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Abstract: To deal with the region selection problem in functional linear models,

we propose a functional information criterion that can be used to identify the null

region where the functional predictor has no contribution to the response. The null

region identified by our proposal is shown to be asymptotically consistent under

some mild conditions. In addition, we obtain the convergence rate of the length of

the null region estimate, which has not been considered previously. The procedure

is easily implementable in practice. The finite-sample performance is illustrated in

applications to simulated and real data.
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1. Introduction

The functional linear model (FLM) has been widely adopted to investigate

the relationship between a scalar response Y and a functional predictor X(t)

defined on a compact set [0, T ]. Let {(Yi, Xi(t)), i = 1, . . . , n} be independent

observations of (Y, X(t)). The FLM is formulated as

Yi = a+

∫ T

0
Xi(t)β(t)dt+ εi, i = 1, . . . , n, (1.1)

where a is the intercept, β is an unknown slope function defined on the domain

[0, T ], and the regression error εi is independent and identically distributed (i.i.d.)

and independent of Xi, with mean zero and finite variance σ2. The main concern

usually focuses on estimating β and investigating the asymptotic properties of

the estimators; see Ramsay and Silverman (2005), Hsing and Eubank (2015),

Wang, Chiou and Müller (2016), Reiss et al. (2017) and the references therein for

an overview of functional data analysis. However, few studies have considered

the problem of identifying the null region on which X(t) does not contribute to
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Y . In an FLM, excluding X(t) on the null region from the model reduces the

prediction variance. On the other hand, identifying the null region, and hence

the active region in which β(t) 6= 0 almost everywhere, benefits interpretability.

In the pioneering work by James, Wang and Zhu (2009), the authors used

a simple grid basis to approximate β, and then used the Dantzig selector pro-

posed by Candes and Tao (2007) to determine whether β and its first several

derivatives are zero at some discrete grid points. However, as discussed by Zhou,

Wang and Wang (2013), the Dantzig selector requires a large number of knots

to precisely identify the null region of β. Furthermore, when the grid size is

large, the Dantzig selector tends to overparameterize the model. To overcome

this difficulty, Zhou, Wang and Wang (2013) proposed a two-stage estimator by

introducing a refinement step after obtaining an initial estimator of the null re-

gion by using the Dantzig selector. In the refinement stage, the authors use the

group smoothly clipped absolute deviation (SCAD) penalty proposed by Wang,

Chen and Li (2007) on β, and apply a boundary grid-search algorithm to re-

fine the selected null region and to estimate β on the active region. Lin et al.

(2017b) introduced a functional version of the SCAD penalty proposed by Fan

and Li (2001), and proposed a one-stage procedure that simultaneously identifies

the null region of β and estimates β on the active region. Lin et al. (2017a)

also proposed a group variable selection method based on the grouped Lasso of

Yuan and Lin (2006) after clustering. However, they do not provide theoretical

results. Note that the above approaches are based on L1-regularization methods

and require a careful selection of tuning parameters, which both increase the com-

putational complexity and make the methods difficult to use. On the other hand,

because the regularization methods simultaneously identify the null region of β

and estimate β on the active region, they require some smoothness assumptions

on β to ensure the asymptotic properties of the estimator of β. However, these

smoothness assumptions are not necessary if we are only interested in identifying

the null region. Hall and Hooker (2016) considered a special case in which β is

active on [0, θ], with θ ≤ T . To implement their methods, one needs to recon-

struct a parametric model to approximate β. However, the authors fail to explain

how to do so. In addition, as mentioned by the authors, the performance of their

methods depends on the number of functional principal components chosen in the

model. Grollemund et al. (2019) proposed a Bayesian step function estimation of

the support of the slope function. In practice, this approach is computationally

costly when the sample size is large, which may limit its implementation.

We propose a functional information criterion, called FICf, to identify the null

region in functional linear models. The FICf can be viewed as a functional gen-
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eralization of the general information criterion (GIC) developed by Shao (1997)

for classical linear models. In particular, we use B-spline basis functions to ap-

proximate β and reformulate the null region identification problem as a variable

selection problem, in contrast to existing methods in the literature. The tuning

parameters in our procedure are easy to determine, which makes our method

simple to implement and statistically stable. We prove that the null region iden-

tified by our proposal is asymptotically consistent, regardless of whether the true

underlying β is continuous at the boundaries of the active region. To the best

of our knowledge, this is the first work to extend the information criterion to

the FLM to deal with the null region identification problem. We also obtain the

convergence rate of the length of the null region estimate, which has not been

considered previously, under some quite general additional assumptions.

The rest of the paper is organized as follows. We introduce the FICf ap-

proach and its practical issues in Section 2. The asymptotic properties are given

in Section 3. Simulation studies are discussed in Section 4, followed by an appli-

cation to real data in Section 5. Section 6 concludes the paper. Sketches of the

proofs, details about the simulation studies, and some additional simulations and

another application are provided in the supplementary material.

2. Methodology

2.1. Spline approximation

For convenience, we first review spline approximations. For more details,

see, for example, de Boor (2001) and Schumaker (2007). Let 0 = t0 < t1 <

· · · < tP = T be (P + 1) evenly spaced knots on [0, T ] and Ik = [tk−1, tk],

for k = 1, . . . , P . The B-spline basis functions associated with the knots of

order d + 1 consist of (d + P ) piecewise polynomials of degree d, denoted by

BdP (t) = (B1, . . . , Bd+P )T (t). The number of the adjacent subintervals Ik that

compose the support of each B-spline basis function in BdP (t) is no more than

d+ 1. This property is called the compact support property, and is crucial to our

approach.

Given BdP , the true underlying slope function β can be approximated by

a linear combination βS(t) = BT
dP (t)b, where b = (b1, . . . , bd+P ) ∈ Rd+P are

coefficients. Additionally, bj is zero if the corresponding basis function Bj(t)

lies entirely inside the null region. See Lemma 1 for the accuracy of the spline

approximation. By using the spline approximation, we can rewrite (1.1) as

Y = a+Zb+ ε+ εe,
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where Y = (Y1, . . . , Yn)T , Z is an n× (P + d) matrix with entries

zij =

∫ T

0
Xi(t)Bj(t)dt, i = 1, . . . , n, j = 1, . . . , d+ P,

ε = (ε1, . . . , εn)T , and εe is an n × 1 vector with entries εe,i =
∫ T
0 Xi(t)[β(t) −

βS(t)]dt. With this expression, if the approximation error εe is small, we can

take advantage of the compact support property and obtain the null region by

identifying the zero coefficients of b. The above consideration motivates the

proposed model selection procedure.

2.2. The FICf method

Let Mn be a set of candidate models, where each M ∈ Mn is a subset of

{1, . . . , d+P}. Denote by b(M) the sub-vector of b with components M , and by

Z(M) the sub-matrix that consists of columns M of Z. The model corresponding

to M is µ(M) = E(Y | Z(M)) = a + Z(M)b(M). The proposed FICf method

selects the model that minimizes

FICfn, P (M) =
1

n
[Sn(M)]2 +

1

n
σ̂2pP, n(dim(M)) (2.1)

over Mn, where n−1[Sn(M)]2 = n−1‖Y − µ̂(M)‖2 is the within-sample mean

squared error, µ̂(M) is an estimate of µ under model M , σ̂2 is an estimate of

σ2, and pP, n(dim(M)) is a model complexity penalty that depends on both the

dimension of M , denoted by dim(M), and (P, n), and increases FICfn, P (M) for

overfitted models. Simply speaking, pP, n(dim(M)) affords a balance between

good fit and model complexity. The result of the above method depends on the

estimate µ̂(M). Nevertheless, the least squares estimator has a high variability

when P is relatively large. For this reason, we use the smooth spline estimator

of Cardot, Ferraty and Sarda (2003); see Section 3.

We say that A(β) is the active region of β if λ∗{t ∈ A(β) : β(t) = 0} = 0,

where λ∗ denotes the Lebesgue measure. Similarly, we call N(β) the null region

if β(t) ≡ 0 on N(β). Let M̂ be the selected model that minimizes the FICf

in (2.1). It remains to define the estimates of the active region and the null

region. Let supp(Bj) = (aj , bj) be the support of Bj , for j ∈ {1, . . . , d + P}.
Natural estimates of A(β) and N(β) are A1(M̂) = ∪j∈M̂ supp(Bj) and N1(M̂) =

∪j∈M̂c supp(Bj), respectively, where M̂ c = {1, . . . , d+ P} \ M̂ . However, unless

M̂ or M̂ c is empty, there is an overlap between Â1(β) and N̂1(β). To remove

such ambiguity, we define the active region estimate A(M̂) and the null region
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estimate N(M̂) as follows:

A(M̂) =
⋃
α∈M̂

[
bα−1 + aα

2
,
bα + aα+1

2

]
, and N(M̂) = A(M̂ c). (2.2)

Here, we set b0 = 0 and ad+P+1 = T . It is not hard to verify that A(M̂) and

N(M̂) are disjoint, except for a set of measure zero.

To summarize, we first select the model M̂ that minimizes the FICf in (2.1).

The estimates of the null region and the active region are given in (2.2). It

remains to choose the candidate model set Mn, choose the penalty function

pP, n(dim(M)), estimate σ̂2, and estimate µ̂(M) for each candidate model M ∈
M, which we discuss in Section 2.3.

2.3. Computation issues

The computation of M̂ requires to traversing all candidate models inMn and

calculating the corresponding FICf. However, the computation cost is high ifMn

comprises all the subsets of {1, . . . , d + P} when P is large. To deal with this

problem, note that a model with fewer active intervals has better interpretability.

Thus, we impose the following restriction on Mn, which can be regarded as a

minimal length restriction on both the active and the null intervals.

Each M ∈Mn consists of several sequences of adjacent integers. The length

of each integer sequence is at least dA, and there are at least dN integers between

two integer sequences.

Here, dA, dN > 0 are predefined tuning parameters. We discuss how choosing

dA and dN later in this section. This minimal length restriction also helps us

derive the asymptotic properties in Section 3.

In summary, we have the following algorithm for obtaining M̂ :

Step 1 Given the B-spline basis functions BdP (t), compute the matrix Z using

(2.1). Centralize Y and each column of Z. Compute σ̂2, the estimate of

the regression error variance.

Step 2 Compute FICf(M) in (2.1) for each candidate model M ∈Mn.

Step 3 Return the model with the least FICf as M̂ .

In Step 1, we can use any existing method to compute σ̂2 (e.g., Chapter 9 in

Ramsay, Hooker and Graves (2009)). In practice, we regress Y on the functional

principal component scores, and use the mean squared error as σ̂2 . In Step 2,

one needs a closed-form expression of the penalty pP, n(dim(M)) in (2.1). We
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suggest

pP, n(dim(M)) = n7/9
(

dim(M)

P

)
, (2.3)

which results from the simulations in the Supplementary Material. See also the

discussion after assumption (A11.2) in Section 3 for some theoretical interpreta-

tion.

We now turn to computing [Sn(M)]2 in (2.1) in Step 2. Given a model M ,

the smooth spline estimator of Cardot, Ferraty and Sarda (2003) is the minimizer

of

Qλn
(a(M), b(M)) =

1

n

n∑
i=1

[
Yi − a(M)−Zi(M)b(M)

]2
+λn‖Dm[BdP (M)Tb(M)]‖22, (2.4)

where Zi(M) is the ith row of Z(M), ‖ · ‖2 denotes the L2 norm on [0, T ],

Dm is the mth-order differential operator, and BdP (M) consists of components

M of BdP . The roughness tuning parameter λn varies with the sample size n

and balances the squared loss and the roughness of β(M, t) = BdP (M, t)T b(M)

quantified by ‖Dmβ‖22. Writing Ȳ = n−1
∑n

i=1 Yi and Z̄(M) = n−1
∑n

i=1Zi(M),

it is not hard to see that â(M) = Ȳ − Z̄(M)b̂(M). Substituting this into (2.4)

yields

Qλn
(b(M)) =

1

n

n∑
i=1

[
(Yi − Ȳ )− (Zi(M)− Z̄(M))b

]2
+λn‖DmBdP (M)Tb(M)‖22. (2.5)

For simplicity of notation, we assume Ȳ = 0 and Z̄ = 0 in rest of this section,

which can be satisfied by subtracting the sample mean (Ȳ , Z̄) from (Yi,Zi), for

i = 1, . . . , n. Let Jm be an (d + P ) × (d + P ) matrix with entries (Jm)ij =∫ T
0 DmBi(t)D

mBj(t)dt. The second term on the right side of (2.5) can be ex-

pressed as

λn‖Dm[BdP (M)Tb(M)]‖22 = λnb(M)TJm(M)b(M),

where Jm(M) is a sub-matrix of Jm formed from rows M and columns M . From

this, letting ‖ · ‖ be the Euclidean norm of a vector, the loss function in (2.5)

becomes

Qλn
(b(M)) =

1

n
‖(Y −Z(M)b(M))‖2 + λnb(M)TJm(M)b(M), (2.6)
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which is a generalized ridge regression loss function. Minimizing Qλn
(b(M)) in

(2.6) gives

b̂(M) = (Z(M)TZ(M) + λnJm(M))−1Z(M)TY .

WritingHλn
(M)= Z(M)(Z(M)TZ(M)+λnJm(M))−1Z(M)T , we have [Sn(M)]2

= n−1‖Y −Hλn
(M)Y ‖2.

To implement the above algorithm, one needs to choose the following tuning

parameters: the number of knots P and the degree d of the B-spline basis func-

tions, the order of the derivation m on the right side of (2.5), the regularization

parameter λn on the right side of (2.5), and the minimal lengths dA and dN
in the restriction on the candidate model set. In fact, only λn is a key tuning

parameter.

As commonly adopted, we use the cubic B-spline basis functions with d =

3, and set m = 2 in most cases; see Cardot, Ferraty and Sarda (2003) and

Chapter 5 in Ramsay and Silverman (2005). As discussed in Cardot, Ferraty

and Sarda (2003), the value of P is not crucial in an FLM, because overfitting

can be controlled using the roughness penalty. On the other hand, when the

sample size n is fixed, the penalty function pP, n(dim(M)) in (2.3) depends only

on dim(M)/P , which is close to λ∗(A(M))/T . For these reasons, the FICf is not

sensitive to P . In practice, P needs to be large enough to capture the character

of β. In addition, dA and dN should be small, but appropriately large to avoid

over-fitting. Note too that the number of candidate models, which decides the

computational complexity, depends only on P , dA, and dN . Therefore, we suggest

a rule of thumb of simply fixing a large P (usually from 30 to 100), and setting

dA = dN to be about one-eighth of P . One can also use cross-validation to search

for optimal P , dA, and dN , if required, which can be computed in parallel.

It remains to determine the tuning parameter λn for each candidate model

M ∈M. Here, we use the generalized cross-validation (GCV, Craven and Wahba

(1978)) method to select λn, which minimizes

GCV(λn; M) =
n−1[Sn(M)]2

(1− tr(Hλn
(M))/n)2

.

See Gu (2013) for more details about GCV in an FLM. The GCV method is fast

in terms of computation and performs well in our simulations.

In practice, the proposed estimating procedure is computationally costly for

very large P . In order to ease the computational cost, we can traverse the can-

didate model set Mn using the number of active intervals. Then we stop when

the minimal FICf among the models with k active intervals is less than that with
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(k + 1) active intervals. There is no theoretical guarantee that this approach

will converge to the model minimizing (2.1), but we can still select a reasonable

model with fewer active intervals.

3. Theoretical Properties

We first present the asymptotic properties of the smoothing spline estimator

of β under relatively weak smoothness conditions. We assume that

(A1) The true underlying slope function β is active on finite open intervals. In

addition, β is Lipschitz continuous on each active interval.

The first part of assumption (A1) is quite general. We introduce this as-

sumption to exclude certain pathological cases, such as

β(t) = t2 sin

(
1

t

)
I

[
sin

(
1

t

)
> 0

]
, t ∈ (0, 1),

where I[·] is the indicator function. We do not require the number of active

intervals to be known. The second part of assumption (A1) is a relatively weak

smoothness assumption compared with that in Zhou, Wang and Wang (2013)

and Lin et al. (2017b). The following lemma ensures the existence and accuracy

of the spline approximation.

Lemma 1. Under assumption (A1), there exists a βS(t) = BT
dP (t)bS, for t ∈

[0, T ], such that ‖β − βS‖22 < c1P
−1 for some c1 > 0, and bs, j = 0 if Bj(t) lies

entirely inside the null region N(β).

In addition, we make the following assumptions:

(A2) Let λmin and λmax be the minimum and maximum eigenvalues, respec-

tively, of n−1ZTZ. There are constants 0 < c2 ≤ c3 < ∞ such that

c2P
−1 ≤ λmin ≤ λmax ≤ c3P−1 holds in probability as n→∞.

(A3) E ‖X‖22 <∞.

(A4) P = o(n1/2), λn = o(P−2m−1).

Assumption (A2) coincides with the assumption at the beginning of Section

2 in Shao (1997), which ensures the existence of (ZTZ)−1, and is analogous to

condition (A8) in Zhou, Wang and Wang (2013) and condition (C4) in Lin et al.

(2017b); see also Zhu, Fung and He (2008) for some sufficient conditions such

that assumption (A2) holds. Assumption (A3) is required to apply the central

limit theorem on n−1
∑n

i=1Xi(t) in the proof of Theorem 1; see, for instance,
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Chapter 1 in van der Vaart and Wellner (1996) for details. With appropriately

chosen tuning parameters P and λn in assumption (A4), the bias caused by the

roughness penalty depending on λn is dominated by the approximation error.

The following result gives the convergence rates for β̂.

Theorem 1. Under assumptions (A1)–(A4), there is a unique minimizer (b̂(M),

â(M)) for (2.4) for each candidate model. If b(M) includes all nonzero bj, then

we have ‖b̂(M)−bS(M)‖ = Op(1), |â(M)−a| = Op(P
−1/2), and ‖β̂(M)−β‖2 =

Op(P
−1/2).

The main difference between Theorem 1 and Theorem 3.1 in Cardot, Ferraty

and Sarda (2003) is that the slope function β is allowed to be nondifferentiable

or discontinuous at finite points in Theorem 1, whereas the slope function is

supposed to be sufficiently smooth on [0, T ] in Cardot, Ferraty and Sarda (2003).

In this sense, Theorem 1 is a generalization of Theorem 3.1 in Cardot, Ferraty

and Sarda (2003).

Next, we give the asymptotic consistency property of our FICf approach. We

say that a selection criterion or a selection method is region selection consistent

if the null region of the selected model N(M̂) satisfies

∆λ∗β(M̂) := λ∗
{
N(β)4N(M̂)

}
p→ 0, as n→∞, (3.1)

where the operation symbol 4 denotes the symmetric difference of two sets.

Similarly to the minimal length restriction in Section 2.3, we put the following

restrictions on the candidate model setMn. Only the minimum length restriction

on the null intervals is required here.

(A5) Each M ∈Mn consists of several sequences of adjacent integers, with at

least PL(Mn) integers between two integer sequences, where L(Mn) > 0

is a parameter.

Let l(β) be the length of the shortest null interval between two active intervals for

the true underlying β. Clearly, l(β) is bounded away from zero under assumption

(A1). The following assumption on L(Mn) is required.

(A6) L(Mn) < l(β) is a predefined constant not depending on (P, n).

Assumption (A6) implies that some a priori information on l(β) is required when

developing the theoretical results. In the case that ε is Gaussian, such information

is not needed, and assumption (A6) is satisfied automatically for large enough

(P, n) by allowing L(Mn) to go to zero.

(A6′) L(Mn) = o(1). [PL(Mn)]−1 = o(1).



662 HUANG AND WANG

The reason for this is that the asymptotic properties of the FICf method depend

on the tail behavior of ε.

Before proceeding further, we introduce some useful notation. We write

f = Ω(g) if g = O(f), f = ω(g) if g = o(f), and f = Θ(g) if both f = O(g) and

f = Ω(g) hold. The corresponding order in the probability notation Ωp, ωp, and

Θp, are defined in a similar way. We assume the following conditions:

(A7) E |ε|l <∞ holds, for l = 4([T/L(Mn)]+1), where [·] is the floor function.

(A8) β has at most finite zeros on each active interval.

(A9.1) pP, n(dim(M)) is strictly monotonically increasing with respect to dim(M).

(A9.2) As (P, n)→∞, n−1pP, n(P ) = o(1).

(A9.3) As (P, n) → ∞, n−1P [pP, n(dim(M2)) − pP, n(dim(M1))] → ∞, for M1,

M2 ∈M, such that dim(M2)− dim(M1) = Θ(P ).

Assumption (A7) coincides with equation (2.6) in Shao (1997), which can also be

viewed as a tail condition for ε. Assumption (A8), like assumption (A1), excludes

certain pathological cases. Under assumption (A8), it is not hard to show that

for a given l > 0, there exists a C(l) > 0, such that

inf
E⊂A(β), λ∗(E)≥l

[ ∫
E

(β(t))2dt

]
≥ C(l).

Assumptions (A9.1)–(A9.3) provide some restrictions on pP, n(dim(M)). Assump-

tion (A9.1) is trivial. To illustrate assumptions (A9.2) and (A9.3), the penalty of

the model complexity p(P, n) is required to be dominated by the fitting error for

underfitted models, but heavy enough to avoid overfitting. The following theorem

gives the region selection consistency property of the FICf method.

Theorem 2. Under assumptions (A1)–(A8) and (A9.1)–(A9.3), the FICf in (2.1)

is region selection consistent, with (a(M), b(M)) estimated by minimizing (2.4).

When ε is Gaussian, assumption (A6) can be replaced by (A6′).

Clearly, the numerical performance depends on the estimate σ̂2, but σ̂2 is not

required be to a consistent estimate of σ2 in Theorem 2. Indeed, assumption (A6)

or (A6′) is sufficient, but not necessary for Theorem 2. The key is to introduce

an appropriate restriction on Mn to control its cardinality. The minimal null

length assumptions are compatible with the algorithm in Section 2.3, and crucial

to deriving the convergence rate of ∆λ∗β(M̂) in Theorem 3. Therefore, we simply

use assumption (A6) or (A6′) as a condition in Theorem 2.
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We now introduce some additional regular conditions in order to develop

the convergence rate of ∆λ∗β(M̂). Letting 0 ≤ u1 < v1 < u2 < v2 < · · · <
uq < vq ≤ T , suppose that β is active on A(β) = ∪qk=1(uk, vk) and vanishes on

N(β) = [0, T ] \A(β). Here, we do not require q to be known.

(A10) For all ui and vi, for i = 1, . . . , q, there are constants c5, c6 > 0 and

p ∈ {0} ∪ [1, ∞) such that |β(uj + t)| > c5t
p and |β(vj − t)| > c5t

p, for

any t ∈ (0, c6).

(A11.1) As (P, n) → ∞, n−1P [pP, n(dim(M2)) − pP, n(dim(M1))] → ∞, for

M1, M2 ∈M, such that dim(M2)− dim(M1) = ω(P 2p/(2p+1)).

(A11.2) As (P, n) → ∞, n−1P 1−δ[pP, n(dim(M2)) − pP, n(dim(M1))] → 0, for

M1, M2 ∈ M, such that dim(M2) − dim(M1) = O(P (2p+δ)/(2p+1)), for

any δ ∈ (0, 1).

The parameter p in assumption (A10) represents the smoothness behavior of the

true underlying β at the boundaries of the active intervals, and p = 0 if β is

discontinuous. Note that β is assumed to be Lipschitz continuous on each active

interval in assumption (A1), which rules out the case that β is continuous on

[0, T ], with p ∈ (0, 1). Under assumption (A10), we can choose an appropriate

penalty pP, n in assumptions (A11.1) and (A11.2), which are sharper versions of

assumptions (A9.2) and (A9.3), respectively, to obtain the optimal convergence

rate of ∆λ∗β(M̂), depending on p. For example, suppose p = 1, which seems

to be the most general case, and P = Θ(n1/3). By assumptions (A11.1) and

(A11.2), we can set pP, n = n7/9(dim(M)/P ). This interprets the rationality of

the penalty function in (2.3). Another noticeable case is p = 0. In this case, we

can set pP, n = n dim(M)/(P logP ). In general, a heavy penalty is required for a

small p.

In order to ensure assumption (A6) holds without prior knowledge of l(β)

when ε is Gaussian, we need to regularize the behavior of zeros of β (if they exist)

on A(β). Denote the zeros by t1, . . . , tJ . Suppose there are constants c7, c8 > 0

and p′ ∈ [1, ∞) such that |β(t′j + t)| > c7|t|p
′
, for all 1 ≤ j ≤ J and |t| < c8. We

assume that

(A12.1) As (P, n)→∞, L(Mn)P 1/(2p′+1) = ω(1); and

(A12.2) As (P, n)→∞, n−1L(Mn)(1−δ)/(2p
′+1)[pP, n(dim(M2))−pP, n(dim(M1))]

→ 0, forM1, M2 ∈M, such that dim(M2)−dim(M1) = O(PL(Mn)1−δ),

for any δ ∈ (0, 1).
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Note that the forecast bias caused by excluding an interval of length L(Mn) inside

A(β) depends on both L(Mn) and the behavior of the zeros of β. If p′ ≤ p, it

can be shown that assumption (A12.2) trivially holds under assumptions (A11.2)

and (A12.1). Otherwise, L(Mn) should go to zero slowly enough such that the

forecast bias caused by excluding an interval of length L(Mn) inside A(β) still

dominates pP, n. Theorem 3 gives the convergence rate of ∆λ∗β(M̂).

Theorem 3. Under assumptions (A1)–(A9.1), (A10), (A11.1), and (A11.2), it

follows that ∆λ∗β(M̂) = op(P
(−1+δ1)/(2p+1)) and

∫
N(M̂)\N(β)[β(t)]2dt = o(P−1+δ1),

for any δ1 > 0. When ε is Gaussian, assumption (A6) can be replaced by assump-

tion (A6′) if β takes no zeros on the interior of A(β) or p′ ≤ p. In the case of

p′ > p, assumption (A6) be replaced by assumptions (A12.1) and (A12.2).

In Theorem 3, the convergence rate of ∆λ∗β(M̂) depends on p in assumption

(A10). In particular, a larger p causes a slower convergence rate. This result is

not surprising, because a large p implies that β changes slowly at the boundaries

of the active intervals, which blurs the boundaries between the active intervals

and the null intervals.

4. Simulation Studies

To evaluate the finite-sample performance of our FICf procedure, we con-

ducted simulation studies on the FLM in (1.1) with T = 1 and εi ∼ N(0, σ2ε).

We consider five types of true underlying slope functions β. Owing to space con-

strains, we report only two cases in this section. The results of the other cases

and the finite-sample performance of different penalties pP, n(dim(M)) in (2.1)

are reported in the online Supplementary Material. The slope function β of the

first case is the same as that used in Lin et al. (2017b).

Case I:

β(t) =


2(1− t) sin(2π(t+ 0.2)), 0 ≤ t ≤ 0.3,

0, 0.3 < t ≤ 0.7,

2t sin(2π(t− 0.2)), 0.7 < t ≤ 1.

(4.1)

Note that β is smooth on [0, 0.3) ∪ (0.7, 1], vanishes on [0.3, 0.7], and is nondif-

ferentiable at {0.3, 0.7}.
Case II:
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β(t) =


2− 8|t− 0.15|, 0 ≤ t < 0.3,

0, 0.3 ≤ t ≤ 0.7,

−(2− 8|t− 0.85|), 0.7 < t ≤ 1.

(4.2)

The slope function β is not differentiable everywhere on the interior of the active

region, which violates the smoothness assumptions in James, Wang and Zhu

(2009), Zhou, Wang and Wang (2013), and Lin et al. (2017b). In addition, β is

discontinuous at the boundaries of the null interval.

The predictor functions {Xi(t), i = 1, . . . , n} are generated from a linear

combination of B-spline basis functions; that is, Xi(t) =
∑

j xijBj(t). The coeffi-

cients xij are generated from the standard normal distribution, and the B-spline

basis functions are defined by 71 evenly spaced knots with order 5. The error

term ε is Gaussian in the two cases, and its variance σ2ε is fixed such that the

signal-to-noise ratio Var[
∫ T
0 X(t)β(t)dt]/σ2ε = 4. We consider three sample sizes,

n = 150, 450, 1000, and replicate 200 times for each case and sample size.

We compare our FICf method with competing methods, including the FLiRTI

method of James, Wang and Zhu (2009), the two-stage method of Zhou, Wang

and Wang (2013), the smooth and locally sparse method of Lin et al. (2017b), the

Bayesian functional linear regression with sparse step functions (Bliss) method

of Grollemund et al. (2019), and the FICf0 method, which is similar to the FICf

method, except b is estimated using the least squares estimator without the

roughness penalty. The results for the ordered homogeneity pursuit Lasso method

of Lin et al. (2017a) are not reported, because this approach performs badly in

our simulations. For the FICf and FICf0 methods, we use the smoothing spline

estimator to estimate β and a for the selected model; these are estimated using

the corresponding methods for the competing methods. Owing to the computa-

tional cost, we report the results for the Bliss method with a sample size of 150

only.

The performance of the region selection is measured by the length of the

symmetric difference ∆λ∗β(M̂), defined in (3.1). The summary of ∆λ∗β(M̂) given

in Table 1 suggests that the FICf method outperforms the other methods in terms

of region selection. Note that the FICf method performs consistently better than

the FICf0, especially in the case of n = 150, which suggests that the roughness

penalty plays as an important role in our FICf method. The proposed region

selection procedure also improves both the estimation accuracy and the prediction

accuracy in our simulations. See the Supplementary Material for further details.
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Table 1. Simulation results of the length of the symmetric difference ∆λ∗β(M̂) in (3.1) for
Cases I and II. Each entry is the Monte Carlo average of 200 simulation replicates. The
corresponding standard deviation is reported in parentheses. All values are multiplied
by 100. FLiRTI: the method of James, Wang and Zhu (2009); Two-stage: the two-stage
method of Zhou, Wang and Wang (2013); SLoS: the smooth and locally sparse method
of Lin et al. (2017b); Bliss: the Bayesian functional linear regression with sparse step
functions method of Grollemund et al. (2019); FICf: the proposed function information
criterion method; FICf0: similar to FICf, but not using the roughness penalty in the
region selection.

FLiRTI Two-stage SLoS Bliss∗ FICf0 FICf

Case I

n = 150 35.0(4.47) 11.5 (10.7) 12.2 (7.59) 6.22(2.85) 28.9 (9.23) 4.93(4.25)

n = 450 31.6(6.43) 9.54(9.26) 7.96(4.07) – 13.6(7.55) 2.86(1.45)

n = 1,000 30.9(6.12) 6.79(7.96) 8.19(1.95) – 9.10(2.05) 2.66(1.32)

Case II

n = 150 31.2(6.73) 18.6 (12.5) 13.6 (3.02) 4.89(4.86) 27.5 (8.43) 7.07(4.23)

n = 450 28.9(6.64) 13.4 (9.73) 13.3 (2.93) – 10.4 (6.56) 3.81(1.93)

n = 1,000 28.0(6.58) 12.1 (9.19) 12.2 (1.90) – 4.71(1.44) 2.35(1.11)
∗We report only the results of the Bliss method with a sample size of 150, owing to the
computational cost.

5. Application to Beer Data

The beer data consist of 60 samples published by Nørgaard et al. (2000).

A curve of near-infrared light absorbance from 1,100 to 2,250 nm, in steps of

2 nm, was measured for each sample. At the same time, the original extract

concentration was recorded in degrees Plato. The main interest here is to predict

the original extract concentration from the spectra curve. The original extract

concentration is highly positively correlated with the alcohol percentage of beer,

which serves as an important quality parameter in the brewery industry.

Figures 1a and 1b illustrate the spectra curves and the centralized spectra

curves, respectively, for 10 randomly selected beer samples. By a priori visual

inspection, it seems that the region larger than 1,400 nm is very noisy. As dis-

cussed in Nørgaard et al. (2000), this region is correlated with the O–H bond

vibration of water, which almost inundates other signals.

Figure 1c (blue solid line) shows the smoothing spline estimate of β on

(1140, 1480) ∪ (2150, 2235) identified by our FICf method. It suggests that the

spectra curve from 1,480 nm to 2,150 nm makes no contribution to the original

extract concentration, which coincides with the visual inspection. The active in-

terval (1140, 1480) is consistent with the results in Nørgaard et al. (2000) and
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Figure 1. (a) (b) Spectra curves and centralized spectra curves, respectively of 10 random
beer samples. (c) The smoothing spline estimate of the slope function β on the region
selected using FICf (blue solid line) and the mean selecting frequency of the leave-one-out
samples (red dashed line).

Lin et al. (2017a). As discussed in Nørgaard et al. (2000), this region is dominated

by the C–H stretching overtone in organics. On the interval (2150, 2235), there

is a very weak negative signal that results from the tones of the C–H bond on

which the absorbance of water declines. See Smyth et al. (2008) for discussions

in chemistry, and de Carvalho et al. (2016) for the near-infrared light spectra of

water and alcohol.

The mean squared leave-one-out cross-validation errors of the FICf method

and the competing methods are reported in Table 2. In this application, the FICf

method has the lowest cross-validated error, followed by the two-stage method

of Zhou, Wang and Wang (2013). The main difference between the latter two

results is that the interval (2150, 2235) is excluded by the two-stage method. If

we remove this interval from the model, the mean squared cross-validated error

multiplied by 100 increases from 1.48 to 1.68, which implies that the negative
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Table 2. The mean squared leave-one-out cross-validated errors of different methods for
the beer data. The corresponding standard deviation is reported in parentheses. All
values are multiplied by 100. Full: the smoothing estimate for the full model; OHPL: the
ordered homogeneity pursuit LASSO method of Lin et al. (2017a); FLiRTI: the method
of James, Wang and Zhu (2009); Two-stage: the two-stage method of Zhou, Wang and
Wang (2013); SLoS: the smooth and locally sparse method of Lin et al. (2017b); Bliss-
smooth: the smooth estimate of a Bayesian functional linear regression with sparse step
functions of Grollemund et al. (2019); FICf: the smoothing spline estimate for the model
selected using the proposed function information criterion method.

Full OHPL FLiRTI Two-stage SLoS Bliss-smooth∗ FICf

4.31(6.65) 3.79(5.37) 4.54(7.79) 1.55(1.95) –† 3.98(7.27) 1.48(1.88)
∗The mean and the standard deviation of the within-sample mean squared errors are
reported instead for the Bliss-smooth method.
†The full model is selected.

relationship on that interval is informative in terms of predicting the original

extract concentration.

To evaluate the reliability of the region selection procedure, we recommend a

frequency-based measure. Let Xr, for r = 1, . . . , R, be R sets of the sample data,

and A(M̂r) be the active regions estimated from those sets. In this application,

we use the leave-one-out samples for Xr. We define the frequency of selection

f(t) =
1

R

R∑
r=1

I[t ∈ A(M̂r)], t ∈ [0, T ].

Clearly, f(t) has a value between zero and one. For a given t0, a large f(t0)

close to one indicates that t0 is likely to belong to the active region, whereas a

small f(t0) close to zero indicates that t0 is likely to belong to the null region.

Figure 1c (red dashed line) displays the frequency of selection, which confirms

the correlation on the selected region. About 35% of the cross-validated selected

regions contain the intervals (1480, 1700) or (1960, 2150). However, if we add

either or both of these intervals in the model, the mean squared cross-validated

error multiplied by 100 increases to 3.78, 3.41, and 4.25, respectively. Therefore,

these intervals may be informative. However, this is beyond the scope of this

study, and so is not explored further here.

6. Conclusion

Region selection in an FLM helps to reduce overfitting and improve inter-

pretability. We have proposed an information criterion-based method called FICf
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to identify the null region. To deal with the curse of dimensionality and the diffi-

culty in calculation, we introduce a minimal length assumption in the algorithm

that is also critical to developing the theoretical results. Note that we obtain a

convergence rate for the symmetric difference between the null region of the true

underlying slope function β and its estimate, which has not been investigated

before.

Finally, although we have considered only the FLM in this study, the pro-

posed information criterion-based method may be extended to the generalized

FLM or nonlinear models. We assume that the functional data are fully observed

in our approach. Further analysis is required for samples that are sparsely ob-

served. In terms of model selection, one may also consider other problems of

functional regression models, such as estimating the number of active intervals,

selecting the shape of a slope functions, and selecting the points of impact of

Kneip, Poss and Sarda (2016). These problems are more challenging for general

functional data defined on higher-dimensional or even non-Euclidean domains,

both theoretically and computationally.

Supplementary Material

The online Supplementary Material contains proofs of Lemma 1 and Theo-

rems 1–3, as well as some details about the simulation studies, additional simu-

lations, and another application.
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