
Statistica Sinica 32 (2022), 737-753
doi:https://doi.org/10.5705/ss.202019.0388

A METHOD OF LOCAL INFLUENCE ANALYSIS

IN SUFFICIENT DIMENSION REDUCTION

Fei Chen1, Lei Shi1, Lin Zhu1,2 and Lixing Zhu3

1Yunnan University of Finance and Economics, 2Tiantai County Branch of

the People’s Bank of China and 3Hong Kong Baptist University

Abstract: A general framework for a local influence analysis is developed for suf-

ficient dimension reduction when the data likelihood is absent and the inference

result is a space rather than a vector. A clear and intuitive interpretation of this

approach is described. Its application to the sliced inverse regression is presented,

together with its invariance properties. A data trimming strategy is also suggested,

based on the influence assessment for observations provided by our method. A

simulation study and a real-data analysis are presented. The results indicate that

the local influence analysis avoids the masking effect, and that the data trimming

provides a substantial increase in the inference accuracy.
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1. Introduction

In nonparametric regression modeling, if the response is related to all predic-

tors through a small number of their linear combinations, determining these linear

combinations without loss of information on the response will help enhance infer-

ence efficiency and model visualization. This is the goal of sufficient dimension

reduction (Li (1991); Cook (1998a)), which includes methods such as the sliced

inverse regression (Li (1991)), sliced average variance estimation (Cook and Weis-

berg (1991)), principal Hessian directions (Li (1992)), directional regression (Li

and Wang (2007)), discretization-expectation estimation (Zhu et al. (2010)), cu-

mulative slicing estimation (Zhu, Zhu and Feng (2010)), gradient-based methods

(Xia (2007); Zhu and Zeng (2006); Wang and Xia (2008); Yin and Li (2011)),

and semiparametric method proposed by Ma and Zhu (2012), among others.

In contrast to the issue of fitting a regression function, the majority of the

above dimension-reduction methods strongly depend on assumptions about the

distribution of the predictor vector. For example, the method of principal Hes-
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sian directions needs the normality assumption, and the sliced inverse regression

is based on the linearity condition, which is only slightly weaker than the elliptical

symmetry of distribution. To handle more general distributions, new methods

have been proposed by, among others, Li and Dong (2009), Dong and Li (2010),

and Guan, Xie and Zhu (2017). Note that these methods are designed to deal

with an overall violation of the desired distributional structure, for example,

skewness of the joint distribution of the predictors. In practice, there is a chal-

lenging issue related to observations with outlying values of the predictor vector,

called high-leverage data points. These outliers may be extreme values that still

follow the designed distribution, or could be genuine outliers that make the un-

derlying distribution violate the distributional assumption. Even the former may

break the symmetry of the distribution of the sample data, which is important

for many sufficient dimension reduction methods (e.g., the sliced inverse regres-

sion). Although high-leverage data points are not always “bad” data points in

other regression modeling procedures, they are in terms of sufficient dimension

reduction. Moreover, outlying values of errors in the regression may impair the

inference accuracy on dimension reduction. The effects of an observation may

be due to one of the above causes, or both. In general, the threat of outliers

is non-ignorable. As we show in our simulation studies, changing the values of

several observations can lead to a sharp decrease in the estimation accuracy for

the dimension reduction subspace and structural dimension when a sliced inverse

regression is used in some classical scenarios. This issue has received some at-

tention; see Cook and Critchley (2000), Gather, Hilker and Becker (2001), and

Gather, Hilker and Becker (2002), as well as Cook and Nachtsheim (1994), who

proposed a re-weighting method to practically achieve elliptically contoured pre-

dictors, and Zhou, Xu and Zhu (2015), who dealt with contaminated data. We

focus on detecting and handling outliers during the sufficient dimension reduction

procedure.

By simultaneously considering the above two causes of outlyingness, an in-

fluence analysis provides us with an integrated assessment of the effects of ob-

servations. Influential observations, whether outlying on predictors or errors, are

problematic in sufficient dimension reduction. Thus, finding and removing them

from the data set may be a feasible and parsimonious strategy to avoid the prob-

lems caused by a small proportion of outliers. For example, for the method of

principal Hessian directions, Prendergast (2008) and Lue (2001) proposed useful

strategies of trimming influential observations based on case-deletion diagnos-

tics. Of course, trimming data may result in some information loss, owing to the

risk of misspecification, which may be the price of pursuing robustness. In suf-
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ficient dimension reduction, existing influence assessment methods are primarily

case-deletion methods based on the influence function; see Prendergast (2006,

2007) and Prendergast and Smith (2010), among others. However, case-deletion

methods are not efficient in some cases, particularly when a masking effect ex-

ists. Here, a masking effect means that the effect of an influential observation

may be underestimated because of the existence of other influential observations,

especially when their positions are close to each other. Hence, a local influence

analysis for sufficient dimension reduction is required. This analysis introduces

a perturbation vector, with each entry perturbing an object of interest, say an

observation, and investigates the change of inference. In general, the method

avoids masking effects due to simultaneous perturbations.

Numerous works have examined local influence analyses; see, for example,

Cook (1986), Shi (1997), Zhu and Lee (2001) and Zhu et al. (2007). However,

no existing method can be used directly for sufficient dimension reduction, owing

to two of its features. First, there is no data likelihood. Second, the statistic

of interest is a space rather than a vector. Therefore, we attempt to develop a

general framework for local influence analysis for sufficient dimension reduction.

A clear and intuitive interpretation of this approach is described. As an applica-

tion, we implement an influence analysis of a sliced inverse regression and show

the invariance properties. We also propose a strategy for data trimming based

on our influence assessment. A simulation study and a real-data analysis are

presented to illustrate the proposed methodologies.

The remainder of the paper is organized as follows. Section 2 introduces

sufficient dimension reduction and the sliced inverse regression method. The

main methodology and results are presented in Sections 3 to 6. Section 7 reports

a real-data example for illustration. Section 8 concludes the paper. All technical

proofs and simulation studies are provided in the Supplementary Material. The

assumptions are labeled.

2. Central Subspace and Sliced Inverse Regression

Let Y and x denote the response and a p×1 random predictor vector, respec-

tively, in a regression. A subspace M(A) spanned by the columns of a matrix

A is called a dimension reduction subspace if F (y|x) = F (y|ATx), for y ∈ R,

where F (y|x) denotes the conditional distribution function of Y given x. The

intersection of all such subspaces is called the central subspace (Cook (1998b)),

B ⊂ Rp, if it is still a dimension reduction subspace. The dimension K of the cen-

tral subspace and the vectors it contains are called the structural dimension and
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dimension reduction vectors, respectively. Henceforth, we focus on local influence

analyses for the methods in order to estimate the central subspace. However, the

proposed methodology is also applicable to other sufficient dimension reduction

methods for the so-called central mean subspace (Cook and Li (2002)) if we are

interested in the dimension reduction subspace spanned by the columns in the

mean function of a regression model.

We now very briefly describe the sliced inverse regression proposed by Li

(1991), one of the most promising methods for estimating the central subspace

B.

Assumption 1. (Linear design condition) For any b ∈ Rp, there exist some

constants c0, c1, . . . , cK , such that E(b>x | β>1 x, . . . ,β>Kx) = c0 + c1β
>
1 x + · · ·+

cKβ
>
Kx, where β1, . . . ,βK denote a basis of B.

The sliced inverse regression is based on the key fact that E(x | Y ) − E(x)

is contained in ΣxB under assumption 1, where CA denotes {Cζ : ζ ∈ A} for

any matrix C and subspace A. Divide the range of Y into τ slices, S1, . . . ,Sτ ,

and let Σx = cov(x) and Ση =
∑τ

l=1 P(Y ∈ Sl)E(x | Y ∈ Sl)E(x | Y ∈
Sl)T − E(x)E(x)T. Then, M(Ση) ⊂ ΣxB, from the above fact and the equality

E(x | Y ∈ Sl) = E{E(x | Y ) | Y ∈ Sl}. Let K∗ be rk(Σ−1
x Ση) and b1, . . . ,bK∗ de-

note orthonormal eigenvectors of Ση with respect to Σx associated with nonzero

eigenvalues, where rk(A) denotes the rank of A. That is, Σηbk = λkΣxbk,

for k = 1, . . . ,K∗, and BTΣxB = I, where λ1 ≥ · · · ≥ λK∗ > 0, K∗ ≤ K,

B = (b1, . . . ,bK∗), and I denotes a K∗×K∗ identity matrix. Then, b1, . . . ,bK∗

are dimension reduction vectors. To estimate these vectors, we need to estimate

Σx and Ση. Let (y1,x
T
1 ), . . . , (yn,x

T
n ) be n observations of (Y,xT). The matrix

Σx can be estimated as Σ̂x = n−1
∑n

i=1(xi−x̄)(xi−x̄)T, where x̄ = n−1
∑n

i=1 xi.

Let Il and nl denote the index set and the number of yi in Sl, respectively. Then,

we estimate Ση as Σ̂η = n−1
∑τ

l=1 nl(x̄l − x̄)(x̄l − x̄)T, where x̄l = n−1
l

∑
i∈Il xi

is the lth slice mean of x. Hence, bk can be estimated using b̂k, which satisfies

Σ̂ηb̂k = λ̂kΣ̂xb̂k, with λ̂1 ≥ · · · ≥ λ̂p, and B can be estimated as B̂ = M(B̂),

where B̂ = (b̂1, . . . , b̂K̂) and K̂ is the estimate of K.

For estimating K, Li (1991) proposed a sequential testing procedure in which

the hypothesis K ≤ k is rejected if
∑p

i=k+1(nλ̂i) > χ2
αk
{(p−k)(τ−k−1)}, where

αk is the test level given beforehand, and the cutoff point is the αk upper quantile

of the χ2 distribution with degrees of freedom (p− k)(τ − k− 1). Zhu, Miao and

Peng (2006) proposed a Bayesian information criterion method for constructing

a consistent estimate. Following their idea, we define the estimator of K as K̂,

which satisfies G(K̂) = max0≤k≤p−1G(k), where G(k) = logLk − P (k), with
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logLk =
∑p

i=1+min(ν,k) n{log(λ̂i + 1) − λ̂i}/2 and P (k) = Cnk(2p − k + 1)/2.

Here, ν denotes the number of λ̂i that are positive, and Cn is a penalty constant

given beforehand.

Hereinafter, regardless of the method used, we always let K̂ and B̂ be the

estimates of K and B, respectively, and let B̂ = (b̂1, . . . , b̂K̂), with b̂1, . . . , b̂K̂
being the dimension reduction vector estimates, a basis of B̂.

3. A General Framework for Local Influence Analysis

Let the vector ωs×1 denote the perturbation introduced to the model, and

let b̂1(ω), . . . , b̂K̂(ω) be the estimates of the dimension reduction vectors under

the perturbed model. The scheme to introduce ω is called a perturbation scheme,

where each entry of ω is associated with an influence measure, say, an observation.

We specify perturbation schemes for influence measures of observations in Section

5. The following general framework applies to any appropriate perturbation

scheme. Let B̂(ω) = M{B̂(ω)} denote the estimated central subspace under a

perturbation, where B̂(ω) = (b̂1(ω), . . . , b̂K̂(ω)). Moreover, let ω(0) stand for

no perturbation; that is, the model is not perturbed when ω = ω(0). Clearly,

B̂(ω(0)) = B̂ and B̂(ω(0)) = B̂. First, to measure the discrepancy between the

subspaces B̂ and B̂(ω), we construct a space displacement function D(ω) based

on the trace correlation (Hooper (1959)):

D(ω) = 1− 1

K̂
tr(PZTB̂PZTB̂(ω)), (3.1)

where Z is a p×n matrix, with the ith column zi = xi− x̄, and PA denotes the

orthogonal projection matrix on A.

Let r̄2(ω) =
∑K̂

i=1 r
2
i /K̂ denote the square of the trace correlation (Hooper

(1959)) of B̂Tx, as explained by B̂(ω)Tx, where ri denotes the ith canonical

correlation between B̂Tx and B̂(ω)Tx. Then, D(ω) = 1 − r̄2(ω). Because the

purpose of sufficient dimension reduction is to find the variables bTx,b ∈ B, the

space displacement D(ω) is designed to take the variance-covariance structure of

x into account. It possesses the following two properties: (i) 0 ≤ D(ω) ≤ 1;

and (ii) D(ω) attains its minimum at ω(0). Property (i) is illustrated by Hooper

(1959), and (ii) can be derived from (i) with the fact that D(ω(0)) = 0.

In our methodology, the space displacement D(ω) plays an important role,

similar to that of the likelihood displacement in Cook (1986). The geometric

surface (ωT, D(ω))T is called an influence graph, from which we attempt to

draw information on the local influence of the perturbation ω around ω(0). The
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bottom of the influence graph is the point (ωT
(0), D(ω(0)))

T. Let ω = ω(0) + th,

with hTh = 1. For a given standardized vector h, the graph of L(h) = {((ω(0) +

th)T, D(ω(0) + th))T : t ∈ R1} is a curve on the influence graph, called the lifted

line of the influence graph along direction h, passing through (ωT
(0), D(ω(0)))

T.

Note that (ωT
(0), D(ω(0)))

T is the common bottom of all lifted lines. The local

behavior of the lifted line L(h) around ω(0) reveals information about the local

influence of the perturbation ω along h on the estimate of the central subspace,

although D(ω(0) + th) is not necessarily second-order differentiable at t = 0 for

each direction h. We now attempt to find a statistic that represents the influence

of the perturbation along h.

By the coordinate system rotation, the lifted line L(h) can be regarded as

a plain curve with the expression {(t,D(ω(0) + th))T : t ∈ R1} in rotated coor-

dinates. Inspired by Cook (1986), we now investigate the local behavior of the

function D(ω(0) + th) at t = 0 using an expansion of D(ω(0) + th). The following

expanding expressions, in which the random observations (x>1 , y1)>, . . . , (x>n , yn)>

are regarded as given, are not asymptotic, but instead are perturbation expres-

sions with o(t) and o(t2) unrelated to the sample size.

Assumption 2. ( 1) rk(Z) = p; ( 2) for any given h, B̂(ω(0) +th) is continuous

in a neighborhood of t = 0; ( 3) there is a matrix FB,h, such that

B̂(ω(0) + th) = B̂ + tFB,h + o(t). (3.2)

Then, the following holds (see part S1 of the Supplementary Material for the

proof):

D(ω(0) + th) =
1

2
t2vec(FB,h)T ∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

vec(FB,h) + o(t2),

(3.3)

where d(A) = 1 − tr(PZTB̂PZTA)/K̂, PC = C(C>C)−1C>, and vec(A) =

(aT
1 , . . .a

T
u )T, with ai being the ith column vector of A. Recall that in Cook

(1986), the lifted line

ld(ω(0) + th) =
1

2
t2Ch + o(t2),

where the displacement function ld(ω) is based on the likelihood and assumed

to be second-order differentiable with respect to ω, and Ch is the normal curva-

ture employed for influence assessment. Hence, for D(ω), we define the quasi-

curvature of the lifted line along h at ω(0) as
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qch = vec(FB,h)T ∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

vec(FB,h),

which is a statistic that measures the influence of the perturbation along h. This

quasi-curvature is an analogue of the normal curvature Ch defined in Cook (1986).

In fact, qch is exactly the curvature of the lifted line L(h) at t = 0 if D(ω(0) +th)

is second-order differentiable at t = 0. However, we do not assume the existence

of the curvature because B̂(ω(0) + th) is not necessarily smooth enough for each

h. That is why we call qch quasi-curvature, rather than curvature. Furthermore,

we define the influential direction as

hmax = argmax
hTh=1

qch.

This direction is an important diagnostic that indicates how to perturb the model

to produce the strongest local influence on the central subspace estimate. Hence,

for i = 1, . . . , s, the absolute value of the ith element of hmax is used as the

influence measure for the aspect perturbed by ωi in the model. For example, to

assess the influence of observations, we design a perturbation scheme in which

the ith entry of ω is associated with the ith observation, and we use |hmax,i| as

its influence measure.

For the cutoff value, Zhu and Lee (2001) proposed a benchmark that takes

the sample mean and variation of influence measures into account. Inspired by

this work, we take the benchmark for the influence measures to be M̄ + 1.645sM ,

where M̄ and sM are their sample mean and standard deviation, respectively.

An observation is called influential if its influence measure is larger than the

benchmark.

When we find a matrix D̈ω(0)
such that qch = hTD̈ω(0)

h, the influential di-

rection is the eigenvector of D̈ω(0)
associated with its largest eigenvalue. Inspired

by Zhu and Lee (2001), we construct another option for the influence measure vec-

tor, called the aggregate contribution vector, defined as M0 =
∑s

i=1 λ̃ie
(s)
i , where

e
(s)
i = (e2

i1, . . . , e
2
is)

T and {(λ̃i, ei)}si=1 are pairs of eigenvalues and orthonormal

eigenvectors of D̈ω(0)
.

4. Specification and Interpretation for the Quasi-Curvature

Lemma 1 presents the expression of ∂2d(A)/∂vec(A)∂vec(A)T|A=B̂.

Lemma 1. Let ⊗ denote the Kronecker product. Then, it holds that

∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

=
2

K̂
(B̂TZZTB̂)−1 ⊗ {Z(I−PZTB̂)ZT}.
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Note that ZZT/n = Σ̂x. It is natural to take B̂ satisfying B̂TΣ̂xB̂ = I

in sufficient dimension reduction methods such as the sliced inverse regression,

principal Hessian directions, and so on. The above lemma indicates that when

B̂TΣ̂xB̂ = I, the expression of the quasi-curvature can be written as

qch =
2

K̂

K̂∑
k=1

f
(k)>
B,h (Σ̂x − Σ̂xB̂B̂>Σ̂x)f

(k)
B,h,

where f
(k)
B,h denotes the kth column of FB,h. This expression is useful for calcu-

lation. The quasi-curvature can also be written as

qch =
2

nK̂

K̂∑
k=1

‖(I−PZTB̂)ZTf
(k)
B,h‖

2, (4.1)

where ‖·‖ denotes the Euclidean norm. This expression provides us with an intu-

itive interpretation of qch. We begin with the interpretation of (I−PZTB̂)ZTf
(k)
B,h.

From equality (3.2), it holds that for k = 1, . . . , K̂,

(I−PZTB̂)ZTb̂k(ω(0) + th) = (I−PZTB̂)ZTb̂k + t{(I−PZTB̂)ZTf
(k)
B,h}+ o(t).

Because PZTB̂ is the projection matrix on M(ZTB̂), this equality implies that

the vector (I−PZTB̂)ZTf
(k)
B,h represents the local change of the projection of ZTb̂k

on the orthogonal complement of M(ZTB̂) under the local perturbation along

h. Here, ZTb̂k is the centralized sample vector of b̂T
k x, called the kth dimension

reduction variate, andM(ZTB̂) is spanned by ZTb̂1, . . . ,Z
Tb̂K̂ . The projection

plays a key role. It separates the local change of the kth dimension reduction

direction into two parts, with one in the estimated central subspace, and the

other in its orthogonal complement; only the latter part is used in qch. This

appears to be reasonable because qch is supposed to describe the local change

of this subspace estimate. In addition, B̂TΣ̂xB̂ = I means that the b̂T
k x are

uncorrelated, which is why ‖(I−PZTB̂)ZTf
(k)
B,h‖

2s are additive in (4.1).

5. Properties of the Quasi-Curvature and Perturbation Schemes

Irrespective of the perturbation scheme, the influence assessment provided

by the quasi-curvature method is invariant when the basis of B changes in the

influence analysis for B.

Theorem 1. When B̂ and B̂(ω) in (3.1) are substituted by B̂A and B̂(ω)C,
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respectively, with A and C invertible matrices, the space displacement function

D(ω) is invariant, indicating that the quasi-curvature and the influential direction

are also both invariant under Assumption 2.

However, selecting an appropriate perturbation scheme is still crucial. In a

local influence analysis, the perturbation scheme is not an assumption that the

data should satisfy, because the perturbation itself is artificial. Actually, under

any perturbation scheme that is smooth enough as a function of ω, the quasi-

curvature method can always give an influence assessment. However, a reasonable

perturbation scheme should fairly perturb all the considered aspects. Moreover,

for a specific sufficient dimension reduction method, we need to carefully design a

perturbation scheme to ensure some properties. For example, in a sliced inverse

regression, b̂T
i x is invariant under the transformation Ax, for any p×p invertible

matrix A (Li (1991)). Thus, b̂∗Ti x∗ = b̂T
i x, where x∗ = Ax and the b̂∗i are

estimates of the dimension reduction directions for x∗. Hence, it is natural to

assume that the influence assessment remains invariant under the transformation

of observations x∗i = Axi, for i = 1, . . . , n.

We now design a perturbation scheme to assess the influence of observa-

tions in a sliced inverse regression, which satisfies the invariance property under

the transformation Ax. For this purpose, we adopt the so-called multiplicative

scheme (Shi (1997); Lee and Tang (2004)). Specifically, we directly perturb the

observations (xT
i , yi)

T to (ωix
T
i , yi)

T, for i = 1, . . . , n, and obtain the estimates

b̂1(ω), . . . , b̂K̂(ω), with (xT
i , yi)

T replaced by (ωix
T
i , yi)

T. Note that yi is not

perturbed, because it is used only for slicing, and the local influence analysis is

the same, regardless of whether yi is perturbed. The reason is as follows. In

general, slicing should be based on the distributional information of the response

values for the observations. There is always a small neighborhood of ω(0) such

that, for ω in it, ω1y1, . . . , ωnyn keep the same order as y1, . . . , yn when sorted.

Hence, a small perturbation on y will not change the inference result because

the slicing remains unchanged. Because the impact of the observations on the

central subspace estimate depends on slicing, the influence assessment of obser-

vations can be obtained only when slicing is given. This scheme can be expressed

as

X(ω) = Xdiag(ω), (5.1)

where ω = (ω1, . . . , ωn)T, X = (x1, . . . ,xn), and diag(ω) denotes a diagonal ma-

trix with the ith diagonal element ωi. Under scheme (5.1), we have the following

property for the sliced inverse regresson.
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Theorem 2. Let x∗1, . . . ,x
∗
n denote the sample of x∗ under the invertible affine

transformation x∗ = Ax, and let D∗(ω) be the space displacement function under

the model in which Y is regressed on x∗. Then, under the sliced inverse regres-

sion and scheme (5.1), where the data before and after the transformation are

perturbed to (ωix
T
i , yi)

T and (ωix
∗T
i , yi)

T, respectively, for i = 1, . . . , n, it holds

that D∗(ω) = D(ω), which indicates that the quasi-curvature and the influential

direction are both invariant under Assumption 2.

This theorem also indicates that under (5.1), D(ω) remains invariant when

the measuring units of the predictors change, which is a special case in which A

is diagonal. Not every scheme possesses this invariance property. For example,

it does not hold under the scheme xi(ω) = xi + (ωi, . . . , ωi)
T, for i = 1, . . . , n.

Moreover, under scheme (5.1), Assumption 1 holds when some mild conditions,

specified in Theorem 3, are satisfied.

Remark 1. Another natural option is the so-called re-weighting-case pertur-

bation scheme, which also possesses the invariance property. We include some

results under this scheme in part S10 of the Supplementary Material, but this is

not the focus of the present study.

6. Assessing the Joint Influence of the Observations in a Sliced Inverse

Regression

To derive the expression of vec(FB,h), the following lemma is useful. Without

loss of generality, we assume that the data points (y1,x
T
1 )T, . . . , (yn,x

T
n )T have

been sorted by Y . Some of the following concepts can be found in Kato (2013).

Lemma 2. Let λ̂ be a simple eigenvalue of Σ̂η with respect to Σ̂x, and let b̂

be an eigenvector associated with b̂TΣ̂xb̂ = 1, where Σ̂η and Σ̂x are, respec-

tively, symmetric and positive-definite matrices, and a simple eigenvalue means

the dimension of its eigen-subspace is one. Let Σ̂x(ω) and Σ̂η(ω) be the esti-

mates of Σx and Ση, respectively, under the perturbation, with Σ̂x(ω(0) + th)

and Σ̂η(ω(0) + th) both being symmetric for t in a real neighborhood of t = 0, for

any standardized h. Suppose Σ̂x(ω(0) + th) is well defined and holomorphic in a

complex neighborhood of t = 0, and Σ̂η(ω(0) + th) is differentiable in a real neigh-

borhood of t = 0. Then, the dimension of the total eigenspace for the λ̂-group is

one for t in a real neighborhood of t = 0, and the corresponding perturbations of λ̂

and b̂, denoted by λ̂(t) and b̂(t), respectively, are continuous in this neighborhood

and differentiable at t = 0 in the real space:

λ̂(t) = λ̂+ tλ̂∗,1 + o(t), b̂(t) = b̂ + tf + o(t), (6.1)
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where

λ̂∗,1 = b̂TΣ̂η,1b̂− λ̂b̂TΣ̂x,1b̂ (6.2)

f =
1

2
Σ̂
−1/2
x (Σ̂

−1/2
x Σ̂ηΣ̂

−1/2
x − λ̂I)+Σ̂

−1/2
x (Σ̂ηΣ̂

−1
x Σ̂x,1b̂

+λ̂Σ̂x,1b̂− 2Σ̂η,1b̂)− 1

2
Σ̂
−1
x Σ̂x,1b̂, (6.3)

in which A+ denotes the Moore–Penrose inverse of matrix A, Σ̂η,1 and Σ̂x,1

denote ∂Σ̂η(ω(0) + th)/∂{t}|t=0 and ∂Σ̂x(ω(0) + th)/∂{t}|t=0, respectively, and

∂A(t)/∂{t} denotes the matrix with its (i, j)th element ∂aij(t))/∂t.

Remark 2. (1) The expression of b̂(t) given by (6.1) means b̂(t) can be chosen

in this way because it can also be −b̂− tf + o(t), but this does not change qch

(see Theorem 1); (2) What we need is the perturbation theory in the real space,

and Σ̂x(ω(0) + th) is real for real t. However, we still require that Σ̂x(ω(0) + th)

be well defined and holomorphic in a neighborhood of t = 0 in the complex

plane. This ensures the differentiability of λ̂(t) and b̂(t) at t = 0 in the real

space, considering that the smoothness of the eigen-projections can be lost if the

holomorphy in the complex plane of a matrix A(t) is replaced by differentiability

in the real space (Kato (2013)). Actually, this requirement is easy to satisfy. For

example, it is satisfied under the scheme (5.1) in a sliced inverse regression. (3)

The condition of simple eigenvalues is not so demanding; see the comment under

the sliced inverse regression in the Supplementary Material.

Remark 3. A brief expression of f in Lemma 2 is as follows:

f = −PΣ,b(Σ̂η − λ̂Σ̂x)+P>Σ,b(Σ̂η,1 − λ̂Σ̂x,1)b̂− 1

2
(b̂>b̂)PbΣ̂x,1b̂, (6.4)

where PΣ,b = I− b̂b̂>Σ̂x is the projection matrix alongM(b̂) to the orthogonal

complement of M(Σxb̂), and Pb denotes the orthogonal projection matrix on

M(b̂). This expression is intuitively clearer.

For the proof of Lemma 2, see the Supplementary Material, Part S5. We

obtain (6.2) and (6.3) by generalizing the analysis of the perturbation effects

on individual eigenvalues and eigenvectors (Sibson (1979)), with a concise proof

provided. Equality (6.3) can also be derived from theorem 1 in Prendergast and

Smith (2010). Equality (6.2) is a by-product that is not used here, but we expect

it to be useful in future, because the λ̂i play key roles in estimates of K.

Under the sliced inverse regression and scheme (5.1) with ω = ω(0) + th, the

conditions in Lemma 2 are obviously all satisfied. Combining Lemmas 1, 2, and
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3 (see the Supplementary Material, part S7) provides Theorem 3.

Theorem 3. Under the sliced inverse regression and perturbation scheme (5.1),

if rk(Z) = p and the eigenvalues λ̂1, . . . , λ̂K̂ of Σ̂η with respect to Σ̂x are all

simple, the quasi-curvature of the lifted line along h at ω(0) can be expressed as

qch = hTD̈ω(0)
h, where D̈ω(0)

denotes

D̈ω(0)
=

2

nK̂

K̂∑
k=1

∆T
B,k{Z(I−PZTB̂)ZT}∆B,k,

in which

∆B,i =
1

2
(Ση,x,iΣ̂ηΣ̂

−1
x + λ̂iΣη,x,i − Σ̂

−1
x )

{
1

n
Xdiag(ZTb̂i)

+
1

n
Zdiag(XTb̂i)

}
−Ση,x,i

{
1

n
Xdiag(ZT

η b̂i) +
1

n
Zηdiag(XTb̂i)

}
,

for i = 1, . . . , K̂, and Ση,x,i = Σ̂
−1/2
x (Σ̂

−1/2
x Σ̂ηΣ̂

−1/2
x − λ̂iI)+Σ̂

−1/2
x . The in-

fluential direction hmax is the eigenvector of D̈ω(0)
associated with its largest

eigenvalue.

The above quasi-curvature method for an influence assessment of observa-

tions supports a simple strategy of data trimming. When the influence measures

for a small proportion of observations are outstanding, clipping them out of the

data set before the sufficient dimension reduction may be a feasible and parsimo-

nious way to avoid the risk of data contamination. We illustrate this further in

the simulation and real-data analysis.

The above procedure can be easily extended to many other sufficient di-

mension reduction methods. Lemma 2 is shared by other methods that obtain

dimension reduction directions by calculating the eigenvectors of a kernel matrix,

which is similar to Σ̂η, with respect to the covariance matrix of x (e.g., the princi-

pal Hessian direction and sliced average variance estimation methods). Then, the

only work needed by the extension for these methods is a matrix differentiation

similar to Lemma 3, which depends on the specific form of the perturbed kernel

matrix and the covariance matrix of x.

Remark 4. Under the re-weighting-case perturbation scheme, qch can also be

expressed in the quadratic form hTD̈
(R)
ω(0)

h, with D̈
(R)
ω(0)

and related quantities

given in the Supplementary Material (part S10). In addition, we have shown

that the quasi-curvature method under the re-weighting-case scheme is similar to

the case-deletion method.
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Remark 5. We also considered local influence analyses for the cumulative mean

estimation proposed by Zhu, Zhu and Feng (2010) and MAVE based on condi-

tional density function (dMAVE) proposed by Xia (2007). Both the theoretical

results and the simulation studies are available in the Supplementary Material.

7. A Real-Data Example

Here,we examine the relationship between the ambient nitrate concentration

and the predictors; see, for example, Bondell, Krishna and Ghosh (2010) and

Chen et al. (2015). We conduct a sliced inverse regression for the visualization.

The response is the total ambient nitrate concentration (y), and the predictors

are the mean ambient particulate ammonium concentration (x1), mean ambient

particulate sulfate concentration (x2), relative humidity (x3), ozone (x4), pre-

cipitation (x5), temperature difference between 9 m and 2 m probes (x6), and

scalar wind speed (x7). The original data are obtained from the Clean Air Sta-

tus and Trends Network (www.epa.gov/castnet), provided by the United States

Environmental Protection Agency. The data are seasonal for y, x1, and x2 and

hourly for x3–x7. The hourly data are transformed to be seasonal using the

method of Chen et al. (2015), and all predictors are standardized. We use the

data from BEL116 and BWR139, two sites in Maryland, the United States, from

2001 to 2009. Suppose that two observations from another site (WSP144) are

contained in our data set by mistake, with case numbers 68 and 69; then we have

69 observations, excluding those with missing entries.

We conduct a sliced inverse regression and its influence analysis for this

data set. For the slicing strategy, we obtain [n/vs] slices, with each of the first

[n/vs] − 1 slices containing vs observations, and the last slice containing the

remaining observations, where [ξ] denotes the integer closest to ξ. For comparison,

three methods are used, including our quasi-curvature approach, denoted by qc,

and two sample influence functions proposed by Prendergast (2006, 2007) and

Prendergast and Smith (2010), denoted by sifb and sifc, respectively. The latter

two are both case-deletion methods. We denote the influence measures that they

provide for the ith observation as sifb(i) and sifc(i). In both cases, the slices are

kept unchanged after the deletion of each observation. For the quasi-curvature

method, the influential direction hmax under the perturbation scheme (5.1) is

used, with |hmax,i| as the influence measure of the ith observation.

We show the results obtained when vs is six, a moderate value for data slicing.

Without data trimming, K̂ = 1 and b̂1 = (1.432,−1.035,−0.360, 0.175,−0.071,

0.026, 0.660)T, where K̂ is obtained using the sequential tests, with αT = 0.05

www.epa.gov/castnet
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− − −

Figure 1. Index plots of influence measures for observations and scatter plots of y versus
b̂T
1 x, with identified influential points marked by circles.

and the test level being αT /7 in each step. We obtain the influence measures of

the observations using the quasi-curvature method (hmax) under scheme (5.1),

and identify five of them as influential with the benchmark M̄ + 1.645sM ; see

Figure 1 (a1) for the index plot. In the scatter plot of y versus b̂T
1 x (see Fig-

ure 1 (a2)), these five observations, which are marked by circles, appear to be

outliers. For comparison, we also obtain the influence measures of observations

using Prendergast’s two case-deletion methods, with their index plots given in

Figures 1 (b1) and (c1), and identified influential observations marked by cir-

cles in Figures 1 (b2) and (c2). It appears that the 68th observation, which

is quite outlying in the scatter plot of y versus b̂T
1 x, may not receive sufficient

attention from the two case-deletion methods. Considering that its position is

somewhat close to the 69th observation, this lack of attention may be due to the

masking effect. Under the re-weighting-case scheme, the aggregate contribution

vector based on the quasi-curvature is still similar to that of the case-deletion

method (Prendergast and Smith (2010)). The cosine of the angle between M0

and (sifc(1), . . . , sifc(n))T is 0.980, and the former identifies the 3rd, 20th, 31st

and 69th observations as influential.

The following fact appears to indicate that data trimming can help make a

more definite and unified conclusion about K̂ under different data slicing pat-

terns. We have tried all the values of vs from 4 to 15. Based on the over-



LOCAL INFLUENCE IN SUFFICIENT DIMENSION REDUCTION 751

all data set, we have K̂ = 2 when vs = 10, and when vs is taken to be any

other value, we always obtain K̂ = 1. In the tests for K < 1 and K < 2, the

means of the p-values for vs = 4, . . . , 15 are 0.00045 and 0.0568, respectively.

We now employ the data trimming. For each vs, we delete the influential ob-

servations identified by the quasi-curvature method (hmax) under scheme (5.1)

from the data set. After the data trimming, we have K̂ = 1 for all values

of vs = 4, . . . , 15, and the means of the p-values for K < 1 and K < 2 are

0.00007 and 0.0711, respectively. When vs = 6, the estimate of b1 becomes

b̃1 = (1.697,−1.441,−0.358, 0.110,−0.036,−0.050, 0.511)T after data trimming.

8. Discussion

The following offer potential further research directions for the proposed

method. The first is its application. For instance, we expect it to perform well

on the method of principal Hessian directions, because Prendergast (2008) and

Lue (2001) have already shown the usefulness of data trimming based on case-

deletion diagnostics.

Supplementary Material

The online Supplementary Material includes the simulations, proofs of the

theoretical results, and some other technical details.
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