2, and h3, respectively, which can be achieved using K-fold cross-

validation (Cai, Fan and Li (2000); Fan, Lin and Zhou (2006)). Specifically,

denote the full data set by B, and partition the samples into K parts, denoted

by Bk, for k = 1, . . . ,K. First, for the link function and coefficient functions, we

minimize

PE(h1, h2) =
1

K

K∑
k=1

1

nk

∑
i∈Bk

∣∣∣Yi − ĝ(−k){X′iβ̂(−k)(Ui)}
∣∣∣ ,

where nk is the number of the observations in set Bk, and the estimators ĝ(−k)(·)
and β̂(−k)(·), for g(·) and β(·), respectively, are estimated using the training set

B −Bk. For the variance function, we minimize

PE(h3) =
1

K

K∑
k=1

1

nk

∑
i∈Bk

∣∣∣(Yi − µ̂(−k)i )2 − V̂ (−k)(µ̂
(−k)
i )

∣∣∣ ,
where the estimators µ̂

(−k)
i and V̂ (−k)(·), for µi = g{X′iβ(Ui)} and V (·), respec-

tively, are estimated using the training set B − Bk. The number K is usually

chosen to be K = 5 or K = 10. The bandwidths (h1, h2) and h3 are selected
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separately, resulting in less computation. In the ensuing simulation studies and

real-data analysis, K = 5 is used and is found to work well.

3. Large-Sample Properties

We denote by β, g, and V the true coefficient, link function, and variance

function, respectively. This section establishes the uniform consistency, asymp-

totic normality, and semiparametric efficiency using the following regularity con-

ditions:

(A1) The kernel function K(·) is a symmetric density function with a compact

support and a bounded derivative.

(A2) Xi and Ui are bounded in Rd and R. Without loss of generality, we assume

that Xi ∈ [−1, 1]d and Ui ∈ [−1, 1].

(A3) The second derivatives of β(·), g(·) and V (·) on [−1, 1] are bounded, and

the variance function V (·) is bounded away from zero on [−1, 1].

(A4) The conditional distribution of Yi has sub-exponential tails. That is, there

exist constants C and M > 0 such that E[|Yi|`|Xi] ≤ C`!M `, for ∀ 2 ≤ ` ≤
∞.

(A5) Let g(z) = (g1(z), g2(z))
′ and δ(u) = (ζ(u),γ(u))′, and let f1 be the den-

sity function of Ui, f2(·; ζ) be the density of the random variable X′iζ(Ui)

associated with ζ, and f3(·; g1, ζ) be the density of the random variable

g1 {X′iζ(Ui)}. Let

sβ(ζ,g, V1;u)

= E

(
Xi

[
g
{
X′iβ(Ui)

}
− g1{X′iζ(u)}

] g2
{
X′iζ(Ui)

}
V1
[
g1 {X′iβ(Ui)}

]∣∣∣Ui = u

)
f1(u),

sg(ζ, g1, V1; z)

= E

([
g
{
X′iβ(Ui)

}
− g1(z)

]
V1
[
g1 {X′iβ(Ui)}

] ∣∣X′iζ(Ui) = z

)
f2(z; ζ),

sV (ζ, g1, V1;w) = E

(
V
[
g
{
X′iβ(Ui)

} ]
+ g2

{
X′iβ(Ui)

}
− V1(ω)

− ω2
∣∣∣g1 {X′iζ(Ui)

}
= ω

)
f3(ω; g1, ζ).

Define s(ζ,g, V1;u, z, ω) = (sβ(ζ,g, V1;u)′, sg(ζ, g1, V1; z), sV (ζ, g1, V1;ω))′.

Then, we assume that s(ζ,g, V1;u, z, ω) = 0 has a unique root over ζ ∈ Cd,
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g1 ∈ C1, and V1 ∈ C2, where Ck, C1, and C2 are defined in the Supplementary

Material.

(A6) hj → 0 andnhj/(log n)→∞, for j = 1, 2, 3, as n→∞.

(A7) Ψ−1 and (Hβ−HgoHβg)
−1 exist and are bounded uniformly, where Ψ is an

operator-type matrix, and Hβ, Hg, and Hβg are operator-type vectors. The

explicit forms of these operators are given in Section 1 of the Supplementary

Material.

Conditions (A1)–(A4) are commonly assumed conditions for kernel functions,

covariates, functions of interest, and distributions (Fan, Lin and Zhou (2006);

Chen et al. (2010); Chen, Lin and Zhou (2012)). The condition of a bounded

support for Xi and Ui simplifies the proof, and is extensively assumed in the

nonparametric literature; see for Zhang, Li and Xia (2015), Horowitz and Härdle

(1996), Horowitz (2001), Carroll et al. (1997), Chen, Lin and Zhou (2012), and

Zhou, Lin and Liang (2018). The condition may be relaxed, as suggested by our

simulation studies, where we generate Xi with unbounded multivariate normal

random vectors. Conditions (A5) and (A7) ensure identifiability. Condition (A6)

is assumed in the literature for bandwidths (Fan, Lin and Zhou (2006); Chen,

Lin and Zhou (2012)).

Theorem 1. Under Conditions (A1)–(A6), as n→∞, we have

sup
u∈[−1,1]

|β̂(u)− β(u)| p→ 0, sup
z∈[−1,1]

|ĝ(z)− g(z)| p→ 0,

sup
ω∈[−1,1]

|V̂ (ω)− V (ω)| p→ 0.

Theorem 1 shows the proposed estimators β̂(·), ĝ(·), and V̂ (·) are all uni-

formly consistent.

Theorem 2. Under Conditions (A1)–(A7), we have

Ψ

 β̂(u)− β(u)

ĝ(z)− g(z)

V̂ (ω)− V (ω)

 = (nH)−1/2M(u, z, ω)−1/2ϕ+H2B(u, z, ω)

+op{h21 + h22 + h23 + (nh1)
−1/2 + (nh2)

−1/2 + (nh3)
−1/2}

uniformly on u ∈ [−1, 1], z ∈ [−1, 1], and ω ∈ [−1, 1], where H = diag(h1 ×
1d, h2, h3), 1d is a d-dimensional vector with all elements equal to one, ϕ is
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a standard normal random vector, and B(u, z, ω) and M(u, z, ω) are defined in

Section 1 of the Supplementary Material.

Theorem 2 shows that the asymptotic bias of
(
β̂(u)′, ĝ(z), V̂ (ω)

)′
is of order

h2 = (max{h1, h2, h3})2, whereas the asymptotic variance is of order (nh)−1.

Hence, the optimal bandwidth is of order n−1/5, and the convergence rate of

the estimator is of order n−2/5. Theorem 2 implies the following asymptotically

normal distribution.

Corollary 1. Under Conditions (A1)–(A7), for any given u, z, and ω in [−1, 1],

if nh5 = O(1), we have

(nH)1/2


 β̂ − βĝ − g
V̂ − V

 (u, z, ω)−H2Ψ−1(B)(u, z, ω)

 d→ N(0,V(u, z, ω)),

where V(u, z, ω) = [Ψ−1(M−1/2)(u, z, ω)][Ψ−1(M−1/2)(u, z, ω)]′.

Linear functionals are pivotal, because any smooth functions can be ap-

proximated by linear combinations of orthonormal basis functions ψ0, ψ1, . . .

(e.g., Fourier bases). Estimators for f(·) are obtained using a truncated ex-

pansion of these bases, with the coefficients being projections of f(·) to ψj(·),∫ 1
−1 f(u)ψj(u)du, for j = 0, 1, . . .. As a result, the properties of f̂(·) can be

expressed using those of (
∫ 1
−1 f̂(u)ψj(u)du, j = 0, 1, . . .)′.

If the conditional distribution of Yi given Xi belongs to the exponential fam-

ily, we prove in the Supplementary Material that τ̂ =
∑d

j=1

∫ 1
−1 β̂j(u)ψj(u)du +∫ 1

−1 ĝ(z)ψg(z)dz for the linear functionals τ =
∑d

j=1

∫ 1
−1 βj(u)ψj(u)du+

∫ 1
−1 g(z)

ψg(z)dz has the same asymptotic variance as the maximum likelihood estima-

tor for τ within a family of parametric submodels. This means semiparametric

efficiency in the sense of Bickel et al. (1998). More specifically, let

D =

{
ψ(z) have a continous derivative over [−1, 1] and

∫ 1

−1
ψ(z)dz = 0

}
.

Theorem 3 presents the results of semiparametric efficiency.

Theorem 3. Under Conditions (A1)–(A7), if nh4k → 0, h2kh
−1
j log(n) → 0, and

nhkhj/(log(n))2 →∞, for any k, j ∈ {1, 2, 3}, then for any functions ψj(·) ∈ D,

for j = 1, . . . , d, and ψg(z) that having a continuous derivative, we have
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d∑
j=1

∫ 1

−1
(β̂j − βj)(u)ψj(u)du+

∫ 1

−1
(ĝ − g)(z)ψg(z)dz

d→ N(0, σ2v).

In particular,
∑d

j=1

∫ 1
−1 β̂j(u)ψj(u)du+

∫ 1
−1 ĝ(z)ψg(z)dz is an efficient estimator

of
∑d

j=1

∫ 1
−1 βj(u)ψj(u)du +

∫ 1
−1 g(z)ψg(z)dz if the conditional distribution of Yi

given Xi and Ui belongs to the exponential family, where σ2v is defined in Section

1 of the Supplementary Material.

Theorem 3 implies that the estimator of
∑d

j=1

∫
βj(x)ψj(x)dx+

∫
g(z)ψg(z)dz

is
√
n-consistent with h = o(n−1/4), which amounts to undersmoothing. Using

undersmoothing to achieve
√
n-consistency is not unusual in semiparametric re-

gression settings (Carroll et al. (1997); Hastie and Tibshirani (1993)).

The quasi-likelihood function is key to for achieving semiparametric effi-

ciency. To see this, consider the estimation of g = (g(z), ġ(z))′. Substitute

(2.8) into the quasi-likelihood function

Q(β, g, V ) =

n∑
i=1

L(µi, Yi)Kh2
(Zi − z) +

n∑
i=1

L(µi, Yi) {1−Kh2
(Zi − z)}

≈
n∑
i=1

L(µ̄i, Yi)Kh2
(Zi − z) +

n∑
i=1

L(µi, Yi) {1−Kh2
(Zi − z)} , (3.1)

where Zi = X′iβ(Ui) and µ̄i = g(z) + ġ(z)(Zi − z). The µi in the second term of

(3.1) is not approximated by the linear function µ̄i = g(z) + ġ(z)(Zi− z) because

Zi is out of the neighborhood of z, dictated by the weight 1 − Kh2
(Zi − z).

Differentiating the likelihood function Q(β, g, V ) with respect to g = (g(z), ġ(z))′

and setting the derivatives to zero leads to

n∑
i=1

(
Yi − µ̄i

)Wi(z;β)

V (µ̄i)
Kh2

(Zi − z) = 0. (3.2)

Because V (µ̄i) ≈ V (µi) when Zi is in the neighborhood of z, the proposed esti-

mating equation (2.9) is the same as the score (3.2) for estimating g.

4. Simulation Studies

The proposed method is compared with the methods in Zhang, Li and Xia

(2015) and Kuruwita, Kulasekera and Gallagher (2011), which are termed ZLX

and KKG, respectively. To investigate the impact of misspecifications of the

variance functions on estimations, we also compare GVCMs with variance func-

tions that are correctly specified(GVCM-CV) and misspecified(GVCM-MV). The
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GVCM-CV and GVCM-MV are implemented using the proposed method with

specified variance functions. The Epanechnikov kernel is used in simulations

and in the real-data analysis in Section 5. For each configuration, a total of

N replications are made. Following Zhang, Li and Xia (2015) and Kuruwita,

Kulasekera and Gallagher (2011), the performance of the estimators for ĝ(·)
and β̂(·) is assessed using MISEβ = E(

∑d
j=1(1/n)

∑n
i=1{β̂j(Ui) − βj(Ui)}2),

and MISEg = E((1/n)
∑n

i=1[ĝ{X
′
iβ(Ui)} − g{X′iβ(Ui)}]2), respectively. Here,

Ui (i = 1, . . . , n) are the samples of the simulated data, and the expectation is

obtained using the sample mean based on the N simulated data sets. We con-

sider three settings, the first two of which were used by Zhang, Li and Xia (2015)

and Kuruwita, Kulasekera and Gallagher (2011), respectively. The replication

number of simulations is 1,000 for Example 1 and 500 for Examples 2 and 3.

Example 1. (Normal cases with known variances). Ui, for i = 1, . . . , n, are

independently generated from Uniform[0, 1], and Xi, for i = 1, . . . , n, are in-

dependently generated from N(0p, Ip), with Ip being a p × p identity matrix,

ε ∼ N(0, 0.01). Set p = 3 and β(U) = (β1(U), β2(U), β3(U))′, where β1(U) =

U2 + 1, β2(U) = cos2(πU) + 0.5, and β3(U) = 2sin2(πU) − 0.5. Here, Y is

generated as Y = X′β(U) + ε (Case 1), Y = (X′β(U))2 + ε (Case 2), or

Y = sin(2X′β(U)) + ε (Case 3). We set n = 100, 200, and 400, and choose

the bandwidths to be h1 = 0.1, h2 = 0.3 for Case 1, h1 = 0.2, h2 = 0.35 for Case

2, and h1 = 0.1, h2 = 0.25 for Case 3. With this setup, we aim to investigate the

efficiency of our method by assuming a known variance function, as in Zhang, Li

and Xia (2015) and Kuruwita, Kulasekera and Gallagher (2011).

Table 1 summarizes the MISEs for the estimators of the functional coefficients

obtained using the three methods. Table 1 shows the robustness of the proposed

method toward the link function, and its efficiency when the link function is not

linear. This is because we use one-dimension smoothing and a quasi-likelihood-

based approach, whereas ZLX and KKG both use two kernels. Figure 1 displays

the estimates of each unknown function and the 95% pointwise confidence in-

tervals based on the proposed method. Using the estimated link and coefficient

functions, we estimate the variance function with h3 = 0.1, 0.5, 0.7 for Cases 1–3,

respectively. Figure 1 reveals that the estimates are close to the truth, hinting

at the good performance of our proposed method.

Example 2. (Binary Cases). Ui and Xi, fori = 1, . . . , n, are generated in the

same way as in Example 1. Set p = 2, g(t) = exp(t)/(1 + exp(t)), β1(U) =

sin(πU), and β2(U) = cos(πU). Here Yi is independently generated from a

Bernoulli distribution with success probability g{Xi1β1(Ui) + Xi2β2(Ui)}. We
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Figure 1. (a)–(c): The estimated functions (dotted lines) of β1(u), β2(u), β3(u), g(z),
and V (ω), as well as their 95% pointwise confidence intervals (dashed lines) and the true
functions (solid lines) for Example 1 with n = 400.

set n = 800, 1,100, 1,500, or 2,000, and choose the bandwidths for our proposed

method to be h1,β1
= 0.48, h1,β2

= 0.5, h2 = 1.98, and h3 = 0.1.
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Table 1. MISE for coefficient functions of Example 1.

n
Case 1 Case 2 Case 3

ZLX KKG Prop. ZLX KKG Prop. ZLX KKG Prop.

100 0.034 0.965 0.004 0.354 2.623 0.311 0.202 2.460 0.186

200 0.018 0.359 0.001 0.228 1.385 0.130 0.098 0.627 0.021

400 0.007 0.177 0.001 0.127 0.360 0.080 0.012 0.241 0.003

Table 2. MISE for Example 2.

GVULV GVCM-CV ZLX

n β1(u) β2(u) g(z) V (µ) β1(u) β2(u) g(z) β1(u) β2(u) g(z)

800 0.0784 0.0493 0.0024 0.0017 0.0644 0.0412 0.0019 0.1189 0.0821 0.0142

1,100 0.0656 0.0402 0.0019 0.0014 0.0542 0.0314 0.0014 0.0698 0.0730 0.0048

1,500 0.0505 0.0305 0.0014 0.0013 0.0438 0.0247 0.0012 0.0695 0.0479 0.0036

2,000 0.0479 0.0329 0.0014 0.0012 0.0414 0.0233 0.0012 0.0581 0.0387 0.0025

Example 2 focuses on the impact of the variance function specification on esti-

mation. We compare the MISE of the proposed GVULV with that of the methods

with correctly specified variance functions, including ZLX and the GVCM-CV.

Table 2 shows that the GVCM-CV is slightly more accurate than the proposed

estimator, but that this difference decreases as the sample size grows. In addition,

the proposed GVULV outperforms ZLX, with a smaller MISE, even though the

variance function is correctly specified in ZLX and is unspecified in the GVULV.

Figure 2(a) further shows that the GVULV estimates are close to the truth with

reasonable precision, suggesting that the proposed methods work well for the

binary case.

Example 3. (Normal outcomes with non-constant variances): Ui, for i = 1, . . . , n,

are independently generated from Uniform[0, 1], Xi, for i = 1, . . . , n, are inde-

pendently generated from N(0p, Ip), and ε ∼ N(0, 1). Set p = 2 and β(U) =

(β1(U), β2(U))′, with β1(U) = sin(0.5πU) and β2(U) = cos(0.5πU). Here, Y is

generated as

Y = 5Φ{X′β(U)}+ exp
[
− 5Φ{X′β(U)}+ 1

]
ε,

where Φ(·) is the cumulative distribution function of standard normal. We set the

sample size to be n = 8,000, 15,000, and 20,000, and choose the bandwidths to be

(h1, h2, h3) = (0.25, 0.75, 0.45), (0.25, 0.5, 0.38), and(0.25, 0.5, 0.30), respectively.

We compare the MISE among the proposed GVULV, the GVCM-MV with the

variance misspecified as one, and the GVCM-CV. Table 3 shows that GVCM-
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Table 3. MISE for Example 3.

GVULV GVCM-MV GVCM-CV

n 8,000 15,000 20,000 8,000 15,000 20,000 8,000 15,000 20,000

β1(u) 0.0027 0.0015 0.0014 0.0200 0.0099 0.0081 0.0025 0.0012 0.0012

β2(u) 0.0021 0.0012 0.0013 0.0136 0.0086 0.0074 0.0023 0.0012 0.0012

g(z) 0.0034 0.0021 0.0018 0.0226 0.0106 0.0081 0.0025 0.0019 0.0016

V (µ) 0.1258 0.0721 0.0665 − − − − − −
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Figure 2. The GVULV estimators (dotted lines) for β1(u), β2(u), g(z), and V (ω), as well
as their 95% pointwise confidence intervals (dashed lines) and the true functions (solid
lines) for Examples 2 and 3 with n = 2,000 and n = 20,000, respectively.

MV has considerably larger prediction errors, while the proposed estimators are

comparable with the GVCM-CV. This suggests that misspecifications of variance

functions may bias predictions, and that the uncertainty associated with estimat-

ing variance functions decreases as the sample size becomes larger. Figure 2(b)

shows β1(u), β2(u), g(z), and V (ω) estimated using our method, as well as their

95% pointwise confidence intervals. The estimates are close to the truth.

5. Data Analysis

Mobile phones have become an indispensable part of life of young Chinese.

To keep pace with the rapidly updated phones or just in pursuit of fashion, some

young adults resort to using personal loans to purchase newly marketed phones.

Credit checks have become an important step for financial providers before ap-

proving a loan. We aim to build a risk prediction model to predict payment
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delinquency. That is, whether a loanee repays a loan on time, based on per-

sonal characteristics collected by the financial provider. The data set we analyze

records the personal information of 105,548 borrowers and their repayment sta-

tus, denoted by Yi for the ith borrower. In the data set, Yi takes the value one

if the loan was not fully repaid on time, and zero otherwise. The other recorded

characteristics are age (Xi1), credit score (Xi2), the downpayment ratio (Xi3),

the number of owned credit cards (Xi4), monthly income (Xi5), and the loan

amount (Ui). All covariates are standardized to have mean zero and variance

one.

Because the covariates are not uniformly distributed, we use an adaptive

approach (Brockmann, Gasser and Herrmann (1993)) to select the bandwidth.

Specifically, at each design point, we choose the bandwidth adaptively such that

the “window” covers a given portion (q) of neighboring samples. We use five-fold

cross-validation, described in Section 2, to determine q, yielding q = 0.5.

With the binary response, it is natural to adopt a logistic link function.

Figure 3(1) presents the estimates of varying-coefficient functions with a logistic

link. Figure 3(2) and Figure 4 show the estimated link, coefficient, and variance

functions using the GLULV, revealing that the link and variance functions deviate

much from the commonly used link and variance functions for binary responses.

In particular, the link function of the GLULV has a unimodal shape with a

peak around 35, and differs from the monotone logistic function. Moreover, the

prediction error in Table 4 shows that the proposed method outperforms the

logistic varying-coefficient model in both the training and the testing data.

Figure 3(2) implies that persons with a combined risk score, X′iβ̂(Ui), around

35 will be most likely to commit payment delinquency. In addition, Figure 3(2)

clearly shows nonlinear and significant trends with all the covariates. Specifically,

age and the number of owned credit cards are associated with the payment be-

havior (see Figures 3(2a) and 3(2d)). The age effect increases with the loan sum,

and the effect of the number of owned credit cards decreases as the loan amount

increases. Figures 3(2b) and 3(2e) suggest quadratic impacts of credit score and

monthly income. The former shows that the effect of the credit score increases

until the loan amount reaches about RMB 3,800, and then decreases. The latter

shows that the impact of monthly income peaks when the loan amount is about

RMB 1,800, and becomes statistically insignificant when the loan sum is larger

than RMB 2,500. The downpayment ratio acts similarly to age, but the effect

switches signs when the loan sum reaches around RMB 3,300.
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Figure 3. Estimated varying-coefficient and link functions for the mobile phone loan
payment data.
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Table 4. Prediction accuracy for GVCMs with logistic link and variance functions, and
GVCMs with unspecified link and variance functions (GVULV) for the mobile phone
microfinance data.

Logistic GV ULV

prediction error prediction error

Train set 0.1312094 0.1074576

Test set 0.1312547 0.1074741
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Figure 4. Estimated variance function (solid-black) for the mobile phone microfinance
data and its 95% confident interval (dashed-black) using the proposed method with
q = 0.5. The red-dashed line is the variance function of the logistic method.

6. Discussion

We propose a GVCM for non-normal response data. In contrast to ex-

isting methods, our method is a univariate kernel estimator that accounts for

heteroscedastic data, and, hence, is more flexible and efficient. Moreover, the

proposed estimator has a closed form in the iterative algorithm, which reduces

the computational burden. For example, with 105,548 samples in our motivat-

ing date set, it is not feasible to apply existing methods, whereas our method

converges within a minute. Finally, the proposed method is shown to be uni-

formly consistent, asymptotically normal, and semiparametrically efficient when

the conditional distribution belongs to an exponential family. The simulation

study shows that our estimator is more efficient than those obtained using exist-

ing methods.

When the covariates outnumber the sample size, we need to estimate the co-

efficient functions and select the significant covariates simultaneously. A natural

approach is to perform a regularized regression by adding a penalty term to the
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objective function. However, because the proposed method is kernel based and

estimates unknown functions pointwise, it may not be straightforward to com-

bine the proposed method with a penalized regression. In this case, using spline

approximations may be more feasible. This is left to future research.

Supplementary Material

The online Supplementary Material contains additional notation, lemmas,

and proofs.
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