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Abstract: Although Bayesian inference is a popular paradigm among a large segment

of scientists, including statisticians, most applications consider objective priors and

need critical investigations. While it has several optimal properties, Bayesian infer-

ence lacks robustness against data contamination and model misspecification, which

becomes a problem when using objective priors. As such, we present a general for-

mulation of a Bayes pseudo-posterior distribution that leads to robust inference.

Exponential convergence results related to the new pseudo-posterior and the cor-

responding Bayes estimators are established under a general parametric setup, and

illustrations are provided for independent stationary and nonhomogeneous models.

Several additional details and properties of the procedure are described, including

estimation under fixed-design regression models.

Key words and phrases: Bayesian linear regression, density power divergence, ex-

ponential convergence, logistic regression, robust Bayes pseudo-posterior.

1. Introduction

Bayesian analysis is arguably one of the most popular statistical paradigms,

with applications across different scientific disciplines. It is widely preferred

by many nonstatisticians owing to its nice interpretability and incorporation of

prior knowledge. From a statistical point of view, it is widely accepted, even

among many nonBayesians, because of its nice optimal (asymptotic) properties.

Bayesian inference is built on the well-known Bayes theorem, described in the

celebrated 1763 paper by Thomas Bayes, and combines prior knowledge with

experimental evidence to produce posterior conclusions. However, Bayesian in-

ference has also been criticized, with several debates still ongoing (Efron (2013)).

In addition to the controversies related to its internal logic (Halpern (1999);

Dupre and Tipler (2009)), a major practical drawback of Bayesian inference is its

nonrobust nature against misspecification in models (including data contamina-

tion and outliers) and priors, as has been extensively observed in the literature;
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see Berk (1966), Weiss (1996), Millar and Stewart (2007), De Blasi and Walker

(2012), and Owhadi, Scovel and Sullivan (2015), and the references therein. An

optimal solution to this problem has been developed mainly for prior misspecifi-

cations (Berger (1994); Berger and Berliner (1986); Gelfand and Dey (1991); Dey

and Birmiwal (1994); Delampady and Dey (1994); Gustafson and Wasserman

(1995); Ghosh, Delampady and Samanta (2006)), with Bayesians traditionally

viewing the model as perfect for the given data. Thus, the possibility of model

misspecification and data contamination has been generally ignored, until some

very recent publications, some of which we describe later in this section.

In applying Bayesian inference to complicated data sets, we need to use com-

plex and sophisticated models, which are highly prone to misspecification or data

contamination. In reality, when “all models are wrong,” the Bayesian philosophy

of refining the fixed model adaptively (Gelman, Meng and Stern (1996)) often

fails to handle complex scenarios or leads to “a model as complex as the data”

(Wang and Blei (2018)). Data contamination can lead to erroneous posterior con-

clusions. The problem becomes clearer, but pernicious in the case of inferences

with objective or reference priors. For example, the Bayes estimate of the mean

of a normal model, with any objective prior and symmetric loss function, is the

highly nonrobust sample mean. Of greater concern, as noted by Efron (2013), is

that most recent Bayesian inference applications hinge on objective priors, and

so always need to be scrutinized carefully, sometimes even from a frequentist per-

spective. The posterior nonrobustness against model misspecification and data

contamination makes the process vulnerable, and we clearly need a solution to

this problem.

From a true Bayesian perspective, there are a few solutions to the problem of

model misspecification (Ritov (1985, 1987); Sivaganesan (1993); Shyamalkumar

(2000)). However, most, if not all, assume that the perturbation in the model is

known beforehand, such as gross error contaminated models with a known con-

tamination proportion ε. For modern complex data sets, this is rarely meaning-

ful. Several recent publications are motivated by the need to safeguard Bayesian

inference against model misspecification by relying on a generalized (pseudo) pos-

terior expressed in terms of a loss function and a tuning parameter η (Alquier

and Lounici (2011); Catoni (2007); Jiang and Tanner (2008); Walker and Hjort

(2001); Kleijn and Van der Vaart (2006); Gruenwald and van Ommen (2017);

Holmes and Walker (2017); Ramamoorthi et al. (2015); De Blasi and Walker

(2012)). This approach, referred to as the PAC-Bayesian approach generated

from Gibb’s posterior, has been quite successful in regression and other super-

vised classification problems with misspecified model assumptions. However, the
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resulting inference is not robust against outliers with respect to a specified model

that is correct for the majority of the data. This is because every sample obser-

vation, including outliers, receives equal weight in the PAC-Bayesian approach

and, hence, it closely resembles a robust nonparametric analysis; see Ghosh and

Basu (2016a).

To achieve robustness against data contamination (outliers) in Bayesian in-

ference, some attempts have been made to develop alternative solutions by linking

Bayesian inference suitably to the frequentist concept of robustness. In the fre-

quentist sense, there are two major approaches to achieve robustness, namely

using heavy-tailed distributions (e.g., using a t-distribution instead of a normal

distribution), and using new (robust) inference methodologies (Hampel et al.

(1986); Basu, Shioya and Park (2011)). The first approach has been adopted by

some Bayesian scientists; see Andrade and O’Hagan (2006, 2011) and Desgagne

(2013) among others. However, the difficulty with this approach is the availability

of appropriate heavy-tailed alternatives in complex scenarios, and it indeed does

not solve the nonrobustness of a Bayesian inference for a specified model (which

might have a lighter tail). The second approach serves the purpose, but differs

in the strictest probabilistic sense from the Bayesian philosophy, because one

needs to alter the posterior density appropriately to achieve robustness against

data contamination or model misspecification. The resulting modified posteriors

are generally referred to as pseudo-posterior densities. Various pseudo-posteriors

have been proposed by Greco, Racugno and Ventura (2008), Agostinelli and Greco

(2013), Hooker and Vidyashankar (2014), Ghosh and Basu (2016a), Danesi et al.

(2016), Atkinson, Corbellini and Riani (2017), and Nakagawa and Hashimoto

(2017), but all primarily consider independent stationary models and have differ-

ent pros and cons. Another recent attempt, between these two approaches, has

been proposed by Wang and Blei (2018), who transformed the given model to a

localized model involving hyperparameters to be estimated using the empirical

Bayes approach.

1.1. Background: R(α)-posterior for independent and identically dis-

tributed setup

We consider a particular pseudo-posterior originally proposed by Ghosh and

Basu (2016a) in the independently and identically distributed (i.i.d.) setup. This

choice is motivated by its several nice properties and its potential for extension

to more general setups. As a brief description, consider n i.i.d. random variables

X1, . . . , Xn taking values in a measurable space (χ,B). Assume that there is an

underlying true probability space (Ω,BΩ, P ) such that, for i = 1, . . . , n, Xi is B/
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Ω measurable, independent with respect to P , and has an induced distribution

G(x) with an absolutely continuous density g(x) with respect to a dominating

σ-finite measure λ(dx). We model G by a parametric family {Fθ : θ ∈ Θ ⊆ Rp},
which is assumed to be absolutely continuous with respect to λ having density

fθ. Consider a prior density for θ over the parameter space Θ given by π(θ).

Ghosh and Basu (2016a) defined a robust pseudo-posterior density, namely the

R(α)-posterior density of θ, given the sample xn = (x1, . . . , xn)T on the random

variable Xn = (X1, . . . , Xn)T , as

π(α)
n (θ|xn) =

exp(q
(α)
n (xn|θ))π(θ)∫

exp(q
(α)
n (xn|θ′))π(θ′)dθ′

, α ≥ 0, (1.1)

where q
(α)
n (xn|θ) is the α-likelihood of xn given by

q(α)
n (xn|θ) =

1

α

n∑
i=1

fαθ (xi)−
n

1 + α

∫
f1+α
θ − n

α
=

n∑
i=1

q
(α)
θ (xi), (1.2)

with Gn being the empirical distribution based on the data and

q
(α)
θ (y) =

1

α
(fαθ (y)− 1)− 1

1 + α

∫
f1+α
θ . (1.3)

In a limiting sense, q
(0)
n (xn|θ) =

∑n
i=1 (log(fθ(xi))− 1), which is the usual log-

likelihood (plus a constant); thus, the R(0)-posterior is just the ordinary Bayes

posterior. The idea came from a frequentist robust estimator, the minimum den-

sity power divergence (DPD) estimator (MDPDE) of Basu et al. (1998), which

has proven to be a useful robust generalization of the maximum likelihood es-

timator (MLE); see Ghosh and Basu (2016a) for details. The similarity of this

approach (at α > 0) to the usual Bayes posterior (at α = 0) is that it does not

require nonparametric smoothing, as some other pseudo-posteriors do, and it is

additive in the data so that the posterior update is easy with new observations.

Ghosh and Basu (2016a) demonstrate its robustness and prove a Bernstein–von

Mises-type limiting result under the i.i.d. setup.

1.2. The contribution of this study

We provide a generalization of the R(α)-posterior density for a general para-

metric model setup beyond i.i.d. data, using a suitable structural definition of the

α-likelihood function, and derive the exponential convergence results associated

with the new pseudo-posterior for the general setup. These, in fact, generalize the
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corresponding results for the usual Bayes posterior (Barron (1988)) for the R(α)-

posterior, and their advantages are illustrated by means of several applications.

Our major contributions are summarized as follows:

• This study is the first to define a robust pseudo-posterior for the general

class of parametric models with a finite set of parameters. Previous works on

pseudo-posteriors are confined to the i.i.d. setup or to a particular example

of a non-i.i.d. case. Our model setup is extremely general to cover the

i.i.d. case and all types of nonhomogeneous and dependent observations,

provided the inference is performed based on a finite set of parameters. We

define a robust R(α)-posterior and the associated estimators for this general

class of statistical inference problems, covering a wide range of applications.

• To illustrate the wide applicability of our proposal, we explicitly present the

forms of the R(α)-posterior and the α-likelihood function for several impor-

tant cases, such as independent nonhomogeneous data, including linear and

logistic regressions, time series and Markov models, diffusion processes, and

so on. Our R(α)-posteriors also contain the usual Bayes posterior at α→ 0

and, hence, provide a direct generalization of the latter at α > 0.

• All existing pseudo-posteriors sacrifice the conditional probability interpre-

tation of the usual Bayes theory. This study is the first to discuss a pseudo-

posterior, namely the R(α)-posterior, that retains this conditional probabil-

ity interpretation with respect to a suitably modified model and modified

prior; indeed the R(α)-posterior becomes the ordinary Bayes posterior for

such a modified setup (Remark 1). We also introduce the R(α)-marginal

density of data, a robust generalization of the usual marginal.

• Beyond the methodological proposals, we also establish the theoretical prop-

erties of the proposed R(α)-posterior under the fully general parametric

setup. We study the asymptotic properties of the R(α)-marginal and the

corresponding joint density of the data and the parameters. We also derive

the exponential convergence of the R(α)-posterior probabilities and, hence,

the exponential consistency of the associated R(α)-Bayes estimators under

the fully general setup. To the best of our knowledge, such an optimal

asymptotic property is not available for any other pseudo-posterior.

• The assumptions needed for our theoretical derivations are extensions of

those required for the classical Bayes theory (Barron (1988)). They are

based on the usual concepts of information denseness, merging of distri-

butions in probability, (modified) prior negligibility, and the existence of
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uniform exponential consistent tests. We further simplify these conditions

for the i.i.d. and nonhomogeneous setups, and verify them for common ex-

amples, such as the linear regression with a known or an unknown error

variance and the logistic regression models. Although the initial set of con-

ditions under the general parametric models look more stringent than those

in the current literature, we show that they hold under very mild conditions

in common examples. For example, for linear or logistic regressions, they

are seen to hold only under the boundedness conditions on the fixed design

matrix and the positive definiteness of the associated variance matrix.

• We separately examine the interesting cases of discrete priors under the

i.i.d. setup, and the associated maximum R(α)-posterior estimator with their

exponential consistency.

• Finally, to bridge the gap between the theoretical developments and their

practical applicability, we discuss several important practical issues, such

as the computation of the R(α)-posterior and the associated estimates, and

the choice of the tuning parameter α. The usefulness of our proposal is

illustrated numerically for linear regressions with known and unknown error

variances and a logistic regression, along with the corresponding algorithms

and R code.

For brevity, all proofs and the R-code are given in the online Supplementary

Material.

2. A general form of the R(α)-posterior distribution

In order to extend the R(α)-posterior density to a more general setup, let

us assume that the random variable Xn is defined on a general measurable

space (χn,Bn), for each n (sample size). In addition, we assume there is an

underlying true probability space (Ω,BΩ, P ) such that, for each n ≥ 1, Xn is

Bn/Ω measurable and its induced distribution Gn(xn) is absolutely continuous

with respect to some σ-finite measure λn(dxn) with a “true” probability den-

sity gn(xn). We wish to model it using a parametric family of distributions

Fn = {Fn(·|θ) : θ ∈ Θn ⊆ Rp}, where the elements of Fn are assumed to be ab-

solutely continuous with respect to λn, with density fn(xn|θ), for each n. Note

that we have not assumed that the parameter space Θn is independent of the

sample size n. Similarly, the prior measure πn(θ) on Θn may be n-dependent,

with πn(Θn) ≤ 1. Consider a σ-field BΘn
on the parameter space Θn. Gener-

alizing from (1.2), we propose defining the α-likelihood function q
(α)
n (xn|θ) such
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that

q(0)
n (xn|θ) := lim

α↓0
q(α)
n (xn|θ) = log fn(xn|θ)− n, for all xn ∈ χn. (2.1)

Our definition should guarantee that the α-likelihood, as a function of θ, is BΘn

measurable for each xn, and jointly Bn×BΘn
measurable when bothXn and θ are

random. Then, for this general setup, we define the corresponding R(α)-posterior

probabilities as

π(α)
n (An|xn) =

∫
An

exp(q
(α)
n (xn|θ))πn(θ)dθ∫

Θn
exp(q

(α)
n (xn|θ))πn(θ)dθ

, An ∈ BΘn
, (2.2)

whenever the denominator is finitely defined and is positive; otherwise we may

define it arbitrarily, for example, π
(α)
n (An|xn) = πn(An). Definition (2.1) ensures

that π
(0)
n is the usual Bayes posterior.

For a useful alternative representation, we define Q
(α)
n (Sn|θ) :=

∫
Sn

exp(

q
(α)
n (xn|θ))dxn, M

(α)
n (Sn, An) :=

∫
An
Q

(α)
n (Sn|θ)πn(θ)dθ, andM

(α)
n (Sn) := M

(α)
n (

Sn,Θn)/M
(α)
n (χn,Θn), for Sn ∈ Bn and An ∈ BΘn

. In the following, we assume

that the model and priors are chosen to satisfy 0 < M
(α)
n (χn,Θn) <∞. Then, the

last two measures have densities with respect to λn(dxn) given by m
(α)
n (xn, An) =∫

An
exp(q

(α)
n (xn|θ))πn(θ)dθ andm

(α)
n (xn) = m

(α)
n (xn,Θn)/M

(α)
n (χn,Θn), respec-

tively. Clearly, m
(α)
n (xn) is a proper probability density, which we refer to as

the R(α)-marginal density of Xn; the associated R(α)-marginal distribution is

M
(α)
n (·). At α > 0, it provides a robust version of the ordinary Bayes marginal

m
(0)
n (xn). Whenever 0 < m

(α)
n (xn) < ∞, we can re-express the R(α)-posterior

probabilities (2.2) in terms of this R(α)-marginal density as π
(α)
n (An|xn) = m

(α)
n (

xn, An)/m
(α)
n (xn,Θn) = (m

(α)
n (xn, An)/M

(α)
n (χn,Θn))/m

(α)
n (xn), for An ∈ BΘn

.

Then, the R(α)-Bayes joint posterior law of the parameter θ and the data Xn is

defined as

L(α)Bayes
n (dθ, dxn) = π(α)

n (dθ|xn)M (α)
n (dxn) =

M
(α)
n (dxn, dθ)

M
(α)
n (χn,Θn)

. (2.3)

This provides a nice interpretation of the quantity M
(α)
n (Sn, An), when properly

normalized, as the product measure associated with the R(α)-Bayes joint poste-

rior distribution of θ and Xn. At α = 0, these simplify to the ordinary Bayes

measures.

Example 1. (Independent Stationary Data). The simplest possible setup
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is that of i.i.d. observations, as described in Section 1. In terms of the general

notation presented above, we have Xn = (X1, . . . , Xn), with its observed value

xn = (x1, . . . , xn), and the general measurable space (χn,Bn) is the n-fold prod-

uct of (χ,B). Additionally, we have Gn(xn) =
∏n
i=1G(xi), g

n(xn) =
∏n
i=1 g(xi),

λn(dxn) =
∏n
i=1 λ(dxi), F

n(xn|θ) =
∏n
i=1 Fθ(xi), and fn(xn|θ) =

∏n
i=1 fθ(xi),

and so Fn is also the n-fold product of the family of individual distributions

Fθ. Under this notation, the α-likelihood q
(α)
n (xn|θ), given by (1.2), satisfies the

required measurability assumptions, along with the condition in (2.1).

Then, under suitable assumptions on the prior distribution, as before, the

corresponding R(α)-posterior distribution is defined by (2.2), which is now equiva-

lent to (1.1) and can be written as a product of the stationary independent terms

corresponding to each xi (additivity). Other related measures can be defined

from these quantities; see Section 4.

Example 2. (Independent Nonhomogeneous Data). Suppose X1, . . . , Xn

are independently but not identically distributed random variables, where each

Xi is defined on a measurable space (χi,Bi), for i = 1, . . . , n. Considering an un-

derlying common probability space (Ω,BΩ, P ), the random variable Xi is assumed

to be Bi/Ω measurable and independent with respect to P , and its induced dis-

tribution Gi(x) has an absolutely continuous density gi(x) with respect to some

common dominating σ-finite measure λ(dx), for each i = 1, . . . , n. For each i, the

true distribution Gi is modeled by a parametric family F i = {Fi,θ : θ ∈ Θ ⊆ Rp},
which is absolutely continuous with respect to λ, having density fi,θ. Note that

although the densities are potentially different for each i, they are assumed to

share the common unknown parameter θ, leaving us with enough degrees of free-

dom for the estimation of θ.

This setup of independent nonhomogeneous (INH) observations covers many

interesting practical problems, the most common being a regression with a fixed

design. Let t1, . . . , tn be n fixed, k-variate design points. For each i = 1, . . . , n,

given ti, we independently observe xi, which has the parametric model density

fi,θ(xi) = f(xi; ti,θ), depending on ti through a regression structure. This can,

for example, have the form

E(Xi) = ψ(ti,β), i = 1, . . . , n, (2.4)

where β ⊆ θ denotes the unknown regression coefficients, and ψ is a suitable link

function. In general, the unknown parameter θ = (β, σ) may additionally contain

some variance parameter σ. For the subclass of generalized linear models, we take

ψ(ti,β) = ψ(tTi β) and f from the exponential family of distributions. For the



GENERAL ROBUST BAYES PSEUDO-POSTERIOR 795

normal linear regression, we have ψ(ti,β) = tTi β, and f is the normal density with

mean tTi β and variance σ2. Here, the underlying random variables Xi, associated

with the observations xi, have the INH structure with the common parameter

θ = (β, σ) and different densities fi,θ. We can further extend this setup to include

heterogeneous variances (by taking different σi for different fi,θ, but involving

some common unknown parameters) as a part of our INH setup. In terms of

the general notation, the random variable Xn = (X1, . . . , Xn) is defined on the

measurable space (χn,Bn) = ⊗ni=1(χi,Bi), and we have Gn(xn) =
∏n
i=1Gi(xi),

gn(xn) =
∏n
i=1 gi(xi), λ

n(dxn) =
∏n
i=1 λ(dxi), F

n(xn|θ) =
∏n
i=1 Fi,θ(xi), and

fn(xn|θ) =
∏n
i=1 fi,θ(xi), such that Fn = ⊗ni=1F i.

Now, under this INH setup, we define the R(α)-posterior by suitably extend-

ing the definition of the α-likelihood function q
(α)
n (xn|θ) from its i.i.d. version

in (1.2), keeping in mind the general requirement (2.1). Borrowing from Ghosh

and Basu (2013), who developed the MDPDE for the INH setup, and following

the intuition behind the construction of the α-likelihood (1.2) of Ghosh and Basu

(2016a), one possible extended definition for the α-likelihood in the INH case can

be given by

q(α)
n (xn|θ) =

n∑
i=1

[
1

α
fαi,θ(xi)−

1

1 + α

∫
f1+α
i,θ

]
− n

α
=

n∑
i=1

q
(α)
i,θ (xi), (2.5)

with q
(α)
i,θ (y) = (1/α)(fαi,θ(y) − 1) − (1/(1 + α))

∫
f1+α
i,θ . Note that we have q

(0)
n (

xn|θ) =
∑n

i=1 (log(fi,θ(xi))− 1), satisfying the required condition in (2.1). Thus,

assuming a suitable prior for θ, the R(α)-posterior for the INH observations is

defined using (2.2) with q
(α)
n (xn|θ) being given by (2.5). Note that the resulting

posterior is again a product of independent, but nonhomogeneous terms; see

Section 5.

Remark 1. In the first introduction of the R(α)-posterior under an i.i.d. setup

(Ghosh and Basu (2016a)), it was noted that its only drawback is the loss of

the probabilistic interpretation. Thus far, we have defined the R(α)-posterior

differently to the conditional probability approach of the usual Bayes theory,

calling it a pseudo-posterior. However, it can also be interpreted as an or-

dinary Bayes posterior under a suitably modified model and prior, which be-

comes prominent in our general setup. To see this, define an α-modified model

density q̃
(α)
n (xn|θ) = exp(q

(α)
n (xn|θ))/Q

(α)
n (χn|θ) and the α-modified prior den-

sity π̃
(α)
n (θ) = Q

(α)
n (χn|θ)πn(θ)/M

(α)
n (χn,Θn). Both are proper densities and

satisfy the required measurability assumptions whenever the relevant integrals

exist finitely. Furthermore, π̃
(α)
n (θ) is a function of θ only (independent of
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the data) and, hence, may be used as a prior density in a Bayesian inference;

however it depends on α and the model. In particular, at α = 0, π̃
(0)
n (θ) =

πn(θ) and q̃
(0)
n (xn|θ) = fn(xn|θ), and so represent modifications of the model

and the prior, respectively, in order to achieve robustness against data con-

tamination. Now, for any measurable An ∈ BΘn
, the standard Bayes (condi-

tional) posterior probability of An with respect to the (α-modified) model fam-

ily Fn,α = {q̃(α)
n (·|θ) : θ ∈ Θn} and the (α-modified) prior π̃

(α)
n (θ) is given by∫

An
q̃

(α)
n (xn|θ)π̃

(α)
n (θ)dθ/

∫
Θn
q̃

(α)
n (xn|θ)π̃

(α)
n (θ)dθ, which simplifies to π

(α)
n (An|xn),

as in (2.2).

In the following, we briefly present the forms of the α-likelihood for some

other practically important model setups; however, detailed investigations are

left to future research.

Example 3. (Time Series Data). Consider the true probability space (Ω,BΩ,

P ) and an index set T . A measurable time series Xt(ω) is a function defined

on T × Ω, which is a random variable on (Ω,BΩ, P ), for each t ∈ T . Given a

time series {Xt(ω) : t ∈ T}, they are assumed to be associated with an increasing

sequence of sub σ-fields {Gt} and have absolute continuous densities g(Xt|Gt),
for t ∈ T . For a stationary time series, one might take Gt = Ft−1, the σ-field

generated by {Xt−1, Xt−2, . . .}, for each t ∈ T . In a parametric inference, we

model g(Xt|Gt) using a parametric density fθ(Xt|Ft−1), and try to infer the

unknown parameter θ from an observed sample xn = {xt : t ∈ {1, 2, . . . , n}} of

size n. For example, in a Poisson autoregressive model, we assume fθ(xt|Ft−1)

to be a Poisson density with mean λt = hθ(λt−1, Xt−1), for all t ∈ T = Z and

some known function hθ involving the unknown parameter θ ∈ Θ ⊆ Rp. In

the Bayesian paradigm, we additionally assume a prior density π(θ), and update

it to obtain an inference based on the posterior density of θ, given the observed

sample data. We can develop a robust Bayesian inference for any such time series

model using the proposed R(α)-posterior density, provided a suitable α-likelihood

function can be defined. Following the construction of the MDPDE in such time

series models (Kim and Lee (2011, 2013); Kang and Lee (2014), among others),

we can define the corresponding α-likelihood function as

q(α)
n (xn|θ) =

n∑
t=1

[
1

α
fαθ (xt|Ft−1)− 1

1 + α

∫
f1+α
θ (x|Ft−1)dx

]
− n

α
. (2.6)

We have q
(0)
n (xn|θ) =

∑n
i=1 (log(fθ(xt|Ft−1))− 1), which satisfies the required
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Condition (2.1). A robust R(α)-posterior inference about θ can be developed

using this α-likelihood function.

Example 4. (Markov Process). Example 3 can be easily generalized to

Markov processes with stationary transitions. Consider the random variables

X1, . . . , Xn defined on the underlying true probability space (Ω,BΩ, P ), with true

transition probabilities g(Xk+1|Xk), for k = 0, 1, 2, . . . , n− 1, with X0 being the

initial value of the process. We model it using a parametric family of stationary

probabilities fθ(Xk+1|Xk) depending on some unknown parameter θ ∈ Θ ⊆ Rp.
Then, the α-likelihood function, given the sample xn = (x1, . . . , xn), can be de-

fined as q
(α)
n (xn|θ) =

∑n
k=1[(1/α)fαθ (xk+1|xk) − (1/(1 + α))

∫
f1+α
θ (x|xk)dx] −

n/α. Clearly, it satisfies Condition (2.1), and it is possible to perform a robust

R(α)-Bayes inference about θ under this setup.

Example 5. (Diffusion Process). Consider again a (true) probability space

(Ω,BΩ, P ) and an index set T . A measurable random variable Xt defined on

T follows a diffusion process if dXt = a(Xt,µ)dt + b(Xt, σ)dWt, for t ≥ 0,

with X0 = x0 and two known functions a and b. Here {Wt : t ≥ 0} is a stan-

dard Wiener process and the parameter of interest is θ = (µ, σ)T ∈ Θ, a con-

vex compact subset of Rp × R+. This model has important applications in fi-

nance, where some inference about θ is desired based on discretized observations

Xtni , for i = 1, . . . , n, from the above diffusion process. In general, we assume

tni = ihn, with hn → 0 and nhn → ∞ as n → ∞. Robust (frequentist) MD-

PDEs of θ based on such observations are developed for two of its special cases,

a(Xt, µ) = a(Xt) and b(Xt, σ) = σ by Song et al. (2007) and Lee and Song

(2013), respectively. However, whenever we have some prior knowledge about θ,

quantified using a prior π(θ), one would apply the Bayesian approach. A robust

Bayes inference can be done using our R(α)-posterior. For this purpose, note that

Xtni = Xtni−1
+ a(Xtni−1

,µ)hn + b(Xtni−1
, σ)
√
hnZn,i + ∆n,i, for i = 1, . . . , n, where

∆n,i =
∫ tni
tni−1

[
a(Xs,µ)− a(Xtni−1

,µ)
]
ds +

∫ tni
tni−1

[
b(Xs, σ)− b(Xtni−1

, σ)
]
dWs and

Zn,i = h
−1/2
n

(
Wtni −Wtni−1

)
. Clearly, Zn,i are i.i.d. standard normal variables,

for i = 1, . . . , n. Therefore, whenever ∆n,i can be ignored in P -probability, for

large enough n, Xtni |G
n
i−1, for i = 1, . . . , n, behave as INH variables with den-

sities fi,θ(·|Gni−1) ≡ N
(
Xtni−1

+ a(Xtni−1
,µ)hn, b(Xtni−1

, σ)2hn
)
, where Gni−1 is the

σ-field generated by {Ws : s ≤ tni }. Then, the corresponding α-likelihood func-

tion based on the observed data xn = (xtn1 , . . . , xtnn) can be derived as in Exam-

ple 3. This satisfies the general requirement (2.1), and has the simplified form

q
(α)
n (xn|θ) =

∑n
i=1 q

(α)
i,θ (xtni ), with
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q
(α)
i,θ (xtni ) =



1

(2πb(xtni−1
, σ)2hn)α/2

[
1

α
e
−α(xtn

i
−xtn

i−1
−a(xtn

i−1
,µ)hn)2/(2b(xtn

i−1
,σ)2hn)

− 1

(1 + α)3/2

]
− 1

α
, if α > 0,

−
α
(
xtni − xtni−1

− a(xtni−1
,µ)hn

)2
2b(xtni−1

, σ)2hn
− 1

2
log
(
2πb(xtni−1

, σ)2hn
)
− 1,

if α = 0.

The robust R(α)-posterior can be obtained easily using this α-likelihood func-

tion.

3. Exponential Convergence Results under the General Setup

Exponential consistency is an important property of a posterior (Bayes) in-

ference. It was first demonstrated in Barron (1988), and later refined by several

authors (see Ghosal, Ghosh and van der Vaart (2000); Walker (2004); Ghosal

and van der Vaart (2007); Walker, Lijoi and Prunster (2007), among others). We

follow the approach of Barron (1988) to show that our new robust R(α)-posterior

probabilities and the corresponding parameter estimates also enjoy such asymp-

totic optimality properties.

3.1. Properties of the joint and marginal R(α)-Bayes distributions

Recall the general setup of Section 2, along with the α-modified model and

prior densities q̃
(α)
n (·|θ) and π̃

(α)
n (θ), as defined in Remark 1. Consider the

Kullback–Leibler divergence between two absolutely continuous densities f1 and

f2 with respect to the common σ-finite measure λ, defined as KLD(f1, f2) =∫
f1 log (f1/f2) dλ, and put D

(α)
n (θ) = 1/nKLD(gn(·), q̃(α)

n (·|θ)). We define a

joint (frequentist) law of θ andXn given by L
∗(α)
n (dθ, dxn) = π

∗(α)
n (dθ)Gn (dxn),

where the probability distribution π
∗(α)
n of θ on Θn is defined as π

∗(α)
n (dθ) =

e−nD
(α)
n (θ)π̃

(α)
n (dθ)/cn, with cn =

∫
e−nD

(α)
n (θ)π̃

(α)
n (dθ). We show that this joint

law L
∗(α)
n provides a frequentist large-deviation approximation to the joint R(α)-

Bayes distribution (2.3) of θ and Xn. To quantify their closeness, we consider

the concept of “merging” for probability distributions (Barron (1988)).

Definition 1. Consider two probability distributions Gn1 and Gn2 of Xn, with

densities gn1 and gn2 , respectively, with respect to λn.

• They are said to merge in probability if for all ε > 0, limn→∞ P (gn2 (Xn)/
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gn1 (Xn) > e−nε) = 1.

• They are said to merge with probability one if for every ε > 0, P (gn2 (Xn)/

gn1 (Xn) > e−nε for all large n) = 1.

An application of Markov’s inequality shows that Definition 1 is equivalent to

the conditions limn→∞(1/n) log gn2 (Xn)/gn1 (Xn) = 0 in probability or with prob-

ability one, respectively. See Barron (1988, Sec. 4) for more results on merging.

Additionally, we assume the following condition.

Assumption (M1): For any ε, r > 0, there exists a positive integer N such that

π̃
(α)
n ({θ : D

(α)
n (θ) < ε}) ≥ e−nr, for all n ≥ N .

Theorem 1. Under Assumption (M1), we have the following results:

a) limn→∞(1/n)KLD(L
∗(α)
n , L

(α)Bayes
n ) = 0, limn→∞(1/n)EGn [KLD(π

∗(α)
n (·),

π
(α)
n (·|Xn))] = 0.

b) limn→∞(1/n)KLD(gn,m
(α)
n ) = 0, such that Gn and M

(α)
n merge in proba-

bility.

Although Assumption (M1) might look a bit complicated, it can be simplified

using the common notion of information denseness of priors πn with respect to

a suitable family of model densities. This notion of information denseness is

frequently used in large-sample analyses of the usual Bayesian methods, and is

defined precisely below for our context.

Definition 2. Suppose Θn = Θ is independent of n and we define D̄(α)(θ) =

lim supn→∞D
(α)
n (θ). Then, the prior sequence πn is said to be information dense

at Gn with respect to Fn,α = {q̃(α)
n (·|θ) : θ ∈ Θn} if there exists a finite measure

π̃ such that π̃
({
θ : D̄(α)(θ) < ε

})
> 0, for all ε > 0, and

lim inf
n→∞

enr
dπ̃

(α)
n

dπ̃
(θ) ≥ 1, for all r > 0,θ ∈ Θ. (3.1)

Theorem 2. If the prior is information dense with respect to Fn,α, as in Defi-

nition 2, then Assumption (M1) holds, and hence the results of Theorem 1 hold.

3.2. Consistency of the R(α)-posterior probabilities

We now prove the exponential convergence results for our robustR(α)-posterior

probabilities. For measurable sets An, Bn, Cn ⊆ Θn and constants bn, cn, we as-

sume the following:
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(A1) An, Bn, and Cn together complete Θn; that is, An∪Bn∪Cn = Θn, for each

n ≥ 1.

(A2) Bn satisfies π̃
(α)
n (Bn) = M

(α)
n (χn, Bn)/M

(α)
n (χn,Θn) ≤ bn, for each n ≥ 1.

(A3) {Cn} is such that there exists Sn ∈ Bn satisfying limn→∞G
n (Sn) = 0, and

supθ∈Cn Q
(α)
n (Scn|θ)/Q

(α)
n (χn|θ) ≤ cn.

(A3)∗ {Cn} is such that there exists Sn ∈ Bn satisfying P (Xn ∈ Sn i.o.) = 0 and

supθ∈Cn Q
(α)
n (Scn|θ)/Q

(α)
n (χn|θ) ≤ cn, where i.o. denotes “infinitely often.”

Here, we need either Condition (A3) or Condition (A3)∗, which help us to

prove the convergence results in probability or with probability one, respectively.

Condition (A3)∗ is stronger and implies (A3), but (A3) is sufficient in most cases

yielding a convergence in probability-type result. In addition, if Condition (A3)

holds with cn = e−nr for some r > 0, then it ensures the existence of a uniformly

exponentially consistent (UEC) test for Gn against the family of α-modified prob-

ability distributions {Q(α)
n (·|θ)/Q

(α)
n (χn|θ) : θ ∈ Cn} corresponding to the α-

modified model density q̃
(α)
n (·|θ) defined in Remark 1. Although complex, these

conditions are straightforward extensions of those used by Barron (1988) to prove

the exponential convergence of ordinary Bayes posterior probabilities; they in-

deed coincide at α = 0. In particular, at α = 0, Condition (A2) simplifies to

πn(Bn) ≤ bn; that is, Bns have negligible prior probabilities if bn → 0, and (A3)

assumes the existence of a UEC test against the models with θ ∈ Cn. Under

these conditions, along with the concept of merging (Subsection 3.1), we have

the following main theorem.

Theorem 3. (Exponential Consistency of R(α)-Posterior Probabilities).

( 1) Suppose that Gn and M
(α)
n (·) merge in probability, and let An ∈ BΘn

be any

sequence of sets. Then, lim supn→∞ P (π
(α)
n (Acn|Xn) < e−nr) = 1, for some

r > 0, if and only if there exist r1, r2 > 0 and sets Bn, Cn ∈ BΘn
such that

(A1)–(A3) are satisfied, with bn = e−nr1 and cn = e−nr2.

( 2) Suppose that Gn and M
(α)
n (·) merge with probability one and let An ∈ BΘn

be any sequence of sets. Then, P (π
(α)
n (Acn|Xn) ≥ e−nr i.o.) = 0, for some

r > 0, if and only if there exist constants r1, r2 > 0 and sets Bn, Cn ∈ BΘn

such that Assumptions (A1), (A2), and (A3)∗ are satisfied, with bn = e−nr1

and cn = e−nr2.

Note that, for α = 0, Theorem 3 coincides with the classical exponential

convergence results of ordinary Bayes posterior probabilities, as proved in Barron
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(1988). Our theorem generalizes this for the robust R(α)-posterior probabilities

under suitable conditions. Hence, the R(α)-posterior distribution, in addition to

yielding robust results under data contamination, is asymptotically optimal in

the same exponential rate as the ordinary posterior for all α ≥ 0.

3.3. Consistency of the R(α)-Bayes estimators

Let us now examine the asymptotic properties of the R(α)-Bayes estima-

tors associated with the R(α)-posterior distribution (2.2) under the general setup

of Section 2. In the decision-theoretic framework, we estimate a functional

φP := φ(P ) of the true probability P ; for example, φP could be the proba-

bility density of P , or any summary measure (e.g., mean) of P . For the given

parametric family Fn(·|θ), denote φθ := φFn(·|θ). Then, our action space is

Φ = {φQ : Q is a probability measure on (Ω,BΩ)}. Consider a nonnegative loss

function Ln(φ, φ̂) on Φ×Φ denoting the loss in estimating φ by φ̂; let Ln(φθ, φ)

be BΘn
measurable for each φ ∈ Φ. Then, the general R(α)-Bayes estimator

φ̂ = φ̂(·;xn) of φ is defined as

φ̂ = argmin
φ∈Φ

∫
Ln(φθ, φ)π(α)

n (dθ|xn) , (3.2)

provided the minimum is attained. In particular, the R(α)-Bayes estimator of

φθ = θ is the mean of the R(α)-posterior distribution for a squared error loss,

provided it exists finitely, or a median of the R(α)-posterior distribution for an

absolute error loss.

However, if the minimum in (3.2) is not attained, we may define the approx-

imate R(α)-Bayes estimator φ̂ of φ using the relation∫
Ln(φθ, φ̂)π(α)

n (dθ|xn) ≤ inf
φ∈Φ

∫
Ln(φθ, φ)π(α)

n (dθ|xn) + δn,

with limn→∞ δn = 0. A useful example is the approximate mode of the R(α)-

posterior for a discrete parameter space, which is an approximate R(α)-Bayes

estimator under a 0–1 loss. In addition, note that if the R(α)-Bayes estimator

exists, it is also an approximate R(α)-Bayes estimator.

Definition 3. A loss function Ln on Φ×Φ is said to be bounded if there exists

L̄ <∞ such that Ln(φθ, φP ) ≤ L̄, for all n and all θ ∈ Θn.

Definition 4. A loss Ln on Φ × Φ is said to be equivalent to a pseudo-metric

dn on Φ × Φ if there exist two strictly increasing functions h1 and h2 on [0,∞)

that are continuous at 0, with h1(0) = h2(0) = 0, and satisfy Ln ≤ h1(dn) and
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dn ≤ h2(Ln) on Φ× Φ and for all n.

Note that Definition 4 indicates limn→∞ Ln(φn, φ̂n) = 0 if and only if limn→∞
dn(φn, φ̂n) = 0. As an example, the squared Hellinger loss is bounded and equiv-

alent to the L1-distance. In addition, the absolute error (L1) loss is equivalent to

itself and bounded by twice the Hellinger loss.

We now establish the asymptotic consistency of R(α)-Bayes and approximate

R(α)-Bayes estimators of φθ to the true value φP for such a loss. The proof

mimics that of Lemma 12 in Barron (1988).

Theorem 4. (Consistency of R(α)-Bayes Estimators). Given any sample data

xn, let φ̂n = φ̂(·;xn) be an approximate R(α)-Bayes estimator (or the R(α)-

Bayes estimator) of φP with respect to a loss function Ln that is bounded and

equivalent to a pseudo-metric dn. In addition, for any ε > 0, define Aε,n =

{θ : dn(φP , φθ) ≤ ε}. Then, we have dn(φP , φ̂n) ≤ ε+h2((ε+ L̄π
(α)
n (Ac

h−1
1 (ε),n

|xn))

/(1− π(α)
n

(
Acε,n|xn

)
)). Consequently, if limn→∞ π

(α)
n

(
Acε,n|Xn

)
= 0 in probability

or with probability one for all ε > 0, then limn→∞ dn(φP , φ̂n) = 0 in probability

or with probability one, respectively.

In simple language, Theorem 4 states that whenever the target φP is close

enough to the model value φθ in the pseudo-metric dn asymptotically under the

R(α)-posterior probability, the corresponding R(α)-Bayes estimator with respect

to Ln is asymptotically consistent for φP in dn. However, Theorem 3 yields

limn→∞ π
(α)
n

(
Acε,n|Xn

)
= 0 under appropriate conditions and, hence, the cor-

responding R(α)-Bayes estimators are consistent in suitable dn. In particular,

Theorem 4 applies to the R(α)-Bayes estimators with respect to the squared

Hellinger loss and the L1-loss in terms of deducing their L1 consistency.

4. Application (I): Independent Stationary Models

4.1. R(α)-posterior convergence

Consider the setup of the independent stationary model in Example 1. Let

us study the conditions required for the exponential convergence of the R(α)-

posterior for this particular setup. First, to verify the merging of Gn and M
(α)
n ,

we define the individual α-modified density as q̃(α)(·|θ) = exp(q
(α)
θ (·))/Q(α)(χ|θ)

and the α-modified prior π̃
(α)
n as in Remark 1, with πn = π. Then, we consider

the information denseness of the prior π under independent stationary models

with respect to Fα =
{
q̃(α)(·|θ) : θ ∈ Θ

}
, defined as follows.

Definition 5. The prior π under the i.i.d. model is information dense at G with
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respect to Fα if there exists a finite measure π̃ satisfying (3.1) and π̃({θ : KLD(

g, q̃(α)(·|θ)) < ε} > 0, for all ε > 0.

Note that the above definition is equivalent to the general notion of informa-

tion denseness given in Definition 2. Thus, in view of Theorem 2, it implies the

merging of Gn and M
(α)
n in probability for independent stationary models. Thus,

Theorem 3 may be restated as follows.

Proposition 1. Consider the setup of independent stationary models, and as-

sume that the prior π is independent of n and is information dense at g with

respect to Fα, as per Definition 5. Take any sequence of measurable parameter

sets An ⊂ Θ. Then, π
(α)
n (Acn|Xn) is exponentially small with P -probability tend-

ing to one if and only if there exist constants r1, r2 > 0 and sets Bn, Cn ∈ BΘ

such that (A1)–(A3) are satisfied with bn = e−nr1 and cn = e−nr2.

Next, note that for the present case, (A3) holds under the assumption of the

existence of a UEC test for G against the family {Q(α)(·|θ)/Q(α)(χ|θ) : θ ∈ Cn}.
We can further simplify it by using a necessary and sufficient condition for the

existence of a UEC from Barron (1989), which states that, “for every ε > 0

there exists a sequence of UEC tests for the hypothesized distribution P versus

the family of distributions {Q : dTn(P,Q) > ε/2} if and only if the sequence of

partitions Tn has effective cardinality (eff. card.) of order n with respect to

P”. Here, for any measurable partition T , dT denotes the T -variation norm

dT (P,Q) =
∑

A∈T |P (A)−Q(A)|. Using this, we show that the R(α)-posterior

asymptotically concentrates on the L1 model neighborhood of the true density g.

Define, for any density p and any partition T , the “theoretical histogram” density

pT as pT (x) = (1/λ(A))
∫
A p(y)λ(dy), for x ∈ A ∈ T, whenever λ(A) 6= 0, and

pT = 0 otherwise. We call a sequence of partitions Tn “rich” if the corresponding

sequence of densities gTn converges to g in the L1-distance. Furthermore, define

BTn
ε =

{
θ : d1

(
fθ, q̃

(α)Tn(·|θ)
)
> ε
}

, for any ε > 0 and sequence of partition Tn,

where d1 denotes the L1 distance.

Assumption (B): For ε > 0, π̃
(α)
n (BTn

ε ) = M
(α)
n (χn, B

Tn
ε )/M

(α)
n (χn,Θ) is ex-

ponentially small for a rich sequence of partitions Tn with eff. card. of order

n.

Note that Assumption (B) implies Assumption (A2) for BTn
ε , or any smaller

subset of it. Thus, applying it with Bn = {θ : d1(g, fθ) ≥ ε, dTn(G,Q(α)(·|θ)/

Q(α)(χ|θ)) < ε/2} ⊂ BTn
ε/4 and the existence result of UEC tests with Cn ={

θ : dTn
(
G,Q(α)(·|θ)/Q(α)(χ|θ)

)
> ε/2

}
, Proposition 1 yields the asymptotic ex-

ponential concentration of the R(α)-posterior probability in the L1-neighborhood
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An = {θ : d1(g, fθ) < ε}. Clearly, An ∪Bn ∪ Cn = Θn for these choices.

Theorem 5. Consider the setup of i.i.d. models, and assume that the prior π is

independent of n and information dense at g with respect to Fα, as per Definition

5. If Assumption (B) holds, then, for every ε > 0, π
(α)
n ({θ : d1(g, fθ) ≥ ε} |Xn)

is exponentially small with P -probability one.

Note that the final Assumption (B) is easy to verify for models and priors

belonging to the standard exponential family of distributions with exponentially

decaying tails. However, if Assumption (B) does not hold, we can deduce a

weaker conclusion by using the Tn-variance distance in place of the L1 distance.

This idea was proposed by Barron (1988) for a similar result in the case of the

ordinary posterior. An extended version for the R(α)-posterior is given in the

following theorem.

Theorem 6. Consider the setup of i.i.d. models, and assume that the prior

π is independent of n and information dense at g with respect to Fα, as per

Definition 5. Then, for any sequence of partitions Tn with eff. card. of order

n, π
(α)
n ({θ : dTn(G,Q

(α)
n (·|θ)/Q

(α)
n (χn|θ)) ≥ ε}|Xn) is exponentially small with

P -probability one.

4.2. The cases of discrete priors: maximum R(α)-posterior estimator

We can derive the exponential consistency of the R(α)-Bayes estimators with

respect to the bounded loss functions from Theorem 4, along with Proposition 1

to Theorem 6. Let us now consider, in more detail, the particular case of discrete

priors and the maximum R(α)-posterior estimator.

Consider the setup of i.i.d. models, but now with a countable Θ. On this

countable parameter space, we consider a sequence of discrete priors πn(θ) that

are sub-probability mass functions; that is,
∑
θ πn(θ) ≤ 1. The most common

loss-function to consider under this setup is the 0–1 loss function, for which the

resulting R(α)-Bayes estimator is the (global) mode of the R(α)-posterior density;

we call this estimator of θ the “maximum R(α)-posterior estimator (MRPE).”

When this mode is not attained, we consider an approximate version θ̂α, referred

to as an “approximate maximum R(α)-posterior estimator (AMRPE),” defined

by the relation

π̃(α)
n (θ̂α)q̃(α)

n (xn|θ̂α) > sup
θ
π̃(α)
n (θ)q̃(α)

n (xn|θ)e−nδn , (4.1)

with limn→∞ δn = 0, where q̃
(α)
n (·|θ) and π̃

(α)
n (θ) are the α-modified model and

prior densities (see Remark 1), respectively. This definition follows from the
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fact that the R(α)-posterior density is proportional to π̃
(α)
n (θ)q̃

(α)
n (xn|θ). Note

that if the MRPE exists, then it is also an AMRPE. Assume that this estimator

θ̂α = θ̂α(xn), as a function of the data xn, is measurable, and consider a prior

sequence that satisfies

lim inf
n→∞

enrπ̃(α)
n (θ) ≥ 1, for all r > 0, θ ∈ Θ. (4.2)

Assumption (4.2) signifies that the (α-modified) prior probabilities are not expo-

nentially small anywhere in Θ. Then, we have the following theorems.

Theorem 7. Consider the setup of i.i.d. models with fixed countable Θn = Θ and

discrete prior sequence πn satisfying Assumption (4.2). Suppose πn is information

dense at the true probability mass function g with respect to Fα, as in Definition

5, and π
(α)
n (Acn|Xn) is exponentially small with probability one for a sequence of

measurable subsets An ⊆ Θ. Then, any AMRPE θ̂α ∈ An, for all sufficiently

large n, with probability one.

Theorem 8. Consider the setup of stationary independent models with fixed

countable Θn = Θ and a discrete prior sequence πn satisfying Assumption (4.2).

Then, for any true density g that is an information limit of the (countable) family{
q̃(α)(·|θ) : θ ∈ Θn

}
and for any ε > 0, we have that π

(α)
n ({θ : d1(g, fθ) ≥ ε} |Xn)

is exponentially small with probability one. Therefore, limn→∞ d1(g, f
θ̂α

) = 0,

with probability 1 for any AMRPE θ̂α.

Remark 2. Theorem 8, in the special case α = 0, yields a stronger version

of Theorem 15 of Barron (1988). Our result requires fewer assumptions than

required by Barron’s result.

5. Application (II): Independent Nonhomogeneous Models

5.1. Convergences of R(α)-posterior and R(α)-Bayes estimators

Let us now consider the setup of independent but nonhomogeneous (INH)

models, as described in Example 2 of Section 2, and simplify the exponential

convergence results for the R(α)-posterior probabilities under this INH setup.

Note that in this case, q
(α)
n (xn|θ) =

∑n
i=1 q

(α)
i,θ (xi) for any observed data xn =

(x1, . . . , xn), and hence Q
(α)
n (Sn|θ) =

∏n
i=1Q

(i,α)(Si|θ), for any Sn = S1 × S2 ×
· · · × Sn ∈ Bn, with Si ∈ Bi, for all i and Q(i,α)(Si|θ) =

∫
Si exp(q

(α)
i,θ (y))dy. As-

sume that Θn = Θ and πn = π are independent of n. Then, we have q̃
(α)
n (xn|θ) =∏n

i=1 exp(q
(α)
i,θ (xi))/Q

(α)
n (χn|θ) =

∏n
i=1 q̃

(i,α)(xi|θ), with q̃(i,α)(xi|θ) = exp(q
(α)
i,θ (

xi))/Q
(i,α)(χi|θ). Thus, in the notation of Section 3.1, we have D

(α)
n (θ) =
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(1/n)
∑n

i=1KLD
(
gi, q̃

(i,α)(·|θ)
)
, and hence the definition of information dense-

ness can be simplified for the INH models as follows.

Definition 6. The prior π under the INH model is said to be information dense at

Gn = (G1, . . . , Gn) with respect to Fn,α = ⊗ni=1F iα if there exists a finite measure

π̃ satisfying (3.1), such that π̃({θ : lim supn→∞(1/n)
∑n

i=1KLD
(
gi, q̃

(i,α)(·|θ)
)
<

ε}) > 0, for all ε > 0.

When fi,θ = fθ is independent of i, then the INH setup coincides with the

i.i.d. setup and the information denseness in Definition 6 coincides with that in

Definition 5. Furthermore, Definition 6 is equivalent to the general Definition 2,

and hence implies that Gn and M
(α)
n merge in probability. Then, we have the

following simplified results for the INH setup.

Proposition 2. Consider the setup of INH models with Θn = Θ, and assume

that the prior π is independent of n and information dense at Gn with respect

to Fn,α, as per Definition 6. Then, for any sequence of measurable parameter

sets An ⊂ Θ, π
(α)
n (Acn|Xn) is exponentially small with P -probability one if and

only if there exist sequences of measurable parameter sets Bn, Cn ⊂ Θ such that

An ∪ Bn ∪ Cn = Θ, M
(α)
n (χn, Bn)/M

(α)
n (χn,Θn) ≤ e−nr for r > 0 and a UEC

test for Gn against {Q(α)
n (·|θ)/Q

(α)
n (χn|θ) : θ ∈ Cn} exists.

However, the existence of the required UEC in Proposition 2 is equivalent

to the existence of a UEC test for Gi against {Q(i,α)(·|θ)/Q(i,α)(χi|θ) : θ ∈ Cn}
uniformly over i = 1, . . . , n. Following Section 4.1, this holds if Assumption (B)

is satisfied for B̃Tn
ε =

{
θ : (1/n)

∑n
i=1 d1(fi,θ, q̃

(i,α)(·|θ)Tn) > ε
}

in place of BTn
ε .

This leads to the following simplification.

Theorem 9. Consider the INH models with Θn = Θ, and assume that the prior

π is independent of n and information dense at Gn with respect to Fn,α, as

per Definition 6. If Assumption (B) holds for B̃Tn
ε in place of BTn

ε , for every

ε > 0, the R(α)-posterior probability π
(α)
n ({θ : (1/n)

∑n
i=1 d1(gi, fi,θ) ≥ ε} |xn) is

exponentially small with P -probability one, for ε > 0.

Note that the Bernstein–von Mises-type asymptotic results for the R(α)-

posterior distribution under the INH setup are extremely important to provid-

ing contraction rates for our new robust pseudo-posterior; similar results for

i.i.d. models are discussed in Ghosh and Basu (2016a). However, considering

the length of the present paper and its focus on the exponential convergence re-

sults, we propose presenting the results on contraction rates for INH models in

a subsequent paper; for the time being, they are available in the ArXiv version

(Majumder, Basu and Ghosh (2019)).
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5.2. Robust Bayes estimation under fixed design regression models

As noted in Example 2, the most common example of the general INH setup

is that of fixed-design regression models. We consider the important example

of model (2.4) with n fixed k-variate design points t1, . . . , tn and fi,θ(x) =

(1/σ)f (x− ψ(ti,β)/σ), for some univariate density f . The corresponding α-

likelihood is given by q
(α)
n (xn|(β, σ)) =

∑n
i=1 q

(α)
i,(β,σ)(xi), with q

(α)
i,(β,σ)(xi) = 1/

(ασα)f ((xi − ψ(ti,β))/σ)α − Mf,α/((1 + α)σα) − 1/α, where Mf,α =
∫
f1+α.

Consider a prior density π(β, σ) for the parameters (β, σ) over the space Θ =

Rk× (0,∞) [p = k+1]. This prior can be chosen to be the conjugate prior or any

subjective or objective prior; a common objective prior is Jeffrey’s prior, given

by π(β, σ) = σ−1. Then, the R(α)-posterior density of (β, σ) is given by (2.2),

which now simplifies to

π(α)
n ((β, σ)|xn)=

n∏
i=1

exp

[
1

ασα
f

(
xi − ψ(ti,β)

σ

)α
−

Mf,α

(1 + α)σα

]
π(β, σ)

/
∫ ∫ n∏

i=1

exp

[
1

ασα
f

(
xi − ψ(ti,β)

σ

)α
−

Mf,α

(1 + α)σα

]
π(β, σ)dβdσ.

(5.1)

If σ is known, as in the Poisson or logistic regression models (or can be assumed

to be known with properly scaled variables), we consider a prior only on β given

by, say, π(β), which is either the objective uniform prior or the conjugate prior,

or some other proper prior. In such cases, we obtain the following simplified form

for the R(α)-posterior density of β:

π(α)
n (β|xn) =

n∏
i=1

exp

[
1

ασα
f

(
xi − ψ(ti,β)

σ

)α]
π(β)

/
∫ n∏

i=1

exp

[
1

ασα
f

(
xi − ψ(ti,β)

σ

)α]
π(β)dβ.

(5.2)

One can obtain the R(α)-Bayes estimators of β, σ under any suitable loss. We

now study the exponential convergence for some regression examples, providing

simplifications for the required assumptions.

5.3. Example: normal linear regression model with known variance

We consider the normal regression model, a particular member of the class of

regression models considered in Section 5.2, where ψ(ti,β) = tTi β, with f being
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a standard normal density. For simplicity, we assume that the error variance

σ is known; the case of unknown σ is considered later. In this case, we can

simplify the R(α)-posterior from (5.2), and compute the expected R(α)-posterior

estimator (ERPE) of β; however, the resulting R(α)-posterior has no explicit

form and, hence, the corresponding ERPE needs to be computed numerically

(see Sections 6, 7).

Note that, being a particular case of the INH setup, the exponential consis-

tency of the R(α)-posterior of β holds directly under the assumptions of Proposi-

tion 2. We now verify the required conditions for normal linear regression models

with known σ. For this purpose, let us denote D = [t1, . . . , tn]T , the fixed-design

matrix, and x = (x1, . . . , xn)T . Recall that, provided D has full column rank, the

ordinary least squares estimate of β is β̂ = (DTD)−1DTx, which is also the or-

dinary Bayes estimator under the uniform prior and has variance n−1(DTD)−1.

We assume the following intuitive assumptions on the fixed-design matrix D of

the linear regression models:

(R1) The design points ti = (ti1, . . . , tik)
T , for i = 1, . . . , n, are such that, for all

j, l, s = 1, . . . , k, we have

sup
n>1

max
1≤i≤n

|tij | = O(1), max
1≤i≤n

|tij ||til| = O(1),
1

n

n∑
i=1

|tijtiltis| = O(1). (5.3)

(R2) The matrix D satisfies infn[min eigenvalue of n−1(DTD)] > 0, which also

implies the matrix D has full column rank, and max1≤i≤n[tTi (DTD)−1ti] =

O(n−1).

Note that Assumptions (R1)–(R2) imply the (weak) consistency of the cor-

responding (frequentist) MDPDE of β obtained by minimizing the negative of

the associated α-likelihood function (Ghosh and Basu (2013)). They are easy

to verify for any given design matrix; in particular, they hold if ti are gener-

ated from some nonsingular k-variate distributions. It is shown in Majumder,

Basu and Ghosh (2019) that these two conditions indeed ensure a Bernstein–von

Mises-type result for the associated R(α)-posterior.

It is fascinating to see that, despite the complexity of our earlier assumptions

for general INH models, these two simple Assumptions (R1)–(R2) imply the

exponential consistency of the R(α)-posterior probability at any α ≥ 0 for a

linear regression (along with some mild conditions on the prior). The result is

presented in the following theorem.

Theorem 10. Consider the normal linear regression setup with known error



GENERAL ROBUST BAYES PSEUDO-POSTERIOR 809

variance. Assume that the true parameter value is β0, that is, gi = fi,β0
for all

i, and the prior on β is continuous and positive at β0. Take any α ≥ 0. Then,

under Assumptions (R1)–(R2), given any ε > 0, there exists r > 0 such that

lim
n→∞

P

[
π(α)
n

({
β :

1

n

n∑
i=1

d1(gi, fi,β) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1,

or equivalently,

lim
n→∞

P

[
π(α)
n

({
β :

1

n

n∑
i=1

tTi |β − β0| ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1;

that is, the R(α)-posterior probabilities asymptotically concentrate on the neigh-

borhoods of the true regression line at an exponential rate of convergence.

5.4. Example: normal linear regression model with unknown variance

We now consider an extended version of the previous example of a nor-

mal linear regression with an unknown error variance. Consider the setup and

notation of the previous subsection, with ψ(ti,β) = tTi β and f being a nor-

mal density with mean zero and variance σ. However, we now consider σ2 to

also be an unknown parameter, along with the regression coefficient β. Given a

prior π(β, σ), in this case, the R(α)-posterior distribution is given by (5.1), with

Mf = (2π)−α/2(1 + α)−1/2.

Furthermore, we have simplified the required conditions for the exponential

convergence of the R(α)-posterior probabilities. The result is presented in the

following theorem; interestingly, the same sets of conditions as in the case of

known σ suffice.

Theorem 11. Consider the normal linear regression setup with an unknown

error variance. Assume that the true parameter value is θ0 = (β0, σ
2
0); that is,

gi = fi,θ0, for all i, and the prior on θ is continuous and positive at θ0. Take

any α ≥ 0. Then, under Assumptions (R1)–(R2), given any ε > 0, there exists

r > 0 such that

lim
n→∞

P

[
π(α)
n

({
θ :

1

n

n∑
i=1

d1(gi, fi,θ) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1.

5.5. Example: logistic regression model

We now consider the important logistic regression model, which does not

belong to the class of location-scale-type regressions in Section 5.2. In the nota-
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tion of Example 2, given the fixed-design points t1, . . . , tn, the logistic regression

model considers binary response variables xi that follow a Bernoulli distribution

with expectation ψ(ti,β) = et
T
i β/(1 + et

T
i β), for i = 1, . . . , n. As in Example

2, this model clearly belongs to the INH setup with the only parameter being

the regression coefficient θ = β; there is no scale parameter here. Thus, the α-

likelihood q
(α)
n (xn|β) of β is given by (2.5), with fi,θ being the probability mass

function of the Bernoulli(ψ(ti,β)) distribution, and the integral being the sum

over its support χi = {0, 1}; the underlying measure is the counting measure.

The R(α) is obtained by using (2.2), given any prior π(β), which does not have a

closed form and needs to be computed numerically; see Section 6.

Let us now simplify the conditions required for the exponential consistency

of the R(α)-posterior for the logistic regression model. For this purpose, we recall

Assumption (R1) on the fixed-design points, and consider the new condition (R3)

in terms of the matrix Ψn(β) = n−1Egi [∂
2q

(α)
n (xn|β)/∂β∂βT ].

(R3) infn[min eigenvalue of Ψn(β)] > 0, for all β.

The matrix Ψn(β) appears in the asymptotic variance of the (frequentist)

MDPDE of β under the fixed-design logistic regression model (Ghosh and Basu

(2016b)), as well as in the Bernstein–von Mises-type results for the corresponding

R(α)-posterior distribution (Majumder, Basu and Ghosh (2019)). Thus, in view

of those results, Assumption (R3) is extremely intuitive and easy to verify for

any given design matrix. We have shown that Assumptions (R1) and (R3) also

imply the exponential convergence of our generalized R(α)-posterior probability

in this logistic regression setup, as presented in the following theorem.

Theorem 12. Consider the fixed-design regression setup given above. Assume

that the true parameter value is β0; that is, gi = fi,β0
, for all i, and the prior

π(β) is continuous and positive at β0. Take any α ≥ 0. Then, under Assumptions

(R1) and (R3), given any ε > 0, there exists r > 0 such that

lim
n→∞

P

[
π(α)
n

({
θ :

1

n

n∑
i=1

d1(gi, fi,β) ≥ ε

}∣∣∣∣xn
)
< e−nr

]
= 1.

6. Numerical Illustrations: Simulations

6.1. Performance of ERPE in normal linear regression model

Let us now reconsider the regression model described in Sections 5.3–5.4, and

examine the finite-sample performance of the expected R(α)-posterior estimator

(ERPE) of the parameters.
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We first assume that the error variance σ is known and is equal to one. The

corresponding R(α)-posterior is given by (5.2), as discussed in Section 5.3, and has

no closed-form solution. Thus, we compute the ERPE using an importance sam-

pling Monte-Carlo. We first simulate n observations t11, . . . , t1n independently

from N(5, 1) to fix the predictor values ti = (1, t1i)
T . Then, n independent error

values ε1, . . . , εn are generated from N(0, 1) (note σ = 1), and the responses are

obtained from the linear regression structure xi = tTi β + εi, for i = 1, . . . , n,

with the true value of β being β0 = (5, 2)T . We considered different sample sizes

n = 20, 50, 100, and different contamination proportions εC =0% (pure data), 5%,

10%, 20% to examine the finite-sample robustness properties of our proposal. For

contaminated samples, [nεC ] error values are contaminated by generating them

from N(5, 1) instead of N(0, 1). In each case, given a prior, the ERPE at differ-

ent α ≥ 0 are computed using 20,000 steps in the importance sampling Monte

Carlo, with the proposal density Nk(β̂, n
−1(DTD)−1). We replicate the above

procedure 1,000 times to compute the empirical bias and MSE of the ERPE for

two priors, namely the non-informative uniform prior and the conjugate normal

prior, which are presented in the Supplementary Material (Figures 1 and 2) to

conserve space. The figures show that, under pure data, the bias and the MSE

are the least for the usual Bayes estimator of β at α = 0, but their inflations

are not significant for the ERPEs with moderate α > 0. Under contamination,

the usual Bayes estimator (at α = 0) has severely inflated bias and MSE, and

becomes highly unstable. Our ERPEs with α > 0 are much more stable under

contamination in terms of both bias and MSE; the maximum stability is observed

for tuning parameters α ∈ [0.4, 0.6], yielding significantly improved robust Bayes

estimators.

Next, we consider the case of an unknown error variance σ in the above linear

regression model, as discussed in Section 5.4. We repeat the above simulation

exercise for the case of unknown σ as well by taking the true value of σ0 = 1

and the conjugate prior on (β, σ) given by π(β, σ) = π(β|σ)π(σ). Here π(β|σ) is

taken as the N2(β0, σ
2I2) density, and π(σ) is the density of the square root of

the inverse chi-square distribution with five degrees of freedom (i.e., prior for σ2

is Inverse-χ2
5). However, in this case, the computation of the ERPE could not be

done efficiently using the simple importance sampling method, as in the case of

known σ; as such we used the Metropolis–Hastings algorithm.

The process is replicated 1,000 times to compute the empirical biases and

MSEs of the ERPEs of β and σ at different α for the previous simulation setup.

The resulting values of the total absolute bias and total MSE over the two com-

ponents of β and the absolute bias and MSE of the ERPE of σ are presented in
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Algorithm 1 Computation of ERPE in LRM with unknown variance.

We generate 20,000 sample observations from the R(α) posterior distribution of
θ = (β, σ), as follows:

Step 1. Start with θ(0) = (0, 0, 2)T . Set k = 1.

Step 2. After generating θ(k−1) = (β(k−1), σ(k−1)) in the (k − 1)th step, at the kth
step, generate β∗ and σ∗ from the proposal densities g1 ≡ N2(β(k−1), I2) and
g2 ≡Exponential(σ(k−1)), respectively.

Step 3. Generate U ∼ U(0, 1) and compute γ = exp[q
(α)
n (xn|β∗, σ∗)g1(β∗)g2(σ∗)]/

exp[q
(α)
n (xn|β(k−1), σ(k−1))g1(β(k−1))g2(σ(k−1))].

Step 4. If U < γ, set β(k) = β∗ and σ(k) = σ∗. Otherwise, set β(k) = β(k−1) and
σ(k) = σ(k−1).

Step 5. Set k = k + 1, and go to Step 2.

In each case, the first 5,000 values generated are rejected as burn-in, and the re-
maining 15,000 parameter values are averaged to obtain a good approximation of the
ERPE of (β, σ).

Figures 1 and 2, respectively.

The performance of the ERPE of regression coefficient and the error variance

are the same as before in that the proposed ERPE with a larger α provides

extremely stable estimates, even under contamination up to 20%. Under pure

data, the usual Bayes estimators give the minimum absolute bias and MSEs,

but the ERPEs with α > 0 are close to these values. However, under data

contamination, the usual Bayes estimates (at α = 0) become extremely nonrobust

yielding a significantly higher bias and MSEs, even though we are using a strong

conjugate prior. As the contamination proportion increases, we need larger values

of α in the proposed ERPE to produce smaller biases and MSEs close to the pure

data scenarios; in particular, α ≥ 0.5 always has excellent robust performance.

6.2. Performance of ERPE in logistic regression model

We now consider the fixed-design logistic regression model in Section 5.5,

and study the finite-sample properties of the ERPE, the expectation of the re-

gression coefficient β under the proposed R(α)-posterior distribution. Because

the corresponding R(α)-posterior has no closed-form solution, we computed the

ERPE numerically in our simulation exercise.

We first simulate n values t11, . . . , t1n independently from U(−5, 5) and fix the

design points as ti = (1, t1i)
T . Then, the n response values x1, . . . , xn are obtained

from the logistic regression structure, with xi generated from a Bernoulli distri-
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Figure 1. Empirical total absolute bias and total MSE of the ERPE of β in the linear
regression model with unknown σ and the conjugate priors. [Dotted line: εC = 0%,
Dash-Dotted line: εC = 5%, Dashed line: εC = 10%, Solid line: εC = 20%] (see the
Supplementary Material for an additional discussion.)
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Figure 2. Empirical absolute bias and MSE of the ERPE of σ in the linear regression
model with unknown σ and the conjugate priors. [Dotted line: εC = 0%, Dash-Dotted
line: εC = 5%, Dashed line: εC = 10%, Solid line: εC = 20%] (see the Supplementary
Material for an additional discussion.)



814 GHOSH, MAJUMDER AND BASU

bution with mean parameter ψ(ti,β) = et
T
i β/(1 + et

T
i β), for each i = 1, . . . , n; the

true parameter value is taken as β0 = (0, 5)T . Again, we have considered differ-

ent sample sizes n = 20, 50, 100 and different contamination proportions εC =0%

(pure data), 5%, 10%, 20%. The contaminated observations, [nεC ] many in a

sample of size n, are forced by misspecifying the response values, that is, by

changing xi to (1 − xi), and the prior is taken as the (bivariate) normal distri-

bution, π(β) ≡ N2(β0, I2). However, in this case, the importance sampling fails

to provide a good approximation to the ERPE; thus, we use the Metropolis–

Hastings method. Note that the target density, that is, R(α) posterior density, is

proportional to g(β) = exp[q
(α)
n (xn|β)]π(β)dβ.

Algorithm 2 Computation of ERPE in Logistic Regression.

We generate 20,000 sample observations from the R(α) posterior distribution of β,
as follows:

Step 1. Start with β(0) = (0, 0)T .

Step 2. After generating β(k−1) in the (k − 1)th step, at the kth step, generate β∗

from N2(β(k−1), I2).

Step 3. Generate U ∼ U(0, 1), and compute γ = g(β∗)/g(β(k−1)).

Step 4. If U < γ, set β(k) = β∗. Otherwise, set β(k) = β(k−1).

Step 5. Set k = k + 1, and go to Step 2.

In each case, the first 5,000 values generated are rejected as burn-in, and the re-
maining 15,000 parameter values are averaged to obtain a good approximation of the
ERPE.

The simulation exercise is replicated 1,000 times to compute 1,000 ERPEs of

β. Their empirical biases and MSEs are presented in Figure 3. Clearly, the mod-

erately larger values of α produce highly robust estimates under contaminations,

with only a slight loss in efficiency under pure data. Under contamination, the

MSEs of the ERPEs remain stable for α ≥ 0.5; however, we need slightly larger

α ≥ 0.7 to get smaller biases under heavy contamination of 20%.

7. Practical Aspects

7.1. On the computation of the R(α)-Bayes estimators

A complex and challenging aspect of the proposed R(α)-Bayes estimators is

their computation. This is, in fact, a common problem with all pseudo-posteriors

that replace the likelihood with some robust loss function. In a frequentist sense,

using a suitable optimization algorithm to derive a point estimator from some
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(a) n = 20 (b) n = 50 (c) n = 100

Figure 3. Empirical total absolute bias and total MSE of the ERPE of β in the logistic
regression model with a normal prior. [Dotted line: εC = 0%, Dash-Dotted line: εC =
5%, Dashed line: εC = 10%, Solid line: εC = 20%] (see the Supplementary Material for
an additional discussion.)

robust loss function results in scalable computation for many applications. In

contrast, the computation of the whole pseudo-posterior is challenging for com-

plicated models, and needs careful attention (even for the usual Bayes methods).

For our R(α)-posterior, no closed-form expressions exist in most applications

and, hence, we need to compute the corresponding R(α)-Bayes estimators numer-

ically. One such approach could be the importance sampling technique, which is

seen to work well in our illustrations for normal means (Ghosh and Basu (2016a))

or linear models with known σ (Section 6.1). However, this simple approach is

useful only when it is possible to use some conjugacy structure; here, the standard

posterior distribution is used as the proposal distribution, owing to its conjugacy.

However, when the model is more complicated and we do not have a good pro-

posal distribution, importance sampling fails to provide good approximations to

the proposed R(α)-Bayes estimators. This is because the α-likelihood parts do

not enjoy some conjugacy when the model is little bit more complicated, for ex-

ample, in the case of the linear regression with unknown variance or the logistic

regression models. In such cases, we propose using a suitable Metropolis-Hastings

algorithm, which works very well for the computations of the proposed ERPE

under the above-mentioned two cases; the corresponding algorithms are given in

Sections 6.1 and 6.2, respectively. We also supply the relevant R code for the

computations of the ERPEs for our examples in the Supplementary Material.



816 GHOSH, MAJUMDER AND BASU

We hope that, with advances in modern computers, it will be possible to

develop similar algorithms for the computation of the R(α)-posterior and the

R(α)-Bayes estimators for other useful models. However, if the model becomes

too complex, the usual Bayes computation also becomes challenging, and we have

to develop appropriate computation algorithms more carefully. An alternative ap-

proach can be to approximate the R(α)-Bayes estimators for larger sample sizes

using asymptotic expansions, such as Laplace’s one. Such approximations for our

R(α)-posterior and its expectations are provided in Majumder, Basu and Ghosh

(2019) for general nonhomogeneous (but independent) observations. These com-

putational aspects of our robust pseudo-posterior would surely form a sequence

of interesting future works.

7.2. On the choice of the tuning parameter α

We have proposed a class of robust pseudo-posteriors, indexed by the tuning

parameter α > 0, which coincides with the nonrobust but (asymptotically) most

efficient ordinary Bayes posterior as α → 0. In all our illustrations in Section 6,

it is observed that, with increasing values of α > 0, the asymptotic performance

of the proposed R(α)-Bayes estimators deteriorates slightly under pure data, but

their robustness under data contamination improves significantly compared with

that of the usual Bayes estimates (at α = 0). Thus, a natural and practical

question arises: which α should one use for a given data set? As we have observed

numerically, with a conjugate prior, any α ≥ 0.5 provides an extremely robust

inference under contamination, whereas the empirically suggested range for cases

with a uniform prior is α ∈ (0.4, 0.7). Thus, from our simulations presented here

(along with numerous others not presented for brevity), α ≈ 0.5 seems to be a

good choice in most cases.

However, a more systematic procedure for selecting this tuning parameter

depending on the given data would surely be useful for reliable applications

of our proposal. In this regard, note that the asymptotic distribution of the

proposed ERPE at any α ≥ 0 is the same as that of the corresponding fre-

quentist MDPDE for both the i.i.d. and INH cases (Ghosh and Basu (2016a);

Majumder, Basu and Ghosh (2019)). Therefore, finding the optimal tuning pa-

rameter for the ERPE becomes an asymptotically equivalent problem of choosing

an α for the optimal control between the robustness and efficiency of the MDPDE.

The second one has received some attention in the literature; one such approach

chooses α by minimizing an asymptotic MSE of the MDPDE, with respect to
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α ∈ [0, 1], given by

ÂMSE(α) = (θ̂α − θP )T (θ̂α − θP ) +
1

n
Trace(Σα(θ̂α)), (7.1)

where θ̂α is the MDPDE at α, Σα is the asymptotic variance of
√
nθ̂α, and θP

is some suitable pilot estimator. The details can be found in Warwick and Jones

(2005) and Ghosh and Basu (2015) for i.i.d. and INH setups, respectively, where

some suggestions for the choice of the pilot θP are also provided.

Because the asymptotic MSE of the MDPDE is indeed the same as the fre-

quentist MSE of our ERPE, the same process can be used to choose an optimum

α for the ERPE when using improper non-informative priors, with θ̂α being re-

placed by the corresponding ERPE, say θ̂∗α, at any given α. However, if we have

a proper subjective prior, say π(θ), then we can improve this approach appropri-

ately by taking the pilot θP as a random variable following π(θ), and then taking

the expected bias in (7.1); the modified criterion is then given by

ÂMSE
∗
(α) =

∫
(θ̂∗α − θ)T (θ̂∗α − θ)π(θ)dθ +

1

n
Trace(Σα(θ̂∗α)), (7.2)

which we can minimize with respect to α, possibly using a grid search over [0, 1],

to choose an appropriate tuning parameter value. However, this proposal clearly

needs further detailed investigation, which is left to future work.

8. Real-Data Applications

8.1. Hertzsprung–russell star cluster data

As our first application, let us consider the famous star cluster (CYG OB1)

data from the Hertzsprung–Russell diagram containing the logarithms of the light

intensity (L/L0) and the effective temperature (Te) at the surface of 47 stars in the

direction of Cygnus (Table 3, Chapter 2, Rousseeuw and Leroy (1987)). These

data have been studied by several authors (e.g., Rousseeuw and Leroy (1987);

Ghosh and Basu (2013)) to demonstrate robust methods using a simple linear

regression, with (L/L0) being the response and Te as the covariate. It has been

observed there that four stars in the data (with indices 11, 20, 30, and 34) are

significantly different from the remaining stars, and produce nonrobust outlier

effects when using classical estimation methods.

Here, we perform Bayesian analyses of the simple linear regression model

with different conjugate and improper priors. As is common practice, we assume

the error variance σ2 to be unknown. For brevity, we present only the results
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Table 1. The ERPEs of the coefficients and the error variance σ2 in the simple linear
regression models for the Hertzsprung–Russell data with a uniform prior.

Original Data Without Four Outliers

α Intercept Slope σ Intercept Slope σ

0 7.33 −0.54 0.55 −3.38 1.89 0.41

0.1 6.83 −0.42 0.58 −4.90 2.24 0.42

0.25 −8.91 3.14 0.41 −5.78 2.43 0.41

0.4 −6.13 2.51 0.42 −8.73 3.10 0.39

0.5 −6.60 2.62 0.43 −7.75 2.88 0.38

0.6 −7.19 2.75 0.41 −9.68 3.31 0.39

0.8 −7.22 2.76 0.42 −7.76 2.88 0.42

for the extreme case of uniform priors π(β, σ) = σ−1; the resulting values of the

ERPE (with and without the outliers) are presented in Table 1. It can be clearly

observed that the usual Bayes estimates (at α = 0) are extremely nonrobust pro-

ducing regression coefficients of opposite signs, owing to the presence of outliers.

However, our proposed R(α)-Bayes approach and the corresponding ERPEs re-

main extremely stable for moderately large values of α and successfully counter

the effect of outliers.

8.2. Skin data

Let us now consider another popular example of logistic regression model

that has problems with outliers, namely a controlled study on the occurrence of

“vaso constrictions” in the skin of digits due to air inspiration after a single deep

breath (Finney (1947)). This Skin data set has been analyzed by several authors,

including the recent work by Ghosh and Basu (2016b), where the logistic regres-

sion parameters are robustly estimated using the MDPDEs. Here, the important

covariates to model the vaso constriction occurrences are the logarithms of the

volume of inspired air (“log.Vol”) and the rate of inspiration (“log.Rate”). One

can observe by plotting these data (see, e.g., Ghosh and Basu (2016b)) that the

fourth and 18th observations are the outliers making it difficult to separate the

responses. The MLE of the corresponding regression coefficients in the logistic

regression model also changes significantly, having the values (−2.88, 4.56, 5.18)

in the presence of outliers, and (−24.58, 31.94, 39.55) after removing the outliers.

Here, we have considered the Bayesian modeling of the same regression model

with different types of priors. Again, for brevity, we present only the case of a

uniform prior over the cube [−50, 50]3, having the most extreme effect of outliers.

The resulting ERPEs for different values of α under the full data (including
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Table 2. The ERPEs of the coefficients in a logistic regression for the Skin data with a
uniform prior.

Original Data Without Outliers (4th and 18th obs.)

α Intercept log(Rate) log(Vol) Intercept log(Rate) log(Vol)

0 −4.68 7.26 7.23 −22.35 35.17 29.58

0.1 −5.73 9.02 8.46 −22.32 34.96 29.62

0.25 −19.45 30.21 26.03 −22.53 34.91 30.02

0.4 −22.38 34.15 29.94 −22.91 34.92 30.61

0.5 −22.94 34.54 30.72 −23.18 34.88 31.02

0.6 −23.29 34.61 31.20 −23.41 34.79 31.37

0.8 −23.63 34.45 31.72 −23.71 34.54 31.80

outliers) and under the data without outliers are given in Table 2. Note that the

values corresponding to α = 0 give the usual Bayes estimator (posterior mean).

Clearly, the usual Bayes estimates are highly affected by the presence of only

two outliers, whereas our R(α)-Bayes estimators, the ERPEs, with α around 0.5

provide extremely stable results, even in the presence of outliers.

9. Conclusion

This paper presents a general Bayes pseudo-posterior under a general para-

metric setup and the corresponding pseudo-Bayes estimators that incorporate

prior belief, in the general spirit of the Bayesian philosophy, but are also ro-

bust against data contamination. The exponential consistency of the proposed

pseudo-posterior probabilities and the corresponding estimators are proved and

illustrated for the cases of independent stationary and nonhomogeneous models;

separate attention is given to the case of discrete priors with stationary models.

Further applications of the proposed pseudo-Bayes estimators are described in

the context of linear and logistic regression models. All results of Barron (1988)

turn out to be special cases of our results when the tuning parameter α is set to

zero.

On the whole, we trust that this study will open a new and interesting

area of research on robust hybrid inference that has the flexibility to incorporate

prior beliefs and inherits optimal properties from the Bayesian paradigm, along

with the frequentists’ robustness against data contamination. Hence, it could be

very helpful in complex practical problems. In this sense, all Bayesian inference

methodologies can be extended using this new pseudo-posterior. In particular,

a detailed study of the examples discussed in Section 2 should be an interesting

future work for different applications. Extended versions of the Bayes testing and
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model selection criteria based on this new pseudo-posterior can also be developed

to achieve greater robustness for inference under data contamination.

Supplementary Material

The online Supplementary Material contains proofs of all the theoretical

results, additional descriptions of Figures 1–3, additional simulation results for

the normal linear regression model with fixed σ, and the R code used to compute

the ERPEs under different regression setups.
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