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1 Proofs of the Results of Section 3 in Main paper

1.1 Proof of Theorem 1

First note that, by help of Equation (2.3) of the main paper, we can rewrite the R(®)-Bayes

joint distribution as

M
(dz,,,d0) _ afla) (an)%(a) (dO)\"(dz,,), (1.1)

L%Q)Bayes (de’ dgn) = @ N

which has a density Z]fla) (z,,|0) with respect to 7 % A", On the other hand, the frequnetist

approximation Ly has the density function e 2% ©)g, (z,)) /¢, and hence we get
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Therefore, for any € > 0, we get
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by applying Assumption (M1) with r = 5. Since € > 0 is arbitrary, this completes the proof

of the first equation in Part (a) of the theorem.



The second equation of Part (a) and the first equation in Part (b) of the theorem follows

by the relation
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Finally, to proof the the last part of (b) in the theorem, we note that the Kullback-Leibler

divergence satisfies the relation
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Therefore, by the first part of (b), we get lim E ‘log % = 0 and hence G™ and M.\
n— 00 mp (A,
merge in probability by using Markov inequality. 0

1.2 Proof of Theorem 2

To show Assumption (ML), let us fix €,7 > 0 and define p,(8) = €""%42=(0). Then, using

Fatou’s Lemma, we get
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which is strictly positive by the information denseness with respect to F,, , (Definition 2 of

the main paper). This implies Assumption (M1) and we are done via Theorem 1. O



1.3 Proof of Theorem 3

We use an argument similar to that used by Barron (1988). Let us consider the following

two assumptions in addition to Assumptions (A1)—(A3) and (A3)*.

(A4) The true distribution G™ and the R®-marginal distribution M satisfy
(c) X
lim P M >a, | =1.

(A4)* The true distribution G" and the R(®)-marginal distribution M satisfy

()
P (m < Gy 1.0.) =

Note that, if Conditions (A4) and (A4)* hold with a,, = e~ for every € > 0, they indicate
that the true distribution G™ and the R(®-marginal distribution M merge in probability
or with probability one respectively.

Now, we start with two primary results on the convergence of the R(®)-posterior probabilities.

Lemma 1.1 Suppose Assumptions (A1)-(A3) and (A4) hold with limb, = limc¢, = 0 such

that vy, := (by, + ¢n)/ay is finitely defined. Then, for all § > 0, we have

lim sup P (Wﬁf‘) (AT X,) > %) <. (1.4)
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Further, if additionally Assumptions (A3)* and (A4)" are satisfied, then for any summable

sequence 0, > 0 we have



Proof: Note that, with G probability one, the R®-posterior probability can be re-

expressed as
(a) c (@) n

since ¢"(X,,) is non-zero for each n with G* probability one. Let us first consider the
numerator in (1.6) and define E,, to be the event that the numerator is greater than (b, +
¢,)/0. Note that, G"(E,) < G"(E, N SS) + G"(S,) for any sequence of measurable sets

S, € B,. So, taking S,, to be the critical sets of Assumption (A3), we get
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Hence, G"(E,) < 6+G"(S,) and using Assumption (A3) we get limsup G"(F,,) < §. Further,
n—00

by Assumption (A4) the denominator in (1.6) is less than a,, has probability tending to zero.

Combining the numerator and denominator probabilities (using the bound by the union of

events related to numerator and denominator), we get the desired result (1.4).

To prove the second part (1.5), we proceed as before by noting that P(X,, € E,, i.0.) <
P(X, € E,NS¢ io.)+ P(X, €S, io0.). Then, defining E,, with any summable sequence
d,, and proceeding as before, we get P(X,, € E, NS¢ i.0.) = 0 by Borel-Cantelli Lemma.
Next, by Assumption (A3)*, we have P(X, € S,, i.0.) =0 and hence P(X,, € E,, i.0.) =0.

Then, the desired result (1.5) follows by noting that the denominator in (1.6) is less than a,

infinitely often with probability zero by Assumption (A4)*. O

Lemma 1.2 Suppose, for some sequence of constants r,, we have

lim P (7{® (A%]X,) <7,) = L. (1.7)

n—oo

Then, for any sequences b, and ¢, satisfying b,c, > r,, there exists parameter sets B,,, C,, C

©,, such that Conditions (A1)-(A3) hold. Moreover, if additionally we have
P (Wﬁf‘) (AS|X,) > 1, i.0.) =0, (1.8)

then Conditions (A1), (A2) and (A3)* hold.

n

Proof: Let us define S,, = {g L) (AS|zx,,) > rn} so that lim G"(S,) = 0 by Assumption

n—oo



(1.7). Next, for any sequence ¢, we construct the parameter sets
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Then, Conditions (A1) and (A3) hold by constructions of C), and B,. Finally, to show

Condition (A2), note that m&“)(%,A;) < TnM(a)(xn,@n)mgla)(gn) for all ,, € S¢ by its

definition. Then,
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For the second part of the Lemma , we use the same definitions of sets as above. Then,
by Assumption (1.8), we have P(X,, € S, i.0.) = 0 and hence Condition (A3)* holds by the

construction of C,. Other two conditions then hold similarly as before. OJ



Proof of Theorem 3:
Theorem 3 now follows directly from the above two lemmas.

The sufficiency part of the theorem follows from Lemma 1.1 by taking b, = e™™", ¢, =
e "2, a, = e " and 6, = e " (for Part 2) with ¢, A > 0 and € + A < min{ry, 75} Then, r,
and r;, = r,/d, tend to zero exponentially fast.

The Necessity part of the theorem follows from Lemma 1.2 with r, = e™™" and then

letting b,, = e™™, ¢, = e~ for any ry,7r9 > 0 with r{ + 1o < 7. O

2 Proofs of the Results of Section 4 in Main paper

2.1 Proof of Theorem 7

Note that, by the definition of Ea, it is sufficient to show that

sup 7(0)3¥ (X ,|0) < sup7?(0)3\V(X,,|0)e ™" a.s.[G], for all large n.  (2.1)
OcAs, 0

Now, by the information denseness assumption, Theorem 2 of the main paper implies that
G and M\ merge in probability. Therefore, the exponential convergence of i) (Ac|X,,)

is equivalent to

Y A0 (X,10) < miP(X, e

n —n
OcAg

< go(X,)e™™ a.s. ]G],

for all large n, for some ri,7 > 0.



Let us now choose a 8* € © such that KLD(g, 3 (-|8*)) < r/4. Then, using SLLN along

with Assumption (4.2) of the main paper, we get
gn(X,) < T(07 (X, |0%)e"/? a.5.[G], for all large n.
Therefore, for all large n, we have with a.s.[G],

sup 7 (0)3)(X,10) < > 7N ()3 (X,,|0)
oeAs, 0cA:

< gn(ln)e_nr

< %ﬁla)(e*)g(a) (£n|0*>67mﬂ/2

< sup M (0)q) (X, |0)e "
0
This completes the proof that 8, € A, a.s.|G], for all sufficiently large n. O

2.2 Proof of Theorem 8

Using the equivalence of d; and dy (the Hellinger metric), it is enough to show that
) (A¢|X,,) is exponentially small with probability one, with A = {0 : dy(g, fg) > €} for
each fixed e > 0. Note that, G" and M merge in probability by applying Theorem 2 of
the main paper. So, we will use Theorem 3 by constructing suitable parameter sets B,, and

C, with AU B, UC, = 6.

Put B, = {0 : m,(0) < e™/*} and C,, = {6 € A°: 7,(6) > e "/*}.



Then, clearly AU B,, U C,, = O. Further, for some 7 € (0, 1),
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But, since the prior sequence 7, satisfies Assumption (4.2) of the main paper, we get, for all

sufficiently large n, (assuming all the relevant quantities exists finitely)
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Thus, the first two conditions of Theorem 3 hold. For the third condition related to C,,, note

ne/4

that » gc m(0) < 1 and so the number of points in C, is less than e"*. Then, consider

the likelihood ratio test for g, against {% :0 e, } having the critical sets

. .maxexp(qn (z,/0)) .
_{‘ Qi (x16) >g”(‘">}'

We will show that this S, serves as the desired set in the required condition (A3) on C,,.
}1/2

(@)
For note that, Sn = U@GCnSn,Oa where Sn,@ = {Qn : |:—exp(<qa)(( ‘ne“)g))

> gn(gn)m} . But for
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each of these sets, we get from Markov inequality that,

Gn<Sn,0) S |:1 - %dH(gu f@):| < efne/2’

and hence G, (S,) < e "/4. Similarly, we can also show that

(S518) _ Q" (S50l0) _ g
O (x,10) ~ QY (x,16)

uniformly over 8 € C,,. Hence, all the required conditions of Theorem 3 hold and we get the

first part of the present theorem.

The second part then follows directly from Theorem 7 of the main paper.

3 Proofs of the Results of Section 5 in Main paper

3.1 Proof of Theorem 10

By straightforward calculation, it turns out that dy(g;, fig) = 4P (WT_BO)‘> — 2, where ®

is the cumulative distribution function of the standard Normal distribution. Therefore,

3

1 n
7T7(104) ({ﬂ : ﬁizldl(g“fiﬂ) > 6}




For notational simplicity, let us denote the set Af, = { B w%ﬂ > @71(% + i)}, for each
1 =1,...,n and let ,@n be the minimum DPD estimator (MDPDE) of B under the same
model. After some basic algebra, using the consistency of the MDPDE under (R1)-(R2)

(Ghosh and Basu, 2013), it can be shown that the event A, ,, implies

20 (345) - 1B ) <8 -B) <207 (54 1) 4B, - By

Now, we use Theorem 2.1 of Majumder et al. (2019) to approximate the above probability

as follows.
(e (Acn‘m ) = ﬂ'a ln|a3
_ [ (2\F<I> +9) = Vit (B, - m))
- ® T5—1
tT e,
—2y/n® (L + £) — ntl (B, — By)
- ( 2 tf@;lti 0 ) + Op<1)

= P(uy) + P(vn) + Op(1)>

—2vn® " (5+§)~vt] (B, —B)

_ —1(1, € T@E
where ‘I’;l — ’n,[DTD], Uy = 2y/n® (2+4)+\/Etz (Bn—Bo) P

— and v,, =
tTw ¢, n

Now, using the consistency of the MDPDE under (R1)—-(R2) (Ghosh and Basu, 2013),

along with (R1), we get tZT(En —By) 20, foralli=1,..,n. So,

~ 1
lim P( i(ﬁn—ﬁo)‘ < ¢! <—+E)) —1
n—o0 2 4
Further, by (R2), maxtTlIl 't = maxntT[DTD] = O(1) and hence we get
—/nd (L1 <
P (un < \/ﬁT 7(12 4>> — 1
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and

—/nd (L
P(Un< \/ﬁ (2+4)) — 1’

tIw 1t

as n — 0o0. Since ® is continuous, in turn, we have

P (@(un) + B(v,) < 20 (_\/M)_l(% i ‘9)) —~1, as n— .

tTw, 't

nd- (L4
Let us now denote [,, = %
tTw, 1t

¢(ln)
n

. Note that [,, > 0 for all n, and I[,, = o0 as n — oo.

So, ®(—1,) ~ , where ¢ is the density of the standard normal distribution. Hence, for

L
large n, ®(—1[,) < ZM so that we get, with probability tending to one,

¢(ln) o 4t31\:[l;1tl 67 Q(tTlI,fltz)
b Ve (31 %)

Next, by Assumption (R2), there exists a constant Cy > 0 satisfying ¢t ¥, 't; < C;. Thus,

with probability tending to one, we have

Cl —C
d(u,) + d(v,) < —=e "2
(1) + B(0) < -

C n n
for some constants C,Cy > 0 and n = (19_1(% + ¢). Also, since Cy > 0, we get n <"

n
for all sufficiently large n. Therefore, with probability tending to one, we have
1 “ C \/ﬁ —nC
(C“)< =N N di(gi, fip) > )<—1 e
Ty {/3 n ZZI l(gﬂ f%ﬁ) = €}|§n € € )
and hence the theorem holds with r = % 0
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3.2 Proof of Theorem 11

In this case, the parameter is 8 =

dl (gza

fie) <

Hence, for any € € (0, 1), it follows that

IN

e (s

=1

(@) ({9 ; %Zdﬂgi,fi,ﬁ) > 6}
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1B =Bl

20’0

.

)—2

9 —00’ + 4P (‘tﬂﬁ—ﬁoﬂ

20’0

(B, 0%) and, after some basic algebra, we find that

)-2

The first term in above (3.1) is exponentially small in probability under (R1)—(R2), as proved

in Theorem 10. However, if 52 denotes the MDPDE of ¢, using its consistency under (R1)-

(R2) (Ghosh and Basu, 2013), we have

ooz ie) <= ko5 220 )

But 7" <{U lo — G, > n/2}|§n> = x® <{a L |o? =52 > '}z, ) for some 7’ > 0. And,

it follows from Theorem 2.1 of Majumder et al. (2019) that the posterior distribution of

Vn(e? —52) is N(0, ¢, ), where (, is some function of oy and a. So, combining them, we get
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the following approximation

—/n1’

(@) ({a Do —an| > 77/2}@n,D) = 2<I>( c

) +o,(1).

Note that the right-hand side of the above equation is again exponentially small implying the
same for its left-hand side. Thus the last term in (3.1) is also exponentially small, completing

the proof of the theorem. O

3.3 Proof of Theorem 12

In the present case of logistic set-up, the L, distance between the true density g; and model

density f; g turns out to be

dl(gi: fi,ﬁ) = 2’?1’(50) - pi(ﬁ)‘a

3
where p;(3) = 1—(13——’5’5' Recall that 3, is the true parameter. Now, applying the mean value
el
theorem on the function g(t) = %, we get
g fi) = 28— 81— <28 By)
1\9is Ji,B) = M0 i (1+€ti>2 = i o/l

Hence, we get
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3

(@) AN
G ({ﬂ.n;m(ﬂ %)lm}

> ({8 168- 80> 3}

=1

)

2

IA
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Denote the set {3 : [t;(8 — By)| > 5} = Af, and let Bn is the MDPDE of 3. After some

2,M

basic algebra, it can be shown that the event A;, implies
€ N A € o~

Now, by the consistency of the MDPDE under (R1) and (R3) (Majumder et al., 2019), we
have Bn — B, 2 0, and the supremum of the elements of the vectors t; are bounded by (R3).
Hence, max &(8, — B,) = 0, implying —e < /(8 —8,,) < ¢ with probability tending to one.

Then, we find that

\/ne

7r7(f“)< —e<t(B - Bn) < €|§n> =20 <t’~‘I’ (B)~'t;

) — 1+ 0,(1).
So, with probability tending to one, we get

ol Vne B Vne
ne (A2, D) <2 {1 -t (W)] - (‘W) |

In
Using boundedness of ¢;¥,,(3)~'t; and the fact that ®(—1,) ~ @ as n — 00, we can

n

derive finally that

Wﬁf“) (Afn|a:n, D) < ﬁe_”cl
) — \/ﬁ

for some positive constants Cy and C;. Thus

1 n
(@) s — . f. —nC1 —nr
Ty <{ﬁ n ;:1 dl(gufzﬁ) > E}‘Qn,D> < \/5006 <e

for some r > 0, with probability tending to one, proving the theorem.
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4 Additional Description of Figures 1, 2 and 3 of the

Main Paper

In Figures 1, 2 and 3 of the main paper it may appear that the MSE is practically zero at
a =1 (in case of pure data, as well as for each contaminated scenario). If that is so, why
should we not set a = 1 all the time, rather than going through the exercise of choosing an
optimal a? Actually this is a false impression created by the scale of these figures. Under
contamination, the inflations in the MSE of the estimators corresponding to low values of «
are of such a high magnitude, that in trying to accommodate them within the same frame
of the figure, the MSEs of several of the stable estimators corresponding to large values of «
(and not just for a = 1) appear to be zero, or to be very close to it. The phenomenon can be
better explained by looking at blow-ups of these MSE curves by restricting the Y-axis (the
MSE axis) to a small range around zero. We provide such a representative figure (Figure
1 below), which corresponds to such a blown up MSE curve for the estimation of ¢ with a
sample size of n = 100 in the linear regression model with unknown o and the conjugate
priors. Notice that under pure data, the MSE curve in Figure 1 is steadily increasing,
indicating that under the model the performance progressively deteriorates with increasing
a. With increasing contamination the optimal value of « (the value which minimizes the
MSE) keeps getting shifted upward; the optimal values of « for ¢ = 0.05,0.1 and 0.2 are,
approximately, 0.35, 0.5 and 1. In this example, therefore, it is clear that the choice of
the optimal « is very much a function of the amount of the anomaly in the data, and the

blanket selection of a = 1 does not necessarily provide the best solution in all cases. A tuning

17



parameter selection does remain an important component of our methodology as described

in Section 7.2 of the main paper.

10 ._‘

Figure 1: Empirical MSE of the ERPE of ¢ for n = 100 in the linear regression model with
unknown o and the conjugate priors. [Dotted line: ec = 0%, Dash-Dotted line: ec = 5%,

Dashed line: e = 10%, Solid line: e = 20%] (rescaled version of Fig. 2(c), lower panel, of
the main paper)

Similar phenomena occur for the graphs of MSEs under all the cases reported in Figures

1, 2 and 3 of the main paper; so we do not repeat them for brevity.
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5 Additional Simulation results for Normal Linear Re-

gression Model with fixed o

Recall the simulation set-up and notation as in Section 6.1 of the main paper to illustrate the
performance of the ERPE for fixed-design linear regression model with known error variance
o and two different choices for the prior. As the first choice of the prior 7(3), we consider
the non-informative uniform prior 7(8) = 1. Secondly, we consider the conjugate normal
prior 7(8) = Ni(By, 72Ix) which signifies that the prior belief about our true parameter
value is quantified by a symmetric structure with uncertainty quantified by 7. The resulting
values of the total absolute bias and the total MSE (over the two components of 3) are
shown in Figure 2 and 3, respectively. As noted in the main paper, these results clearly
demonstrate the significant improvement for the ERPE over the usual Bayes estimators

under data contamination with only a slight loss in case of pure data.
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MSE

0 :\‘-"‘MH M‘““'_—.',";"_—":_T‘-JH‘T“ME;;T--_-‘
0 0.2 0.4 0.6 0.8 1

o

(c) n =100

Figure 2: Empirical total absolute bias and total MSE of the ERPE of 8 in the linear
regression model with known ¢ = 1 and the uniform prior. [Dotted line: e« = 0%,
Dash-Dotted line: ec = 5%, Dashed line: e = 10%, Solid line: ec = 20%]
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Bias

ol s e o o TR —E TS . \ ) )

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(¢) n =100

Figure 3: Empirical total absolute bias and total MSE of the ERPE of 3 in the linear
regression model with known o = 1 and the Conjugate normal prior. [Dotted line: ec = 0%,
Dash-Dotted line: ec = 5%, Dashed line: e = 10%, Solid line: ec = 20%]
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6 R Codes for Computation of the ERPEs

6.1 Fixed-Design Linear Regression with Unknown Error Vari-

ance and Jefferey’s Prior

library ("MASS")
library("parallel")

## Computation of ERPE for Fixed-design Linear Regression Model
## with unknonw error variance and

## Non informative Jefferey’s Prior pi(\beta, \sigma) = 1/sigma”2

####### Auxiliary Functions --------------
## Defining the function Q ##
Q=function(beta,sigma,X,y,alpha)
{
n=nrow (X)
p=ncol (X)
M=X%*%beta
L=matrix(0,n,1,byrow=TRUE)
for(i in 1:n)
{
L[i]l=(1/alpha)*(dnorm(y[i],M[i],sigma)) " (alpha)
-1/ (((1+alpha)~(3/2))*((sqrt(2*pi)*sigma) " (alpha)))- (1/alpha)
}
L_O=matrix(0,n,1,byrow=TRUE)
for(i in 1:n)
{
L_0[il=1log(dnorm(y[i],M[i],sigma))
}
if (alpha>0)
{
return (sum (L))
}
else

{

return (sum(L_0))
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## Kernel of the prior density ##
prior=function(beta,sigma,true_beta)
{

return (1/sigma”2)

## Kernel of the log of robust posterior density ##
robust_posterior=function(beta,sigma,X,y,alpha,true_beta)
{

z1=Q(beta,sigma,X,y,alpha)

z2=log(prior(beta,sigma,true_beta))

z=z1+22

return (z)

## Proposal Density ##

proposalfunction=function(beta,sigma)

{
p=length(beta)

return (c(rnorm(p,mean=beta,sd=rep(l,p)),rexp(l,1/sigma)))

## Metropolis Hastings ##
run_metropolis_MCMC <- function(startvalue_beta,startvalue_sigma,

iterations ,X,y,alpha,true_beta)

{
p=length(startvalue_beta)
chain_beta = array(dim = c(iterations+1,p))
chain_sigma = array(dim = c(iterations+1,1))
chain_betal[l,] = startvalue_beta

chain_sigma[l1]=startvalue_sigma
for (i in 1l:iterations){
proposal = proposalfunction(chain_betali,],chain_sigmali])
proposal _beta=proposal [1:p]
proposal_sigma=proposal [p+1]
probabl

= exp(robust_posterior (proposal_beta,proposal_sigma,X,y,alpha,true_beta)
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-robust_posterior(chain_betali,],chain_sigmal[i] ,X,y,alpha,true_beta))
logprobab2=1log(dexp(chain_sigmal[il,(1/proposal_sigma)))
-log(dexp(proposal_sigma,(1/chain_sigmal[il])))
probab2=exp (logprobab2)
probab=probabl*xprobab2
if (runif (1) < probab){

chain_betal[i+1,] = proposal_beta
chain_sigma[i+1] = proposal_sigma
Yelseq
chain_betal[i+1,] = chain_betali,]
chain_sigmal[i+1,] = chain_sigmali,]
}
}
chain=cbind (chain_beta,chain_sigma)

####### Computation of the ERPE ------—-------
data=read.table(file="data.txt") ## Call the data-file ##

y=datal[,2] ## Response ##

x=datal,-2] ## Covariate ##

X=cbind (1,x) ## Design matrix ##

n=nrow (X) ## Number of observations ##

p=ncol (X) ## Dimension of regression parameters excluding sigma ##

## Fit linear regression ##
res=1m(y~x)

summary (res)

beta_O=res$coefficients ## MLE ##

burn=25000 ## burn in ##

max_1iter=50000 ## Tortal number of iterations including burn in ##

alpha = 0.5 ## tuning parameter alpha in alpha-likelihood

#set.seed (12345)

output=run_metropolis_MCMC(startvalue_beta=c(-7,3),
startvalue_sigma=1,iterations = max_iter,
X=X,y=y,alpha=alpha,true_beta=beta_0)

output2=output”~2
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#Estimated ERPE, the means of the the R"\alpha-posterior distribution
est_mean=colMeans (output [(burn+1) :max_iter+1,])
#Estimated variance of the R"\alpha-posterior distribution

est_var=colMeans (output2 [(burn+1):max_iter+1,])-(est_mean) 2

6.2 Fixed-Design Linear Regression with Unknown Error Vari-

ance and Conjugate Prior

library ("MASS")
library("parallel")

## Computation of ERPE for Fixed-design Linear Regression Model
## with unknonw error variance and

## Conjugate normal-Inverse Gamma prior with prior mean for beta is given ##

####### Auxiliary Functions --------------
## Defining the function Q ##
Q=function(beta,sigma,X,y,alpha)
{

n=nrow (X)

p=ncol (X)

M=X%*%beta

L=matrix(0,n,1,byrow=TRUE)

for(i in 1:mn)

{

L[i]=(1/alpha)*(dnorm(y[i] ,M[i],sigma)) ~(alpha)
-1/ (((1+alpha)~(3/2))*((sqrt (2*pi)*sigma) "~ (alpha)))- (1/alpha)

}

L_O=matrix(0,n,1,byrow=TRUE)

for(i in 1:n)

{

L_0[il=1log(dnorm(y[i] ,M[i],sigma))

}

if (alpha>0)

{

return (sum(L))
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else

{
return(sum(L_0))

## Kernel of the prior density ##
prior=function(beta,sigma,true_beta)
{
zl=prod (dnorm(beta,true_beta,sigma))
z2=sigma”~(-5) *exp(-0.5/(sigma”~2))

return (zl1*z2)

## Kernel of the log of robust posterior density ##
robust_posterior=function(beta,sigma,X,y,alpha,true_beta)
{

z1=Q(beta,sigma,X,y,alpha)

z2=log(prior (beta,sigma,true_beta))

z=z1+z2

return (z)

## Proposal Density ##
proposalfunction=function(beta,sigma)
{

p=length(beta)

return (c(rnorm(p,mean=beta,sd=rep(l,p)),rexp(l,1/sigma)))

## Metropolis Hastings ##
run_metropolis_MCMC <- function(startvalue_beta,startvalue_sigma,

iterations ,X,y,alpha,true_beta)

{
p=length(startvalue_beta)
chain_beta = array(dim = c(iterations+1,p))
chain_sigma = array(dim = c(iterations+1,1))
chain_betal[l,] = startvalue_beta

chain_sigma[l]l=startvalue_sigma
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for (i in l:iterations){
proposal = proposalfunction(chain_betali,],chain_sigmalil])
proposal _beta=proposal [1:p]
proposal _sigma=proposal [p+1]
probabl
= exp(robust_posterior (proposal_beta,proposal_sigma,X,y,alpha,true_beta)
-robust_posterior (chain_betal[i,],chain_sigmal[i] ,X,y,alpha,true_beta))
logprobab2=1log(dexp(chain_sigmal[i],(1/proposal_sigma)))
-log(dexp(proposal_sigma,(1/chain_sigmali])))
probab2=exp(logprobab2)
probab=probabl*probab2
if (runif (1) < probab){

chain_betali+1,]

proposal_beta

chain_sigma[i+1]
}else{

chain_betal[i+1,]

proposal_sigma

chain_betali,]

chain_sigmal[i+1,] = chain_sigmali,]

3

chain=cbind(chain_beta,chain_sigma)

####### Computation of the ERPE -----——--------
data=read.table(file="data.txt") ## Call the data-file ##

y=datal,2] ## Response ##

x=datal,-2] ## Covariate ##

X=cbind (1,x) ## Design matrix ##

n=nrow (X) ## Number of observations ##

p=ncol (X) ## Dimension of regression parameters excluding sigma ##

beta_0=c(-8.03,2.95) ## Given value for the mean of the normal prior ##

burn=25000

max_iter=50000

alpha = 0.5 ## tuning parameter alpha in alpha-likelihood

#set.seed (12345)

output=run_metropolis_MCMC(startvalue_beta=beta_0,
startvalue_sigma=1,iterations = max_iter,

X=X,y=y,alpha=alpha,true_beta=beta_0)
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output2=output”~2

#Estimated ERPE, the means of the the R"\alpha-posterior distribution
est_mean=colMeans (output [(burn+1l) :max_iter+1,])

#Estimated variance of the R"\alpha-posterior distribution

est_var=colMeans (output2 [(burn+1) :max_iter+1,])-(est_mean) "2

6.3 Fixed-Design Logistic Regression with Normal Prior for Re-

gression Coefficient

library ("MASS")
library ("mvtnorm")
library ("PACBO")

## Computation of ERPE for Fixed-design Logistic Regression Model
## with normal prior for regression coefficient beta

## with prior mean given ##

####### Auxiliary Functions --------------
## Logistic mass function ##
dlogistic=function(t,y)
{

zl=exp (t*xy)/ (1+exp(t))

return (z1)

## Defining the function Q ##
Q=function(beta,X,y,alpha)
{

n=nrow (X)

p=ncol (X)

M=X%*%beta

L=matrix(0,n,1,byrow=TRUE)

for(i in 1:mn)

{

L[il=(1/alpha)*(dlogistic(M[i]l,y[i])) "~ (alpha)
-(1/(1+alpha))*((dlogistic(M[i] ,0)) " (1+alpha)
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+(dlogistic(M[i],1)) " (1+alpha))-(1/alpha)

}
L_O=matrix(0,n,1,byrow=TRUE)
for(i in 1:mn)
{

L_0[il=log(dlogistic (M[i],y[i]))
}
if (alpha>0)
{

return (sum (L))

3

else

{

return(sum(L_0))

## Normal Prior with mean true_beta ##
prior=function(beta,true_beta)
{

z=prod (dnorm(beta, true_beta,1))

return (z)

## Kernel of the log of robust posterior density ##
robust_posterior=function(beta,X,y,alpha,true_beta)
{

z1=Q(beta,X,y,alpha)

z2=log(prior(beta,true_beta))

z=z1+22

return (z)

## Proposal Density ##
proposalfunction=function (beta)

{
p=length(beta)

return (rnorm(p,mean=beta,sd=rep(l,p)))
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## Metropolis Hastings ##
run_metropolis_MCMC <- function(startvalue,iterations,

X,y,alpha,true_beta)

{
p=length(startvalue)
chain = array(dim = c(iterations+1,p))
chain[1,] = startvalue

for (i in 1:iterations){

proposal = proposalfunction(chain[i,])

probab = exp(robust_posterior (proposal,X,y,alpha,true_beta)
-robust_posterior (chain[i,],X,y,alpha,true_beta))
if (runif (1) < probab){

chain[i+1,] = proposal
Yelsed{
chain[i+1,] = chainl[i,]
}
}
return (chain)

####### Computation of the ERPE --------------
data=read.table(file="data.txt") ## Call the data-file ##

y=datal,2] ## Response ##

x=datal,-2] ## Covariate ##

X=cbind (1,x) ## Design matrix ##

n=nrow (X) ## Number of observations ##

p=ncol (X) ## Dimension of regression parameters excluding sigma ##

beta_0=c(-23,39.4,31.8) ## Given value for the mean of the normal prior ##

burn=25000

max_1iter=50000

alpha = 0.5 ## tuning parameter alpha in alpha-likelihood
#set.seed (12345)
output=run_metropolis_MCMC(startvalue=beta_0,iterations = max_iter,
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X=X,y=y,alpha=alpha,true_beta=beta_0)
output2=output”~2
#Estimated ERPE, the means of the the R"\alpha-posterior distribution
est_mean=colMeans (output [(burn+1) :max_iter+1,])
#Estimated variance of the R"\alpha-posterior distribution

est_var=colMeans (output2 [(burn+1) :max_iter+1,])-(est_mean) "2
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