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Abstract: We propose a new Conditional BEKK matrix-F (CBF) model for time-

varying realized covariance (RCOV) matrices. This CBF model is capable of cap-

turing a heavy-tailed RCOV, which is an important stylized fact, but is not handled

adequately by Wishart-based models. To further mimic the long-memory feature

of an RCOV, we introduce a special CBF model with a conditional heterogeneous

autoregressive structure. Moreover, we provide a systematic study of the proba-

bilistic properties and statistical inferences of the CBF model, including exploring

its stationarity, establishing the asymptotics of its maximum likelihood estimator,

and giving new inner-product-based tests for model checking. In order to handle

a large-dimensional RCOV matrix, we construct two reduced CBF models: the

variance-target CBF model (for a moderate but fixed-dimensional RCOV matrix),

and the factor CBF model (for a high-dimensional RCOV matrix). For both re-

duced models, the asymptotic theory of the estimated parameters is derived. The

importance of our methodology is illustrated by means of simulations and two real

examples.

Key words and phrases: Factor model, heavy-tailed innovation, long memory, matrix-

F distribution, matrix time series model, model checking, realized covariance matrix,
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1. Introduction

Modeling the multivariate volatility of many asset returns is crucial for as-

set pricing, portfolio selection, and risk management. Since the seminal work of

Barndorff-Nielsen and Shephard (2002, 2004) and Andersen et al. (2003), the re-

alized covariance (RCOV) matrix, estimated from intraday high-frequency return

data, has been recognized as better than the daily squared returns as an estima-

tor for daily volatility. Consequently, attention has increased on the modeling

and forecasting of these RCOVs; see, for example, McAleer and Medeiros (2008),

Hansen, Huang and Shek (2012), Noureldin, Shephard and Sheppard (2012) and

Bollerslev, Patton and Quaedvlieg (2016), among many others.
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Existing models for RCOV matrices can be roughly categorized into two

types: transformation-based models and likelihood-based models. Models in the

first category capture the dynamics of the RCOV matrices in an indirect way via

transformation. Bauer and Vorkink (2011) used a factor model for the vector-

ization of the log transformation of an RCOV matrix; Chiriac and Voev (2011)

applied a vector autoregressive fractionally integrated moving average process to

model the Cholesky decomposition of an RCOV matrix; and Callot, Kock and

Medeiros (2017) transformed the RCOV matrix into a large vector using the vech

operator, and then fitted this transformed vector using a vector autoregressive

model. In the first two models, the dimension of the RCOV matrix has to be

moderate (e.g., less than six) for a feasible manipulation. In the third model, the

dimension of the RCOV matrix is allowed to be thirty in applications with the

help of the LASSO method.

Models in the second category deal with RCOV matrices directly by as-

suming that the innovation driving the RCOV time series has a specific ma-

trix distribution in order to generate random positive-definite matrices automat-

ically, without imposing additional constraints. This important feature results in

positive-definite estimated RCOV matrices. Unlike scalar or vector distributions,

so far, few matrix distributions have been found to have explicit forms. The

primary choice for the innovation distribution is Wishart, leading to the Wishart

autoregressive (WAR) model in Gouriéroux, Jasiak and Sufana (2009), the condi-

tional autoregressive Wishart (CAW) model in Golosnoy, Gribisch and Liesenfeld

(2012), the mixture Wishart model in Jin and Maheu (2013, 2016), and the gen-

eralized CAW model in Yu, Li and Ng (2017), to name a few. The other choice for

the innovation distribution is matrix-F, which was recently adopted by Opschoor

et al. (2018). In general, the matrix-F distribution is a generalization of the usual

F distribution whereas the Wishart distribution is a generalization of the χ2 dis-

tribution (see, e.g., Konno (1991) and Opschoor et al. (2018)). Therefore, the

matrix-F distribution could be more appropriate than the Wishart distribution

in terms of capturing the heavy-tailed innovation, which is an important stylized

fact in many applications (see, e.g., Bollerslev (1987), Fan, Qi and Xiu (2014),

Zhu and Li (2015), and Oh and Patton (2017)). These likelihood models have at

least three advantages over transformation-based models. First, likelihood-based

models preserve useful and important matrix structural information, which makes

them more interpretable than transformation-based models. Second, the number

of estimated parameters in transformation-based models is O(n4), whereas that

of likelihood-based models is O(n2), where n is the dimension of the RCOV ma-

trix. When n is large, likelihood-based models can be more convenient and less
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daunting in terms of computation. Third, likelihood-based models use the likeli-

hood function of the RCOV matrices, so that their statistical inference methods

are easily provided.

This paper contributes to the literature in three ways. First, we propose

a new Conditional BEKK matrix-F (CBF) model with which to study time-

varying RCOV matrices. Our CBF model has matrix-F distributed innovations

with two degrees of freedom parameters, ν1 and ν2. When ν2 → ∞, our CBF

model reduces to the CAW model (Golosnoy, Gribisch and Liesenfeld (2012)),

which has Wishart distributed innovations. Hence, ν2 is designed to capture the

heavy-tailedness of the RCOV. Because an RCOV has been shown to have a

long-memory feature, we further introduce a special CBF model that has a simi-

lar conditional heterogeneous autoregressive (HAR) structure, as in Corsi (2009).

This special model is referred to as the CBF-HAR model. Although the CBF-

HAR model is not formally a long-memory model, it gives rise to persistence

in the RCOV time series. Two real examples demonstrate that our CBF model

(especially the CBF-HAR model) can exhibit significantly better forecasting per-

formance than the corresponding CAW model. Hence, a simple incorporation of

ν2 to capture the heavy-tailed RCOV is necessary from a practical viewpoint.

Second, we provide a systematic statistical inference procedure for the CBF

model. Specifically, we explore its stationarity conditions, establish the strong

consistency and asymptotic normality of its maximum likelihood estimator

(MLE), and investigate some new inner-product-based tests for model diagnostic

checking. Moreover, the performance of our methodology is assessed using sim-

ulation studies. Compared with those for existing BEKK-type multivariate time

series models, our proofs for the CBF model are much more involved, because the

CBF model is tailored for matrix time series. In particular, our inner-product-

based tests seem to be the first diagnostic checking tool for matrix time series

models, and can be extended easily to other models.

Third, we construct two reduced CBF models, the variance targeted (VT)

CBF (VT-CBF) model and the factor CBF (F-CBF) model, to handle moder-

ately large and high-dimensional RCOV matrices, respectively. For both reduced

models, we derive the asymptotic theory of the estimated parameters. The di-

mension of the RCOV matrix is allowed to be a moderate, but fixed number in

the VT-CBF model, while it is allowed to grow with the sample size T and the

intraday sample size in the F-CBF model. This makes the prediction of large-

dimensional RCOV matrices feasible in many cases. The importance of both

reduced models is illustrated by means of two real applications.

The remainder of the paper is organized as follows. Section 2 introduces the
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CBF model and studies its probabilistic properties. Section 3 investigates the

asymptotics of the MLE. Section 4 presents inner-product-based tests to check

the model adequacy. Two reduced CBF models and their related asymptotic

theories are provided in Section 5. Some simulation studies are carried out in

Section 6. Applications are given in Section 7. Section 8 concludes this paper.

The proofs of all theorems are relegated to the Supplementary Material.

The following notation is used throughout the paper. In is the identity matrix

of order n, and ⊗ represents the Kronecker product. For an n×n matrix A, tr(A)

is its trace, A′ is its transpose, |A| is its determinant, ρ(A) is its biggest eigenvalue,

‖A‖ =
√
tr(A′A) is its Euclidean (or Frobenius) norm, ‖A‖spec =

√
ρ(A′A) is

its spectral norm, vec(A) is a vector obtained by stacking all the columns of A,

vech(A) is a vector obtained by stacking all columns of the lower triangular part

of A, and A⊗2 = A⊗A.

2. Model and Properties

2.1. Model specification

Let Y ∗t be the integrated volatility matrix of n asset returns Xt at time

t = 1, . . . , T . Since the seminal work of Barndorff-Nielsen and Shephard (2002,

2004) and Andersen et al. (2003), the n × n positive-definite RCOV matrix Yt,

calculated from the high-frequency return data of Xt, has been widely applied

to estimate Y ∗t in the literature; see, for example, Barndorff-Nielsen, Hansen

and Lunde (2011), Lunde, Shephard and Sheppard (2016), Aı̈t-Sahalia and Xiu

(2017), Kim et al. (2018), and the references therein. Moreover, Yt is often viewed

as a precise estimate for the conditional variances and covariances of these n low-

frequency asset returns Xt; hence, how to predict Yt using some dynamic models

is important in practice. Motivated by this, we propose a new dynamic model

for Yt.

Let Gt = σ(Ys; s ≤ t) be a filtration up to time t. We assume that

Yt = Σ
1/2
t ∆tΣ

1/2
t , (2.1)

where {∆t}Tt=1 is a sequence of independent and identically distributed (i.i.d.)

n × n positive-definite random innovation matrices with E(∆t|Gt−1) = In, each

∆t follows the matrix-F distribution F (ν, ((ν2 − n− 1)/ν1)In), and the density

of F (ν,Σ) is

f(x; ν,Σ) = Λ(ν)× |Σ|
−ν1/2 |x|(ν1−n−1)/2

|In + Σ−1x|(ν1+ν2)/2
, for x ∈ Rn×n, (2.2)
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where ν = (ν1, ν2)′ with degrees of freedom ν1 > n + 1 and ν2 > n + 1, Σ is an

n× n positive-definite matrix, and

Λ(ν) =
Γn((ν1 + ν2)/2)

Γn(ν1/2)Γ(ν2/2)
with Γn(x) = πn(n−1)/4

n∏
i=1

Γ

(
x+

1− i
2

)
.

Moreover, Σ
1/2
t ∈ Gt−1 is the square root of the n×n positive-definite matrix Σt,

which has a BEKK-type dynamic structure (see Engle and Kroner (1995)):

Σt = Ω +

P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−jB
′
kj , (2.3)

where Ω, Aki, and Bkj are all n × n real matrices, the integers P,Q, and K are

known as the orders of the model, and Ω and the initial states Σ0,Σ−1, . . . ,Σ−Q+1

are all positive definite. Under model (2.1),

Yt|Gt−1 ∼ F
(
ν,
ν2 − n− 1

ν1
Σt

)
, (2.4)

with E(Yt|Gt−1) = Σt; that is, the conditional distribution of Yt is matrix-F with a

BEKK-type mean structure. As such, we call model (2.1) the Conditional BEKK

matrix-F (CBF) model.

The CBF model is related to the CAW model of Golosnoy, Gribisch and

Liesenfeld (2012), in which ∆t follows the Wishart distribution. To see this

clearly, we follow Konno (1991) and Leung and Lo (1996) by rewriting Yt in

model (2.1) as

Yt =

(
ν2 − n− 1

ν1

)
Σ

1/2
t L

1/2
t R−1

t L
1/2
t Σ

1/2
t , (2.5)

where Lt ∼ Wishart(ν1, In) and Rt ∼ Wishart(ν2, In) are independent. Because

limν2→∞ ν
−1
2 Rt = In in probability, the identity (2.5) implies that when ν2 →∞,

Yt|Gt−1 ∼ Wishart(ν1, ν
−1
1 Σt), which is exactly the CAW model. Therefore,

compared with the CAW model, the degrees of freedom ν2 in the CBF model

accommodate the heavy-tailed RCOV, meaning that each Yt,ij from Yt satis-

fying (2.4) could have a heavier tail than that from Yt satisfying Yt|Gt−1 ∼
Wishart(ν1, ν

−1
1 Σt) (see, e.g., Opschoor et al. (2018) for more discussion and

examples). Clearly, the identity (2.5) also guarantees Yt to be symmetric and

positive definite, and can be used to generate Yt by using Wishart random vari-

ables.
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In addition to the heavy-tailedness, long memory is another well-documented

feature of the RCOV, and has been taken into account by many RCOV models,

including the HAR model of Corsi (2009) as a benchmark. Although the HAR

model does not formally belong to the class of long-memory models, it is able to

reproduce the persistence of RCOVs observed in empirical data. Inspired by the

HAR model, we consider a special CBF model with the following specification

for Σt:

Σt = Ω +A(d)Yt−1,dA
′
(d) +A(w)Yt−1,wA

′
(w) +A(m)Yt−1,mA

′
(m), (2.6)

where Yt−1,d = Yt−1, Yt−1,w = (1/5)
∑5

i=1 Yt−i, and Yt−1,m = (1/22)
∑22

i=1 Yt−i
are the daily, weekly, and monthly averages, respectively, of the RCOV matrices.

In this case, we label model (2.1) as the CBF-HAR model, because we put “HAR

dynamics” on Σt. Clearly, the CBF-HAR model is simply a constrained CBF

model with P = 22, K = 3, and Q = 0. Figure 1 plots the sample autocorrelation

functions (ACFs) up to lag 100 for simulated data from the CBF-HAR model

with ν = (20, 10) and

Ω =

0.5 0.2 0.3

0.2 0.5 0.25

0.3 0.25 0.5

 , A(d) =

0.7 0 0

0 0.65 0

0 0 0.75

 ,

A(w) =

0.6 0 0

0 0.6 0

0 0 0.55

 , A(m) =

0.4 0 0

0 0.45 0

0 0 0.4

 .

The figure shows that all entries of Yt exhibit the long-memory feature, as ex-

pected.

Note that when K = 1, the sufficient identifiability conditions of model (2.3)

are that the main diagonal elements of Ω and the first diagonal element of each

A1i, B1j are positive; when K > 1, some sufficient identifiability conditions of

model (2.3) can be found in Engle and Kroner (1995). For simplicity, we assume

subsequently that model (2.3) is identifiable.

Of course, the BEKK specification in model (2.3) is not the only way to

describe the dynamics of Σt. Multivariate ARCH-type models, such as the VEC

model of Bollerslev, Engle and Wooldridge (1988), component model of Engle and

Lee (1999), and dynamic conditional correlation model of Engle (2002), among

many others, can also be adopted to model Σt. Using these models together

with the matrix-F distribution to fit and predict the RCOV matrices could be a

promising direction for future study.



MATRIX-F TIME SERIES MODELS 761

-0.2

0

0.2

0.4

0.6

0.8

Yt,11

0 20 40 60 80 100
Lag

-0.2

0

0.2

0.4

0.6

0.8

Yt,22

0 20 40 60 80 100
Lag

-0.2

0

0.2

0.4

0.6

0.8

Yt,33

0 20 40 60 80 10
0Lag

-0.2

0

0.2

0.4

0.6

0.8

Yt,12

0 20 40 60 80 100
Lag

-0.2

0

0.2

0.4

0.6

0.8

Yt,13

0 20 40 60 80 100
Lag

-0.2

0

0.2

0.4

0.6

0.8

Yt,23

0 20 40 60 80 10
0Lag

Figure 1. Sample ACFs for simulated data from a 3× 3 CBF-HAR model

2.2. Stationarity

Stationarity is an important issue for most RCOV models, but so far has

been rarely studied. Denote M = max(P,Q). For i = 1, 2, . . . ,M , let

A∗i =

K∑
k=1

A⊗2
ik and B∗i =

K∑
k=1

B⊗2
ik ,

where Aik = 0 for i > P and Bik = 0 for i > Q. A sufficient condition for

the stationarity of the CBF model is given below, and works for other general

distributions of ∆t.

Theorem 1. Suppose that {∆t} in model (2.1) is a sequence of i.i.d. n × n

positive-definite random matrices with E‖∆t‖ <∞, and

(H 1) the distribution of ∆1, denoted by Γ , is absolute continuous with respect to

the Lebesgue measure;

(H 2) the point In is in the interior of the support of Γ ;

(H 3) ρ
(∑M

i=1(A∗i +B∗i )
)
< 1.

Then, Yt in model (2.1) is strictly stationary, with E‖Yt‖ < ∞. Moreover, Yt is

positive Harris recurrent and geometrically ergodic.
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Remark 1. The results of Theorem 1 are similar to those in Boussama, Fuchs and

Stelzer (2011), who study the stationarity of the BEKK model. Like Boussama,

Fuchs and Stelzer (2011), the proof of Theorem 1 is based on the semi-polynomial

Markov chains technique. However, it is relatively involved owing to the matrix

nature of model (2.1).

As a special case, the results in Theorem 1 hold for the CAW model, in which

∆t follows the Wishart distribution. Under conditions (H1) and (H2), condition

(H3) is necessary and sufficient for the strict stationarity of Yt, with E‖Yt‖ <∞.

However, the necessary and sufficient condition for the higher moments of Yt is

still unclear at this stage. Let Kn2 be the n2 × n2 permutation matrix, such

that Kn2vec(A) = vec(A′) for any n × n matrix A. If E‖Yt‖2 < ∞, by similar

arguments in Golosnoy, Gribisch and Liesenfeld (2012), we have the following:

(i) y := E (vec(Yt)) =
[
In2 −

∑M
i=1 (A∗i +B∗i )

]−1
vec(Ω);

(ii) vec [E (vec(Yt)vec(Yt)
′)] = (Π + In4)

(
In4 −

∑∞
i=1 Φ⊗2

i Π
)−1

vec(y)⊗ vec(y),

where Π = [s1(ν)− 1] In4 + [s2(ν)In2 ⊗ (In2 +Kn2)] [In ⊗Kn2 ⊗ In], with

s1(ν) =
(ν2 − n− 1)[ν1(ν2 − n− 2) + 2]

ν1(ν2 − n)(ν2 − n− 3)
, s2(ν) =

(ν2 − n− 1)(ν1 + ν2 − n− 1)

ν1(ν2 − n)(ν2 − n− 3)
,

and Φ0 = In2 and Φi = −B∗i +
∑i

j=1

(
A∗j + B∗j

)
Φi−j , for i > 0. Result (ii)

clearly indicates that the parameters ν1 and ν2 affect the second moment of Yt
in a nonlinear way. Although a closed form of the third moment of Yt is absent,

similar effects from ν1 and ν2 are expected for the third moment of Yt and, hence,

the asymptotic distribution of the proposed estimator (see Theorem 3 below).

3. Maximum Likelihood Estimation

Let θ = (γ′, ν ′)′ ∈ Θ be the unknown parameter of model (2.1) with the

true value θ0 = (γ′0, ν
′
0)′, where Θ = Θγ ×Θν is the parametric space with Θγ ⊂

Rτ1 and Θν ⊂ R2, γ = (w′, u′)′, w = vech(Ω), u = (vec(A11)′, . . . , vec(AKP )′,

vec(B11)′, . . . , vec(BKQ)′), and τ1 = (1/2)n + [(P + Q)K + (1/2)]n2. Below, we

assume that Θγ and Θν are compact and θ0 is an interior point of Θ.

Given the observations {Yt}Tt=1 and the initial values {Yt}t≤0, the negative

log-likelihood function based on (2.4) is

L(θ) =
1

T

T∑
t=1

lt(θ), (3.1)
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where

lt(θ) =
ν1

2
log
∣∣∣ν2 − n− 1

ν1
Σt(γ)

∣∣∣− ν1 − n− 1

2
log |Yt|

+
ν1 + ν2

2
log
∣∣∣In +

ν1

ν2 − n− 1
Σ−1
t (γ)Yt

∣∣∣+ C(ν),

with C(ν) = − log Λ(ν) and Σt(γ) calculated recursively by

Σt(γ) = Ω +

P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−j(γ)B′kj . (3.2)

Clearly, Σt(γ0) = Σt.

Because the initial values {Yt}t≤0 are not observable, we modify L(θ) as

L̂(θ) =
1

T

T∑
t=1

l̂t(θ), (3.3)

where l̂t(θ) is defined in the same way as lt(θ), with Σt(γ) replaced by Σ̂t(γ), and

Σ̂t(γ) is calculated in the same way as Σt(γ), based on a sequence of given constant

matrices h := {Y0, . . . , Y−M+1,Σ0, . . . ,Σ−M+1}. The minimizer, θ̂ = (γ̂′, ν̂ ′)′, of

L̂(θ) on Θ is called the MLE of θ0. That is,

θ̂ = (γ̂′, ν̂ ′)′ = argmin
θ∈Θ

L̂(θ). (3.4)

To study the asymptotic properties of θ̂, we need two assumptions.

Assumption 1. Yt is strictly stationary and ergodic.

Assumption 2. For γ ∈ Θγ, if γ 6= γ0, Σt(γ) 6= Σt(γ0) almost surely (a.s.) for

all t.

Assumption 1 is standard. Assumption 2, which is in line with Comte and Lieber-

man (2003) and Hafner and Preminger (2009), is the identification condition. The

following two theorems give the consistency and asymptotic normality of θ̂, re-

spectively.

Theorem 2. Suppose that Assumptions 1–2 hold and E‖Yt‖ <∞. Then, θ̂
a.s.−−→

θ0 as T →∞.

Theorem 3. Suppose that Assumptions 1–2 hold, E‖Yt‖3 <∞, and

O = E

(
∂2lt(θ0)

∂θ∂θ′

)
is invertible. (3.5)
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Then,
√
T (θ̂ − θ0)

d−→ N(0,O−1) as T →∞.

Based on the observations {Yt}Tt=1 and a sequence of given constant matrices

h, we can use the analytic expression of ∂2lt(θ)/∂θ∂θ
′ (see Appendix S4 in the

Supplementary Material) to estimate O using its sample counterpart. As with

the univariate ARCH-type models, the coefficients in the main diagonal line of

Ω are positive to ensure the positive definiteness of Σt. Hence, the classical t or

Wald test, which is constructed using the estimate of O, cannot be used to detect

whether their values are zeros; see Li et al. (2018) for more discussion on this

context.

4. Model Diagnostic Checking

Diagnostic tests are crucial for model checking in multivariate time series

analysis; see, for example, Li and McLeod (1981), Ling and Li (1997), Tse (2002),

and many others. However, no tests exist for stationary matrix time series. In this

section, we propose some new inner-product-based tests to check the adequacy

of model (2.1).

Let Zt(γ) = vec
(
Σ
−1/2
t (γ)YtΣ

−1/2
t (γ) − In

)
be the vectorized residual for a

given γ, and let bt,j(γ) = Z′t(γ)Zt−j(γ) be the inner product of two vectorized

residuals at lag j. Then, we stack bt,j(γ) up to lag l to construct Vl(γ), where

Vl(γ) =
1

T

T∑
t=l+1

(
bt,1 (γ) ,bt,2 (γ) , . . . ,bt,l (γ)

)′
,

and l ≥ 1 is a given integer. Our testing idea is motivated by the fact that if

model (2.1) is adequate, Zt(γ0) is a sequence of i.i.d. random vectors with mean

zero, and hence the value of Vl(γ̂) is expected to be close to zero. To implement

our test, we examine the asymptotic property of Vl(γ̂) in the following theorem.

Theorem 4. Suppose that Assumptions 1–2 hold, E‖Yt‖4 <∞, and (3.5) holds.

Then, if model (2.1) is correctly specified,
√
TVl(γ̂)

d−→ N(0,V) as T →∞, where

V = (Il,R1)R2(Il,R1)′ with

R1 = E


Z′t−1 (γ0)

(
∂Zt(γ0)
∂θ′

)
Z′t−2 (γ0)

(
∂Zt(γ0)
∂θ′

)
...

Z′t−l (γ0)
(
∂Zt(γ0)
∂θ′

)

×O
−1 and R2 =

(
tr{E2[Z′t(γ0)Zt(γ0)]}Il 0

0 O

)
.
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Based on Theorem 4, we construct the inner-product-based test statistic

Π(l) = T
[
V ′l(γ̂)V̂−1Vl(γ̂)

]
(4.1)

to detect the adequacy of model (2.1), where V̂ is the sample counterpart of V.

If Π(l) is larger than the upper-tailed critical value of χ2(l), the fitted model (2.1)

is not adequate at a given significance level. Otherwise, it is adequate.

Note that if we consider a test based on {Zt(γ̂)} directly, the resulting limiting

distribution is still chi-squared, but its degrees of freedom increase fast with the

dimension n. To avoid this dilemma, we use the inner product of the residuals

to construct our test Π(l), the limiting distribution of which is independent of

n. This new idea is different from the portmanteau test in Ling and Li (1997),

in which the test statistic is constructed based on the auto-correlations of the

transformed scale residuals. In our test, Π(l) is based on the auto-covariances

of the original vectorized residuals. Clearly, our idea can be extended easily to

the framework in Ling and Li (1997). Our inner-product-based test Π(l) takes

the auto-covariances of all entries of Zt(γ̂) into account, whereas the idea of a

regression-based test in Tse (2002) considers only one entry of Zt(γ̂) at a time. In

view of this, we prefer to use the proposed inner-product idea for testing purposes.

5. Reduced CBF Models

Because the number of parameters in the CBF model is O(n2), the estimation

of the CBF model may be computationally demanding when n is large. This

section introduces two reduced CBF models that are feasible in fitting RCOV

matrices with a large n.

5.1. The VT-CBF model

This subsection proposes a reduced CBF model by using the variance target

(VT) technique in Engle and Mezrich (1996). This technique re-parameterizes

the drift matrix Ω by using the theoretical mean of Yt, such that the estimation

of Ω is excluded in the implementation of the maximum likelihood estimation.

Other related studies on VT time series models include those of Francq, Horváth

and Zaköıan (2011) and Pedersen and Rahbek (2014).

To define our reduced model, we assume that Yt is strictly stationary with a

finite mean S = E(Yt). By taking the expectation on both sides of (2.3), we have

Ω = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj , (5.1)
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because S = E(Yt) = E(Σt). With the help of (5.1), model (2.1) becomes

Yt = Σ
1/2
t ∆tΣ

1/2
t , (5.2)

where all notation is inherited from model (2.1), except that

Σt = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj

+

P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣt−jB
′
kj . (5.3)

We call model (5.2) the VT-CBF model. Clearly, this reduced model shares the

same probabilistic properties as the full CBF model. Although the VT-CBF

model has the same number of parameters as the full CBF model, its two-step

estimator, given below, is computationally easier than the MLE for the full CBF

model.

To present this two-step estimator, we let θv = (δ′, ν ′)′ ∈ Θv be the unknown

parameters of model (5.2), and let its true value be θv0 = (δ′0, ν
′
0)′, where Θv =

Θδ×Θν is the parametric space with Θδ = Θs×Θu ⊂ Rτ2 , τ2 = [(P+Q)K+1]n2,

and Θν ⊂ R2. Let δ = (s′, u′)′ with s = vec(S), Θs ∈ Rn2

, and Θu ∈ R[(P+Q)Kn2].

As before, we assume that Θδ and Θν are compact, and that θv0 is an interior

point of Θv.

In the first step, we estimate s by ŝv, where ŝv = vec
(
Yt
)

:= vec((1/T )
∑T

t=1

Yt). In the second step, we estimate the remaining parameters ζ = (u′, ν ′)′ by

the constrained MLE based on the following modified log-likelihood function:

L̂v(θv) =
1

T

T∑
t=1

l̂vt(θv), (5.4)

where

l̂vt(θv) =
ν1

2
log
∣∣∣ν2 − n− 1

ν1
Σ̂vt(δ)

∣∣∣− ν1 − n− 1

2
log |Yt|

+
ν1 + ν2

2
log
∣∣∣In +

ν1

ν2 − n− 1
Σ̂−1
vt (δ)Yt

∣∣∣+ C(ν),

and Σ̂vt(δ) is calculated recursively by

Σ̂vt(δ) = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj
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+

P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣ̂vt−j(δ)B
′
kj , (5.5)

based on a sequence of given constant matrices h. Clearly, L̂v(θv) is analogous

to L̂(θ) in (3.3), and is a modification of the following log-likelihood function:

Lv(θv) =
1

T

T∑
t=1

lvt(θv), (5.6)

where lvt(θv) is defined in the same way as l̂vt(θv), with Σ̂vt(δ) replaced by Σvt(δ),

and Σvt(δ) is calculated recursively by

Σvt(δ) = S −
P∑
i=1

K∑
k=1

AkiSA
′
ki −

Q∑
j=1

K∑
k=1

BkjSB
′
kj

+

P∑
i=1

K∑
k=1

AkiYt−iA
′
ki +

Q∑
j=1

K∑
k=1

BkjΣvt−j(δ)B
′
kj , (5.7)

based on the observations {Yt}Tt=1 and the initial values {Yt}t≤0. The minimizer,

ζ̂v = (û′v, ν̂
′
v)
′, of L̂v(ŝv, ζ) on Θu ×Θν is the constrained MLE of (u′0, ν

′
0)′. That

is,

(û′v, ν̂
′
v)
′ = argmin

ζ∈Θu×Θν

L̂v(ŝv, ζ). (5.8)

Now, we call θ̂v = (ŝ′v, ζ̂
′
v)
′ the two-step estimator of θv in model (5.2).

Let Ψ(u) =
(
In2 −

∑M
i=1A

∗
i −

∑M
i=1B

∗
i

)−1(
In2 −

∑M
i=1B

∗
i

)
and wt(θv) =(Ψ(u)vec(Yt − Σvt(δ))

∂lvt(θv)/∂ζ

)
. The following two theorems give the consistency and

asymptotic normality of θ̂v, respectively.

Theorem 5. Suppose that Assumptions 1–2 hold and E‖Yt‖ <∞. Then, θ̂v
a.s.−−→

θv0 as T →∞.

Theorem 6. Suppose that Assumptions 1–2 hold, E‖Yt‖3 <∞, and

J1 = E

[
∂2lvt(θv0)

∂ζ∂ζ ′

]
is invertible. (5.9)

Then,
√
T (θ̂v − θv0)

d−→ N(0,Ov) as T →∞, where
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Ov =

(
In2 0

−J−1
1 J2 −J−1

1

)
E(wtw

′
t)

(
In2 0

−J−1
1 J2 −J−1

1

)′
,

with J2 = E[∂2lvt(θv0)/∂ζ∂s′] and wt = wt(θv0).

As before, we can use the sample counterparts of the analytic expressions of

∂lvt(θv)/∂θv and ∂2lvt(θv)/∂θv∂θ
′
v to estimate Ov. Although the VT-CBF model

can be estimated using the aforementioned two-step estimation procedure, it still

has to handle a large number of estimated parameters, with order O(n2), caused

by the parameter matrices Aki and Bkj . To construct a more parsimonious VT-

CBF model, we impose some restrictions on Aki and Bkj . McCurdy and Stengos

(1992) and Engle and Kroner (1995) have suggested using diagonal volatility

models, which not only avoid over-parameterization, but also reflect the fact that

the variances and the covariances rely more on their own past than they do on

the history of other variances or covariances. Motivated by this, we assume that

all Aki and Bkj have a diagonal structure, leading to a diagonal VT-CBF model.

Clearly, the number of estimated parameters in the diagonal VT-CBF model is

O(n), which is feasible for a moderately large, but fixed n.

Next, similarly to Π(l) in (4.1), we construct inner-product-based test statis-

tics to check the adequacy of model (2.1) based on the two-step estimator θ̂v.

Let δ0 = (s′0, u
′
0)′, δ̂v = (ŝ′v, û

′
v)
′, Zvt(δ) = vec(Σ

−1/2
vt (δ)YtΣ

−1/2
vt (δ) − In) be the

residual vector for a given δ, bvt,j(δ) = Z′vt(δ)Zvt−j(δ) be the inner product of

the residuals at lag j, and

Vvl(δ) =
1

T

T∑
t=l+1

(
bvt,1 (δ) ,bvt,2 (δ) , . . . ,bvt,l (δ)

)′
.

The asymptotic property of Vvl(δ̂v) is given in the following theorem.

Theorem 7. Suppose that Assumptions 1–2 hold, E‖Yt‖4 <∞, and (5.9) holds.

Then, if model (2.1) is correctly specified,
√
TVvl(δ̂v)

d−→ N(0,Vv) as T → ∞,

where Vv = (Il,R1v)R2v(Il,R1v)
′, with

R1v = E


Z′vt−1 (δ0)

(
∂Zvt(δ0)
∂θ′

)
Z′vt−2 (δ0)

(
∂Zvt(δ0)
∂θ′

)
...

Z′vt−l (δ0)
(
∂Zvt(δ0)
∂θ′

)

×
(

In2 0

−J−1
1 J2 −J−1

1

)

and



MATRIX-F TIME SERIES MODELS 769

R2v =

(
tr{E2[Zvt(δ0)′Zvt(δ0)]}Il 0

0 E(wtw
′
t)

)
.

By the preceding theorem, we can adopt the test statistic

Πv(l) = T [V ′vl(δ̂v)V̂−1
v Vvl(δ̂v)] (5.10)

to detect the adequacy of model (2.1), where V̂v is the sample counterpart of Vv.

If Πv(l) is larger than the upper-tailed critical value of χ2(l) at a given significance

level, the fitted model (2.1) is not adequate. Otherwise, it is adequate.

5.2. The factor CBF model

In modern data analysis, the dimension n may grow with the sample size T

in many cases, making the CBF (or VT-CBF) models computationally infeasible.

In addition, the dimension n may be proportional to m (the average intra-day

sample size across all assets and all days), in which case, the methods used to

calculate Yt for fixed n deliver an inconsistent estimator of Y ∗t ; see, for exam-

ple, Wang and Zou (2010) and Tao et al. (2011) for surveys. To overcome this

difficulty, we use the thresholding average realized volatility matrix (TARVM)

estimator of Tao et al. (2011) to calculate Yt. The TARVM is based on the

ARVM (Wang and Zou (2010)), which is estimated by taking the average of the

constructed realized volatility matrices according to different predetermined sam-

pling frequencies. The TARVM further thresholds the elements in each estimated

RCOV matrix from the ARVM method, so that a certain sparsity structure is

retained and the resulting estimator is consistent for large n, which can be grow-

ing with (or even larger than) T . For more recent works in this direction, refer

to Aı̈t-Sahalia and Xiu (2017) and Kim et al. (2018), and the references therein.

Because the dimension of Yt may be very large, it seems difficult to study the

dynamics of Yt without imposing a specific structure. Here, we adopt the factor

model proposed by Tao et al. (2011) by assuming that

Y ∗t = FY ∗ftF
′ + Y ∗0 , (5.11)

where Y ∗ft is an r × r positive-definite factor covariance matrix, with r being a

fixed integer (much smaller than n), Y ∗0 is an n × n positive-definite constant

matrix, and F is an n × r factor loading matrix normalized by the constraint

F ′F = Ir. In model (5.11), the dynamic structure of Y ∗t is driven by that of a

lower-dimensional latent process Y ∗ft, while Y ∗0 represents the static part of Y ∗t .

In (5.11), only the column space of F can be identified, and F is not identified
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even if F ′F = Ir is imposed. This is because Y ∗t is unchanged when F and Y ∗ft
are replaced by F† = FR and Y ∗ft,† = R−1Y ∗ftR

−1′ , respectively, when R is any

r × r matrix satisfying R′R = Ir.

Define

Y
∗

=
1

T

T∑
t=1

Y ∗t , S
∗

=
1

T

T∑
t=1

{
Y ∗t − Y

∗
}2
,

and

Y =
1

T

T∑
t=1

Yt, S =
1

T

T∑
t=1

{
Yt − Y

}2
.

Then, we estimate Y ∗ft, Y
∗

0 , and F by

Ŷft = F̂ ′YtF̂ , Ŷ ∗0 = Y − F̂ F̂ ′Y F̂ F̂ ′, and F̂ = (f̂1, . . . , f̂r), (5.12)

respectively, where f̂1, . . . , f̂r are the eigenvectors of S corresponding to its r

largest eigenvalues. As suggested by Lam and Yao (2012) and Ahn and Horenstein

(2013), we may select r such that the r largest ratios of adjacent eigenvalues are

significantly larger.

In order to study the asymptotics of the proposed estimators, we introduce

the following technical assumptions.

Assumption 3. All row vectors of F ′ and Y ∗0 satisfy the sparsity condition below.

For an n-dimensional vector (x1, . . . , xn), we say it is sparse if it satisfies

n∑
i=1

|xi|δ∗ ≤ Uπ(n),

where δ∗ ∈ [0, 1), U is a positive constant, and π(n) is a deterministic function

of n that grows slowly in n, with typical examples π(n) = 1 or log(n).

Assumption 4. The factor model (5.11) has r fixed factors, and the matrices Y ∗0
and Y ∗ft satisfy ‖Y ∗0 ‖ <∞ and max1≤t≤T ‖Y ∗ft,jj‖ = Op(B(T )) for j = 1, 2, . . . , r,

where Y ∗ft,jj is the jth diagonal entry of Y ∗ft, and 1 ≤ B(T ) = o(T ).

Assumption 5. max1≤t≤T ‖Y ∗t − Yt‖ = Op(A(n,m, T )) for some rate function

A(n,m, T ), such that A(n,m, T )B5(T ) = o(1).

Assumptions 3–5 are sufficient to prove the consistency of Ŷft. For the

TARVM, we can take A(n,m, T ) = π(n)[em(n2T )1/β]1−δ∗ log T and B(T ) = log T

with em = m−1/6, such that A(n,m, T )B5(T ) = o(1) for large β; see Tao et al.

(2011). Note that Assumptions 3–5 do not rule out the case that n is larger than
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T , as long as n2T grows more slowly than mβ/6. For other estimators, the rate

A(n,m, T ) may be improved; see Tao, Wang and Zhou (2013).

Theorem 8. Suppose that Assumptions 3–5 and the conditions in Theorem 3

hold. Then, as n,m, and T go to infinity,

(i) F ′F̂ − Ir = Op(A(n,m, T )B(T )),

(ii) Ŷft − Yft = Op(A
1/2(n,m, T )B3/2(T )),

where Yft = Y ∗ft + F ′Y ∗0 F and F = (f1, . . . , fr), with f1, . . . , fr being the eigen-

vectors of S̄∗ corresponding to its r largest eigenvalues.

The above theorem indicates that Ŷft is a more consistent estimator of Yft
than is Y ∗ft. Next, we assume that Yft satisfies the CBF model; that is,

Yft|Gt−1 ∼ F
(
ν,
ν2 − n− 1

ν1
Σft

)
, (5.13)

with E(Yft|Gt−1) = Σft, where Σft is defined in the same way as Σt in (2.3), with

Yt replaced by Yft, and the remaining notation and setup inherited from model

(2.1). We call models (5.11) and (5.13) the factor CBF (F-CBF) model. In

particular, if Σft has the HAR dynamical structure in (2.6), the resulting model

is called the factor CBF-HAR (F-CBF-HAR) model. Based on this model, we

have Y ∗t = F (Yft − F ′Y ∗0 F )F ′ + Y ∗0 . Because Yt ≈ Y ∗t , this implies that we can

study the large-dimensional matrix Yt by using an r × r low-dimensional matrix

Yft.

Because Yft is not observable, we should estimate model (5.13) based on Ŷft.

Hence, we consider a feasible MLE of θ0 in model (5.13) given by

θ̂1f = (γ̂′1f , ν̂
′
1f )′ = argmin

θ∈Θ
L̂f (θ),

where L̂f (θ) is defined in the same way as L̂(θ) in (3.3), with Yt and Σ̂t(γ)

replaced by Ŷft and Σ̂ft(γ), respectively. The following theorem shows that θ̂1f

is consistent with the ideal MLE θ̂2f based on Yft, where

θ̂2f = (γ̂′2f , ν̂
′
2f )′ = argmin

θ∈Θ
Lf (θ),

and Lf (θ) is defined in the same way as L(θ) in (3.1), with Yt and Σt(γ) replaced

by Yft and Σft(γ), respectively.

Theorem 9. Suppose that the conditions in Theorem 8 hold. Then, as n,m, and

T go to infinity, θ̂1f − θ̂2f = Op(B(T )/T ) +Op(A
1/2(n,m, T )B5/2(T )).
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Because the dimension of Yft is r (much smaller than n), the calculation of θ̂1f

is computationally feasible. In order to further reduce the number of parameters

in model (5.13), we can also assume that Yft follows a VT-CBF model. This leads

to the F-VT-CBF model, which includes the F-VT-CBF-HAR model as a special

case. For this F-VT-CBF model, we consider its feasible two-step estimator

θ̂1fv = (ŝ′1fv, ζ̂
′
1fv)

′, where

ŝ1fv =
1

T

T∑
t=1

Ŷft, ζ̂1fv = (û′1fv, ν̂
′
1fv)

′ = argmin
ζ∈Θu×Θν

L̂fv(ŝ1fv, ζ),

and L̂fv(θv) is defined in the same way as L̂v(θv) in (5.4), with Yt and Σ̂vt(δ) re-

placed by Ŷft and Σ̂fvt(δ), respectively. Similarly to Theorem 9, θ̂1fv is consistent

with the ideal two-step estimator θ̂2fv = (ŝ′2fv, ζ̂
′
2fv)

′ based on Yft, where

ŝ2fv =
1

T

T∑
t=1

Yft, ζ̂2fv = (û′2fv, ν̂
′
2fv)

′ = argmin
ζ∈Θu×Θν

Lfv(ŝ2fv, ζ),

and Lfv(θv) is defined in the same way as L(θv) in (5.6), with Yt and Σt(δ)

replaced by Yft and Σfvt(δ), respectively.

Theorem 10. Suppose that the conditions in Theorem 8 hold. Then, as n,m,

and T go to infinity,

(i) ŝ1fv − ŝ2fv = Op(A
1/2(n,m, T )B3/2(T )),

(ii) ζ̂1fv − ζ̂2fv = Op(B(T )/T ) +Op(A
1/2(n,m, T )B5/2(T )).

In particular, if Yft follows a diagonal VT-CBF model, the number of esti-

mated parameters in model (5.13) is O(r), which is easy to calculate in practice.

In view of model (5.11) and the fact that F ′F = Ir, we can predict Yt by either

F̂ Σ̂ft(γ̂1f )F̂ ′ + Ŷ ∗0 based on θ̂1f or by F̂ Σ̂fvt(δ̂1fv)F̂
′ + Ŷ ∗0 based on θ̂1fv, where

δ̂1fv = (ŝ′1fv, û
′
1fv)

′.

6. Simulation

In this section, we first assess the performance of the MLE θ̂ and the two-step

estimator θ̂v in the finite sample. We generate 1,000 replications of sample size

T = 1,000 and 2,000 from the following model:

Yt = Σ
1/2
t ∆tΣ

1/2
t with Σt = Ω0 +A10Yt−1A

′
10 +B10Σt−1B

′
10, (6.1)
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where

Ω0 =

0.5 0.2 0.3

0.2 0.5 0.25

0.3 0.25 0.5

 , A10 =

0.4 0 0

0 0.55 0

0 0 0.5

 , B10 =

0.4 0 0

0 0.3 0

0 0 0.5

 ,

{∆t} is a sequence of independent F
(
ν0, ((ν20 − n− 1)/ν10)In

)
distributed ran-

dom matrices with n = 3, and ν0 = (10, 8), (15, 10), or (20, 10). For each repe-

tition, we calculate θ̂, θ̂v, and their related asymptotic standard deviations. For

θ̂v, we report the results related to Ω instead of S, and hence the asymptotic

standard deviation of the estimated parameters in Ω is absent in this case.

Table 1 reports the sample bias, sample standard deviation (SD), and average

asymptotic standard deviation (AD) of θ̂ and θ̂v. From this table, we can see

that the biases of both estimators are small relative to the magnitude of the

parameters, and they become smaller as the sample size T increases. This ensures

the accuracy of both estimators. Furthermore, we find that the SDs are, in

general, close to the ADs for both estimators, and all of the SDs and ADs become

smaller as T increases from 1,000 to 2,000. In terms of ADs or SDs, θ̂ is, in

general, more efficient than θ̂v, although this efficiency advantage is weak for

many parameters. However, the estimation time for θ̂v is almost 70% of that for

θ̂, and this computation advantage can be more significant when n increases.

Next, we examine the performance of the inner-product-based tests Π(l) and

Πv(l) in the finite sample. We generate 1,000 replications of sample size T = 1,000

and 2,000 from the following model:

Yt = Σ
1/2
t ∆tΣ

1/2
t with Σt = Ω0 +A10Yt−1A

′
10 +A20Yt−2A

′
20 +B10Σt−1B

′
10,

(6.2)

where the values of Ω0, A10, and B10 are chosen as in (6.1), A20 = diag{λ, λ, λ}
is a diagonal matrix with λ = 0, 0.05, 0.1, 0.15, 0.2, and {∆t} is a sequence of

independent F
(
ν0, ((ν20 − n− 1)/ν10)In

)
distributed random matrices with n =

3 and ν0 = (10, 8). We fit each replication using the CBF model with (K,P,Q) =

(1, 1, 1), and use Π(l) and Πv(l) to check whether the fitted model is adequate.

Here, we set the significance level α = 0.05 and l = 2, 3, 4, 5, 6. The empirical

sizes and power of both tests are reported in Table 2, with sizes corresponding

to the results for the case of λ = 0. From Table 2, we find that Π(l) and Πv(l)

always have accurate sizes, although they are slightly oversized for small T . The

power of both test is as expected. First, all of the power values become larger

as T increases. Second, both tests become more powerful as λ becomes larger.
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Table 2. The results of Π(l) and Πv(l) for model (6.2).

l = 2 l = 3 l = 4 l = 5 l = 6

λ T Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l) Π(l) Πv(l)

0 1,000 0.043 0.037 0.048 0.045 0.052 0.054 0.047 0.048 0.049 0.054

2,000 0.048 0.056 0.058 0.059 0.053 0.054 0.052 0.059 0.051 0.052

0.05 1,000 0.048 0.045 0.051 0.048 0.058 0.053 0.060 0.052 0.061 0.062

2,000 0.060 0.063 0.063 0.073 0.064 0.075 0.063 0.076 0.058 0.074

0.1 1,000 0.238 0.238 0.210 0.211 0.196 0.199 0.196 0.199 0.179 0.183

2,000 0.414 0.408 0.371 0.364 0.350 0.354 0.309 0.328 0.316 0.320

0.15 1,000 0.885 0.854 0.847 0.818 0.818 0.793 0.784 0.762 0.768 0.746

2,000 0.974 0.956 0.966 0.951 0.956 0.933 0.946 0.925 0.941 0.919

0.2 1,000 0.976 0.924 0.972 0.916 0.964 0.893 0.961 0.889 0.956 0.887

2,000 0.992 0.951 0.989 0.945 0.987 0.923 0.987 0.914 0.985 0.910

Third, the power of Π(l) and Πv(l) is comparable, but the former needs a longer

computational time. Note that when ν0 = (15, 10) and (20, 10), the test results

are similar to those for ν0 = (10, 8), and hence are not reported for brevity.

Overall, both estimators θ̂ and θ̂v and both tests Π(l) and Πv(l) exhibit good

performance, especially when the sample size T gets larger. When the dimension

of Yt is small, our simulation results show that θ̂v is only slightly less efficient

than θ̂, and Πv(l) is, in general, as powerful as Π(l). When the dimension of Yt
is large, θ̂v and Πv(l) enjoy faster computation speeds than those of θ̂ and Π(l),

respectively. As such, we recommend using θ̂v and Πv(l) in practice.

7. Applications

In this section, we consider two applications to the U.S. stock market. Ap-

plication 1 studies the low-dimensional RCOV matrix series calculated using the

composite realized kernels (CRK) in Lunde, Shephard and Sheppard (2016).

Application 2 studies the high-dimensional RCOV series calculated using the

TARVM estimator in Tao et al. (2011).

7.1. Application 1

In this application, we revisit the RCOV matrix data of Hewlett-Packard De-

velopment Company, L.P. (HPQ), International Business Machines Corporation

(IBM), and Microsoft Corporation (MSFT) in Lunde, Shephard and Sheppard

(2016). This data set, denoted by {Yt}1474
t=1 , ranges from January 2006 to Decem-

ber 2011, with 1,474 observations in total. Here, two flash crashes are flagged on

May 6, 2010, and August 9, 2011, and are replaced by an average of the nearest
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Figure 2. Components of Yt.
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Figure 3. Sample ACFs of each component Yt,ij .

five preceding and following matrices.

Figure 2 plots the diagonal and off-diagonal components of {Yt}1474
t=1 , showing

that Yt has a clear clustering feature. Figure 3 plots their sample autocorrela-

tion functions (ACFs), which show the significant temporal dependence of Yt.
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Table 3. The results of the estimated diagonal VT-CBF and VT-CBF-HAR models.

Diagonal VT-CBF model

ν̂v Ŝv Â11,v B̂11,v B̂12,v B̂13,v persistence

74.0110 3.1523 1.1099 1.1635 0.7207 0.5358 0.0117 0.4129 0.9771

(10.7545) (1.8844) (0.9031) (0.7705) (0.0223) (0.0365) (0.0176) (0.0354)

40.5849 1.1099 2.3683 1.0965 0.7200 0.5620 0.0119 0.3800 0.9788

(3.9787) (0.9031) (2.1165) (0.9209) (0.0246) (0.0289) (0.0177) (0.0382)

1.1635 1.0965 2.7883 0.7118 0.5579 0.0127 0.3977 0.9762

(0.7705) (0.9209) (1.3276) (0.0211) (0.0292) (0.0190) (0.0354)

Diagonal VT-CBF-HAR model

ν̂v Ŝv Â(d),v Â(w),v Â(m),v persistence

69.0222 3.1523 1.1099 1.1635 0.6954 0.5735 0.3891 0.9639

(6.2261) (2.2543) (1.0464) (0.8881) (0.0256) (0.0443) (0.0344)

40.4021 1.1099 2.3683 1.0965 0.6884 0.6027 0.3557 0.9637

(2.9408) (1.0464) (2.3391) (1.0210) (0.0275) (0.0318) (0.0426)

1.1635 1.0965 2.7883 0.6703 0.6041 0.3812 0.9596

(0.8881) (1.0210) (1.4971) (0.0279) (0.0318) (0.0364)

† The asymptotic standard errors are given in parentheses.

Based on these facts, we first fit {Yt}1474
t=1 using a diagonal VT-CBF model with

(P,Q,K) = (1, 3, 1), where the order K is taken as one for ease of model iden-

tification, and the orders P and Q are selected using the Bayesian information

criterion (BIC). Specifically, this diagonal VT-CBF model is estimated using the

two-step estimation procedure, and the corresponding estimates are give in Ta-

ble 3. Second, because the sample ACFs of each component in Figure 3 decay

slowly, we also fit {Yt}1474
t=1 using a diagonal VT-CBF-HAR model and list the

related estimation results in Table 3. From this table, we find that the estimates

of the degrees of freedom (especially for ν2) in both fitted models are close to

each other, and both estimates of ν2 are small, indicating the heavy-tailedness

of the examined data. For the estimates of the mean parameter matrix S, its

standard errors based on the VT-CBF model are smaller than those based on

the VT-CBF-HAR model. For other estimates of the parameter matrices, the

estimated diagonal components in each parameter matrix seem to have similar

values, meaning that the three stocks possibly have similar temporal structures.

This similarity can also be seen from the persistence values of each stock in Table

3, where the persistence of stock s is defined by
∑P

i=1A
2
1i,ss +

∑Q
j=1B

2
1j,ss for

the VT-CBF model and A2
(d),ss +A2

(w),ss +A2
(m),ss for the VT-CBF-HAR model.

After the estimation, we apply our test statistics Πv(l) to both fitted models, and

the results summarized in Table 4 imply that both fitted models are adequate at

the 5% level.
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Table 4. The results of Πv(l) for the diagonal VT-CBF and VT-CBF-HAR models.

Diagonal VT-CBF model Diagonal VT-CBF-HAR model

l 2 3 4 5 6 2 3 4 5 6

Πv(l) 1.494 4.170 8.004 9.428 11.513 4.385 6.127 7.004 10.310 11.583

p-value 0.474 0.244 0.091 0.093 0.074 0.112 0.106 0.136 0.067 0.072

Next, we consider the forecasting performance of our proposed diagonal VT-

CBF and VT-CBF-HAR models. Specifically, we compute the one-step, five-

step and ten-step predictions of the RCOV matrices based on a rolling window

procedure, with the window size equal to T0 = 800. That is, for T0 ≤ t ≤ T − t0,

we fit the models based on T0 observations {Ys}ts=t−T0+1, and forecast Ŷt+t0 with

t0 = 1, 5, 10, and calculate the forecasting error as Ŷt+t0 − Yt+t0 . To examine the

importance of ν2 in the CBF models, we also apply the diagonal VT-CAW and

VT-CAW-HAR models to perform predictions. The diagonal VT-CAW and VT-

CAW-HAR models are defined in the same way as the diagonal VT-CAW and

VT-CAW-HAR models, except that the matrix-F distribution for ∆t in the latter

two models is replaced by the Wishart distribution. In addition to the CAW-type

models, we further include a diagonal VAR-HAR model for comparison, where

this VAR model uses a HAR structure with the diagonal autoregressive parameter

matrices to fit yt = vech(Yt).

Table 5 gives the average forecasting errors in Frobenius and spectral norms

for all models. Here, we find that, regardless of the prediction horizon, the di-

agonal VT-CBF-HAR model always has the smallest forecasting error in both

norms. Moreover, we apply the DM test of Diebold and Mariano (1995) to exam-

ine whether the diagonal VT-CBF-HAR model has significantly better forecasting

accuracy than those of the other four competing models. The corresponding re-

sults are given in Table 5, and show that the VT-CBF-HAR model is significantly

better than its four competing models in terms of the five-step and ten-step fore-

casts. For one-step forecasts, the VT-CBF-HAR and VT-CBF model models

have comparable forecasting accuracy, and the VT-CBF-HAR model is signifi-

cantly better than the remaining three models at the 10% level. Note that the

VAR-HAR model always performs worst in all examined cases, probably because

it disentangles the matrix-structure of the RCOV matrices, which may have some

intrinsic and useful value for forecasts.
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Table 5. Forecasting errors based on different models and the related DM testing results.

1-step 5-step 10-step
Diagonal Model Frobenius Spectral Frobenius Spectral Frobenius Spectral
VT-CBF-HAR 1.5284 1.4607 1.9725 1.8850 2.2108 2.1091
VT-CBF 1.5349 1.4664 1.9955 1.9069† 2.2802∗ 2.1755∗

VT-CAW-HAR 1.5383∗ 1.4703∗ 2.0029∗ 1.9147∗ 2.2864� 2.1813�

VT-CAW 1.5390 1.4699 2.0253� 1.9351� 2.3364� 2.2286�

VAR-HAR 1.6472� 1.5661� 2.1700� 2.0626� 2.6088� 2.4711�

The DM test is used to compare the prediction accuracy between the diagonal VT-CBF-HAR and the other

four competing models. The result for each competing model is marked with a “†”, “∗” or “�” if the DM

test implies that the Diagonal VT-CBF-HAR model gives significantly more accurate predictions than this

competing model at the 10%, 5%, or 1% level, respectively.

7.2. Application 2

In this section, we consider intraday data of 112 stocks from four major

sectors constituting the S&P 500 index: 31 stocks from the financial sector, 31

stocks from the industrial sector, 25 stocks from the health care sector, and 25

stocks from consumer discretionary sector; see the full lists of stocks in Appendix

S4. All intraday price data are downloaded from the Wharton Research Data

Services (WRDS) database, and are taken from July 1, 2009, to December 30,

2016, including a total of 1,890 non-missing dates of trading data. Based on

100 times log of the price data, the daily RCOV matrices {Yt}1890
t=1 are calculated

using the TARVM method of Tao et al. (2011) for each sector.

For each sector, because the dimension of the RCOV matrix is large, we

fit the RCOV matrix data using the diagonal F-VT-CBF and F-VT-CBF-HAR

models. To do this, we first look for the value of r in model (5.11) by plotting

the ratios {λi/λi+1} for each sector in Figure 4, where {λi} are the eigenvalues

of S̄ in descending order. From Figure 4, we can choose r = 3 for the financial

sector, r = 2 for the industrial sector, r = 2 for the health care sector, and r = 1

for the consumer discretionary sector. To get more information, we also plot the

ratios {λi/λi+1} for all four pooled sectors in Figure 5, which suggests r = 3.

This implies that all 112 stocks considered may be driven by three latent factors.

However, only two may affect the industrial and health care sectors, and only

one may affect the consumer discretionary sector. Hence, it is more reasonable

to study the RCOV matrix data across sectors rather than together.

Next, we estimate the diagonal F-VT-CBF and F-VT-CBF-HAR models,

and choose the orders using a similar procedure as in Application 1. The related

results are reported in Table 6. From this table, we find that except for the

mean parameter matrix, the diagonal components of other parameter matrices
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Figure 4. Ratios of adjacent eigenvalues of S̄ for each sector.
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Figure 5. Ratios of adjacent eigenvalues of S̄ for all four pooled sectors.

seem to have different values, meaning that each component of Yft has a different

dynamical structure. Moreover, the values of persistence for Yft,ss show clear

differences across the four sectors, with the largest persistence in the financial

sector and the smallest persistence in the health care sector. This finding indicates

that the effect of past stock returns to its current volatility decays very slowly in
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Table 6. The results of the estimated diagonal F-VT-CBF and F-VT-CBF-HAR models.

Diagonal F-VT-CBF model

Sector ν̂fv Ŝfv Â11,fv B̂11,fv B̂12,fv B̂13,fv B̂14,fv persistence

Financial

35.3380 25.7553 0.6808 0.1389 0.7269 0.5118 0.2741 0.3219 0.9691

(2.9679) (11.0314) (2.3577) (0.6519) (0.0348) (0.0518) (0.1014) (0.0606)

19.257 0.6808 2.5799 0.0211 0.6844 0.5382 0.3172 0.3628 0.9903

(1.0419) (2.3577) (9.6931) (0.1730) (0.0608) (0.1181) (0.1831) (0.0699)

0.1389 0.0211 1.6309 0.7292 0.3010 0.4490 0.3817 0.9696

(0.6519) (0.1730) (1.8857) (0.0732) (0.1468) (0.0897) (0.1201)

Industrial

24.9287 17.3161 2.1513 0.7277 0.6488 0.9505

(6.9460) (7.0877) (1.0290) (0.0729) (0.0709)

22.7808 2.1513 1.0614 0.6716 0.6921 0.9300

(7.6622) (1.0290) (0.3786) (0.0317) (0.0373)

Health Care

24.3415 8.6744 3.4402 0.7617 0.5396 0.1129 0.8841

(4.9720) (2.9442) (0.7505) (0.1324) (0.0651) (0.6685)

15.9965 3.4402 2.185 0.7351 0.5706 0.0001 0.8660

(5.1757) (0.7505) (0.4998) (0.1407) (0.1585) (0.8598)

Consumer

Discretionary

22.4570 15.3282 0.7516 0.4517 0.2604 0.1971 0.2666 0.9467

(4.0371) (4.9315) (0.0261) (0.0724) (0.1171) (0.1711) (0.1032)

12.2757

(1.4843)

Diagonal F-VT-CBF-HAR model

Sector ν̂fv Ŝfv Â(d),fv Â(w),fv Â(m),fv persistence

Financial

38.0409 25.7553 0.6808 0.1389 0.7041 0.5069 0.4573 0.9618

(3.1046) (15.5296) (2.6814) (0.8796) (0.0259) (0.0830) (0.1098)

18.9242 0.6808 2.5799 0.0211 0.6676 0.4588 0.5739 0.9855

(0.8746) (2.6814) (10.6104) (0.2816) (0.0441) (0.1162) (0.0628)

0.1389 0.0211 1.6309 0.7659 0.2502 0.5476 0.9491

(0.8796) (0.2816) (1.2904) (0.0484) (0.1678) (0.0537)

Industrial

25.0002 17.3161 2.1513 0.7161 0.5494 0.3549 0.9406

(5.9220) (10.0000) (1.2538) (0.0699) (0.0758) (0.0458)

22.3305 2.1513 1.0614 0.6361 0.6086 0.3283 0.8830

(6.7511) (1.2538) (0.4310) (0.0462) (0.0970) (0.1484)

Health Care

23.3766 8.6744 3.4402 0.7259 0.5357 0.1944 0.8625

(3.6648) (3.2870) (0.8134) (0.1095) (0.1141) (0.0369)

16.1320 3.4402 2.1850 0.6961 0.5689 0.0691 0.8130

(4.6804) (0.8134) (0.5280) (0.0918) (0.1620) (0.2421)

Consumer

Discretionary

23.1216 15.3282 0.7285 0.4865 0.4092 0.9348

(3.2789) (6.0954) (0.0299) (0.0599) (0.0502)

11.9375

(1.1630)

† The asymptotic standard errors given in parentheses are based on Ŷft rather than Yft.

the financial sector, but behaves oppositely in the health care sector.

Finally, we examine the forecasting performance of our F-CBF models. As in

Application 1, five different diagonal factor models (see Table 7) are considered
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to forecast Yt, based on a rolling window procedure with a window size equal

to 1,000. Their forecasting performance is evaluated using the average of the

forecasting errors in the Frobenius and spectral norms as well as the results

of the related DM test in Table 7. From this table, we can see that except

for the health care sector, the diagonal F-VT-CBF-HAR model always has the

smallest forecasting error and the diagonal F-VAR-HAR model has the largest

forecasting error. For one-step forecasts in the health care sector, the diagonal F-

VT-CAW-HAR has a slightly smaller forecasting error than that of the diagonal

F-VT-CBF-HAR model. In view of the results of the DM test, the diagonal F-

VT-CBF-HAR model exhibits a significantly better performance than the other

four models in terms of five-step and ten-step forecasts. However, this advantage

is slightly weak in terms of one-step forecasts, for which the diagonal F-VT-CBF

and F-VT-CAW-HAR models have similar performance in the industrial sector,

and the diagonal F-VT-CAW-HAR and F-VAR-HAR models have comparative

performance in the health care sector.

8. Conclusion

We propose a new CBF model to study the dynamics of RCOV matrices. For

this CBF model, we explore its stationarity and moment properties, establish the

asymptotics of its MLE, and investigate inner-product-based tests for its model

checking. Hence, a systematic inferential tool for this CBF model is available for

empirical researchers. In order to deal with large-dimensional RCOV matrices,

we also construct two reduced CBF models: the VT-CBF model and the F-

CBF model. For both reduced models, the asymptotic theory of the estimated

parameters is derived. Compared with the CAW model with Wishart innovations,

the CBF model with matrix-F innovations is better able to capture the heavy-

tailed RCOV. This advantage is demonstrated by two real examples on U.S. stock

markets. As motivated by Chiriac and Voev (2011), an obvious future work is to

introduce a fractional integration structure into our CBF models. Furthermore,

we can extend the idea of using the matrix-F innovation in a number of ways,

resulting in a large family of models. This is important in terms of studying the

positive definite dynamics.

Supplementary Material

The online Supplementary Material contains the proofs of all theorems, some

useful derivatives, and the stock lists used in the second application.
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Table 7. Forecasting errors based on different factor models and the related DM testing
results.

1-step 5-step 10-step

Sector Diagonal Model Frobenius Spectral Frobenius Spectral Frobenius Spectral

Financial

F-VT-CBF-HAR 8.7701 7.9339 10.4581 9.7229 11.0221 10.3200

F-VT-CBF 8.8116 7.9824† 10.6677∗ 9.9315� 11.3503∗ 10.6713�

F-VT-CAW-HAR 8.7865 7.9644∗ 10.5183 9.8144† 11.1072 10.4575

F-VT-CAW 8.8354∗ 8.0248� 10.7097∗ 10.0151∗ 11.5030� 10.8786�

F-VAR-HAR 8.8878∗ 8.0662∗ 11.1055� 10.4644� 11.7725� 11.1745�

Industrial

F-VT-CBF-HAR 7.9567 7.0936 9.3154 8.5480 9.8270 9.0842

F-VT-CBF 7.9735 7.1169 9.4094 8.6334 9.9837 9.2397

F-VT-CAW-HAR 7.9680 7.1112† 9.4106∗ 8.6494∗ 10.0565� 9.3255�

F-VT-CAW 7.9995∗ 7.1450∗ 9.4645∗ 8.7001∗ 10.1157∗ 9.3826∗

F-VAR-HAR 8.0567∗ 7.2170∗ 9.6801� 8.9531� 10.2809� 9.5794�

Health Care

F-VT-CBF-HAR 6.6253 5.8586 7.4977 6.8076 7.8436 7.1863

F-VT-CBF 6.6628† 5.9019† 7.6400∗ 6.9605∗ 8.0708� 7.4398�

F-VT-CAW-HAR 6.6126 5.8559 7.5658∗ 6.8892∗ 7.9743� 7.3317�

F-VT-CAW 6.7451� 6.0117� 8.0423� 7.3944� 8.3738� 7.7569�

F-VAR-HAR 6.6688 5.8954 7.6163∗ 6.9389∗ 7.9457† 7.2872

Consumer

Discretionary

F-VT-CBF-HAR 8.3355 7.0130 9.3278 8.1225 9.6830 8.5081

F-VT-CBF 8.3552† 7.0415∗ 9.4191† 8.2195† 9.8426∗ 8.6883∗

F-VT-CAW-HAR 8.3517∗ 7.0307∗ 9.3886� 8.1935� 9.7918� 8.6294�

F-VT-CAW 8.3727∗ 7.0560� 9.4489∗ 8.2546∗ 9.9211� 8.7754�

F-VAR-HAR 8.3914∗ 7.0762∗ 9.5017∗ 8.3282∗ 9.9085� 8.7575�

The DM test is used to compare the prediction accuracy between the diagonal F-VT-CBF-HAR and the other

four competing models. The result for each competing model is marked with a “†”, “∗” or “�” if the DM test

implies that the Diagonal F-VT-CBF-HAR model gives significantly more accurate predictions than this

competing model at the 10%, 5%, or 1% level, respectively.
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