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CAUSAL INFERENCE FROM

POSSIBLY UNBALANCED SPLIT-PLOT DESIGNS:

A RANDOMIZATION-BASED PERSPECTIVE
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Abstract: Split-plot designs find wide applicability in multifactor experiments with

randomization restrictions. Practical considerations often warrant the use of un-

balanced designs. This study investigates randomization-based causal inference in

split-plot designs that are possibly unbalanced. An extension of the balanced case

yields an expression for the sampling variance of a treatment contrast estimator,

as well as a conservative estimator of the sampling variance. However, the bias of

this variance estimator does not vanish, even when the treatment effects are strictly

additive. A careful and involved matrix analysis is employed to overcome this dif-

ficulty, resulting in a new variance estimator that becomes unbiased under milder

conditions. We propose a construction procedure that generates such an estimator

with a minimax bias. Empirical studies suggest the superiority of the proposed

estimator with respect to bias uniformly across different populations. Furthermore,

this superiority does not come at the cost of a large inflation of the mean squared

error.

Key words and phrases: Bias, factorial experiment, finite population, minimaxity,

treatment-effect additivity.

1. Introduction

Factorial experiments were originally developed in the context of agricultural

experiments Fisher (1925, 1935); Yates (1935)), and later used extensively in in-

dustrial and engineering applications Wu and Hamada (2009)). Such experiments

are currently undergoing a third popularity surge among social, behavioral, and

biomedical sciences. However, one of the key challenges of using the standard

principles of designing and analyzing factorial experiments in these fields arises

from randomization restrictions. Consider a simplified version of the education

experiment described in Dasgupta, Pillai and Rubin (2015). Suppose the goal

is to assess the causal effects on the performances of 40 schools in the state of

New York of two interventions (referred to as factors in the experimental design
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literature) : F1, a mid-year quality review by a team of experts, and F2, a bonus

scheme for teachers. Each factor has two levels, denoted by 1 (application) and

0 (non-application). A completely randomized assignment of the 40 schools to

the four treatment combinations 00, 01, 10, 11 is likely to disperse the schools as-

signed to level 1 of factor F1 (i.e., schools to undergo review) all over the state.

Such a design may be prohibitive owing to travel cost and time considerations.

A more practical alternative would be to divide these 40 schools by geographic

proximity into four groups called whole-plots (WPs). Two of these WPs would

then be assigned randomly to level 0, and the other two to level 1 of factor F1.

The teacher bonus scheme can then be applied to half of the schools chosen ran-

domly within each WP. Such a randomization scheme is an example of a classic

split-plot design. See Kirk (1982), Cochran and Cox (1957), Box, Hunter and

Hunter (2005), and Wu and Hamada (2009) for formal definitions.

Randomization-based inference is a useful methodology for drawing an infer-

ence on the causal effects of treatments from split-plot experiments in a finite-

population setting, as observed by Freedman (2006, 2008). The main advantage

of randomization-based inference is the fact that it applies even if the experimen-

tal units are not randomly sampled from a larger population, which is the case

in most social science experiments and clinical trials Abadie et al. (2020); Olsen

et al. (2013); Rosenberger, Uschner and Wang (2019)). Recently, Zhao et al.

(2018) developed a framework for a randomization-based estimation procedure

of finite-population causal effects for balanced split-plot designs, in which each

WP consists of the same number of units or sub-plots (SPs), and any treatment

combination of the SP factors occurs equally often in all WPs; see (2.4). However,

unbalanced split-plot designs are quite common in the social sciences. Consider

the school experiment described earlier. Suppose the 40 schools are spread over

four counties with 8, 8, 12, and 12 schools, respectively, in these counties. In

this case, each county can be considered as a natural WP. Thus, the design is

unbalanced and the estimation methodology proposed by Zhao et al. (2018) is no

longer applicable.

In this study, we investigate randomization-based causal inference in split-

plot designs that are possibly unbalanced, using the potential outcomes frame-

work originally introduced by Splawa-Neyman, Dabrowska and Speed (1990),

formalized in Rubin (1974); and extended in the subsequent works of Rubin.

We start with a natural unbiased estimator of a typical treatment contrast; and

examine how far the approach of Zhao et al. (2018) for the balanced case can

be adapted to our more general setup. It is seen that this approach, aided

by a variable transformation, yields an expression for the sampling variance of
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the treatment contrast estimator, but runs into difficulty in variance estimation.

Specifically, as in the balanced case and other situations in causal inference, the

resulting variance estimator is conservative in the sense of having a nonnegative

bias. However, unlike in most standard situations, the bias does not vanish, even

under strict additivity or homegeneity of the treatment effects. To overcome this

problem, a careful matrix analysis is employed, leading, under wide generality, to

a new variance estimator. This estimator is also conservative, but enjoys the nice

property of becoming unbiased under between-WP additivity, a condition even

milder than strict additivity. We also discuss the issue of minimaxity, with a view

to controlling the bias in the variance estimation, and use simulations to explore

the bias and mean squared error (MSE) of the two estimators under treatment

effect heterogeneity. Proofs of all results appear in the Supplementary Material.

2. Notation and Background

Consider a factorial experiment conducted to assess the causal effects of m1

WP factors F11, . . . , F1m1
and m2 SP factors F21, . . . , F2m2

on a finite population

of N units. Each factor has two or more levels. The treatment combinations

are denoted by z = z1z2, where zk ∈ Zk and Zk is the set of factor levels of

Fk1, . . . , Fkmk
(k = 1, 2). For i = 1, . . . , N , let Yi(z1z2) denote the potential

outcome of unit i when exposed to treatment combination z1z2. This notation

assumes the stable unit treatment value assumption Rubin (1980)), which means

that (1) the potential outcome of unit i depends only on the treatment combi-

nation it is assigned to, and (2) there are no hidden versions of treatments not

represented by all level combinations of the m1 +m2 factors. A typical treatment

contrast for unit i is of the form

τi =
∑
z1∈Z1

∑
z2∈Z2

g(z1z2)Yi(z1z2), (2.1)

where g(z1z2), for z1 ∈ Z1 and z2 ∈ Z2, are known, not all zeros, and sum to

zero. In the school example, unit i has four potential outcomes: Yi(00), Yi(01),

Yi(10) and Yi(11). Following Dasgupta, Pillai and Rubin (2015), the unit-level

main effect of factor F1 is defined as τF1

i = {−Yi(00)−Yi(01)+Yi(10)+Yi(11)}/2.

The contrast coefficients g(00), g(01), g(10) and g(11), are −1/2,−1/2, 1/2 and

1/2, respectively. The contrast coefficients for the main effect of factor F2 and

the interaction F1F2 can be similarly defined. Let
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Y (z1z2) = N−1
N∑
i=1

Yi(z1z2) (2.2)

denote the average potential outcome for treatment combination z1z2, and let

τ = N−1
N∑
i=1

τi =
∑
z1∈Z1

∑
z2∈Z2

g(z1z2)Y (z1z2) (2.3)

denote a treatment contrast for the finite population of N units. We define τ

as the finite-population causal estimand of interest, and consider the problem of

drawing an inference on τ using the outcomes observed from the experiment.

The observed outcomes are generated through an assignment mechanism,

which is the process of allocating treatment combinations to the N units. Here,

we consider the following split-plot assignment mechanism. Suppose there is a

partitioning of the N experimental units into W (≥ 2) disjoint sets Ω1, . . . ,ΩW ,

called WPs, such that Ωw consists ofMw(≥ 2) units, called SPs, for w = 1, . . . ,W ,

and M1 + · · ·+MW = N . Consider now a two-stage randomization, that assigns

r1(z1) (≥ 2) WPs to level combination z1 of F11, . . . , F1m1
and then, for each

w = 1, . . . ,W , assigns rw2(z2) SPs within WP Ωw to level combination z2 of

F21, . . . , F2m2
. Here, at each stage, all assignments are equiprobable, r1(z1) and

rw2(z2) are fixed positive integers, and
∑

z1∈Z1
r1(z1) = W and

∑
z2∈Z2

rw2(z2) =

Mw, for w = 1, . . . ,W .

Note that the above assignment mechanism yields a balanced split-plot design

if

M1 = · · · = MW , r12(z2) = · · · = rW2(z2), for all z2 ∈ Z2. (2.4)

In the school example described in Section 1, the WPs represent sets of schools

within a county, and we have N = 40, W = 4, M1 = M2 = 8, M3 = M4 = 12,

and Z1 = Z2 = {0, 1}. Finally, for all z2 ∈ Z2, rw2(z2) = 4 for w = 1, 2, and

rw2(z2) = 6 for w = 3, 4. Thus, the design is unbalanced.

To define the observed outcomes of the experiment, we introduce two sets of

random treatment assignment indices at the WP and SP levels. Let T1(z1) denote

the set of indices w such that WP Ωw is randomly assigned to level combination

z1 of F11, . . . , F1m1
. Similarly, for z2 ∈ Z2 and w = 1, . . . ,W , let Tw2(z2) be the

set of SPs in Ωw randomly assigned to level combination z2 of F21, . . . , F2m2
. For

any treatment combination z1z2, the observed outcomes from the WP Ωw, for

w ∈ T1(z1), are then Yi(z1z2), for i ∈ Tw2(z2). Let

Y
obs
w (z1z2) = {rw2(z2)}−1

∑
i∈Tw2(z2)

Yi(z1z2) (2.5)
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denote the average observed outcome for treatment combination z1z2 within WP

Ωw, for w ∈ T1(z1). In the spirit of the usual unbiased estimator of the population

mean in two-stage sampling Cochran (1977)), define

Y
obs

(z1z2) =
W

Nr1(z1)

∑
w∈T1(z1)

MwY
obs
w (z1z2) =

1

r1(z1)

∑
w∈T1(z1)

Mw

M
Y

obs
w (z1z2),

(2.6)

where M = (M1 + · · ·+MW )/W = N/W is the average WP size. From (2.5) and

(2.6), by conditioning on the randomization at the WP level, it is straightforward

to verify that E{Y obs
(z1z2)} = Y (z1z2), where Y (z1z2) is given by (2.2). Using

(2.3), an immediate consequence of this fact is Proposition 1.

Proposition 1. An unbiased estimator of the finite-population treatment contrast

τ is given by

τ̂ =
∑
z1∈Z1

∑
z2∈Z2

g(z1z2)Y
obs

(z1z2), (2.7)

where Y
obs

(z1z2) is given by (2.6).

Proposition 1 yields a point estimator of τ . However, to quantify the uncer-

tainty associated with the point estimator, one needs to derive and estimate the

sampling variance of τ̂ with respect to its distribution induced by the random-

ization in the split-plot design. In the next two subsections, we briefly describe

two areas of research that are related to our problem setting. The first is the case

of unbalanced block designs, which we discuss in Section 2.1 and explain why the

results from this setting do not apply to ours. The second is the case of balanced

split-plot designs, which motivates our work.

2.1. Why do the results from block designs not work?

The problem of Neymanian variance estimation has been recently investi-

gated for block designs that are unbalanced, that is, they have unequal block

sizes, and the results Pashley and Miratrix (2021)) have been applied to other

settings Schochet et al. (2020)). A natural question that arises is whether the

ideas used to derive variance estimators for unbalanced block designs that have

desirable properties can be applied to the case of split-plot designs. As seen from

the subsequent discussion, the fundamentally different setting of the two designs

does not permit such adaptation.

Consider a block design in W blocks Ω1, . . . ,ΩW of sizes M1, . . . ,MW , such

that any treatment combination z1z2 is randomly assigned to rw(z1z2) units of

Ωw, for w = 1, . . . ,W . The fixed positive integers rw(z1z2) sum to Mw for
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each w. Subject to this, all treatment assignments within each block are equally

likely. In addition, randomization is done independently for different blocks.

Similarly to (2.3) (See also (3.2) and (3.3) defined later), let τ1, . . . , τW be block-

level treatment contrasts, leading to the population-level treatment contrast τ =

(1/W )
∑W

w=1(Mw/M)τw, where M = N/W and N = M1 + · · · + MW . If τ̂w is

an unbiased estimator of τw on the basis of observed responses from Ωw, then τ

is unbiasedly estimated by

τ̂ =
1

W

W∑
w=1

Mw

M
τ̂w. (2.8)

The sampling variance of this estimator is (1/W )2
∑W

w=1(Mw/M)2var(τ̂w), be-

cause τ1, . . . , τW are independent across blocks. In the special case of a single

treatment factor with two levels, Pashley and Miratrix (2021) proposed several es-

timators of this variance, depending on the composition of the blocks. For blocks

containing at least two treated and two control units, this estimator is straight-

forward and is obtained by substituting a conservative estimator of var(τ̂w) that

vanishes under strict additivity. For blocks that contain only one treated or con-

trol unit, Pashley and Miratrix (2021) proposed two estimators based on the

weighted version of
∑W

w=1(τ̂w− τ̂)2. Both estimators are conservative, in general,

but unbiased under the assumption of block-level additivity; that is, the average

treatment effect is the same across all blocks. This approach is easily extendable

to experiments with multiple treatments and factorial experiments.

To see why neither of the above estimators can be defined for split-plot de-

signs, note that in order for them to be defined, the estimator τ̂w of the WP-level

contrast τw needs to be defined for each w = 1, . . . ,W . However, in a split-plot

design, τ̂w cannot be defined for any w because of the WP-level randomization.

To understand this further, consider a toy example with 12 units and two fac-

tors (each at two levels, 0 and 1) in two settings, as shown in Table 1: (i) in

W = 2 blocks of sizes M1 = 8 and M2 = 4 (left half), and (ii) in W = 2 WPs

of sizes M1 = 8 and M2 = 4 (right half), where the first factor is the WP-

factor. Assume that the contrast τ of interest is the main effect of the second

factor. The unit-level contrasts τi = {−Yi(00) + Yi(01)− Yi(10) + Yi(11)}/2, for

i = 1, . . . , 12, and the population-level contrast τ are the same in both situa-

tions. To make the two settings comparable, assume that for the block design

r1(z1z2) = 2 and r2(z1z2) = 1, for z1, z2 ∈ {0, 1}, and for the split-plot design

r1(z1) = 1, r12(z2) = 4 and r22(z2) = 2. One possible realization of the treatment

assignment for each design is shown in Table 1. In the split-plot design, the first
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Table 1. Block design versus split-plot design.

Block Unit Factor levels

00 01 10 11

1 X

2 X

3 X

4 X

1 5 X

6 X

7 X

8 X

9 X

10 X

2 11 X

12 X

WP Unit Factor levels

00 01 10 11

1 X

2 X

3 X

4 X

1 5 X

6 X

7 X

8 X

9 X

10 X

2 11 X

12 X

WP receives level 0 of the first factor, whereas the second WP receives level 1.

For the block design, τ̂w is readily defined for each block w. The block-level

variance var(τ̂w) can be estimated for w = 1, but not for w = 2, and hence

the estimators based on
∑W

w=1(τ̂w − τ̂)2 can be used. However, for the split-

plot design, neither τ̂w nor var(τ̂w) can be defined for any of the WPs, because

we observe potential outcomes for only two of the four treatment combinations

within each WP.

2.2. Sampling variance and its estimation: prior work on balanced de-

signs

Zhao et al. (2018) derived an expression for the sampling variance of τ̂ for

a balanced split-plot design, that is, when conditions (2.4) are satisfied. Under

these conditions, we can write rw2(z2) = r2(z2), for w = 1, . . . ,W and z2 ∈ Z2.

Equations (2.5) and (2.6) respectively reduce to:

Y
obs
w (z1z2) = {r2(z2)}−1

∑
i∈Tw2(z2)

Yi(z1z2),

Y
obs

(z1z2) = {r1(z1)}−1
∑

w∈T1(z1)

Y
obs
w (z1z2).

Next, Zhao et al. (2018) defined the following quantities for any z1, z
∗
1 ∈ Z1

and z2, z
∗
2 ∈ Z2:
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Sbt(z1z2, z
∗
1z
∗
2) =

M

W − 1

W∑
w=1

{
Y w(z1z2)− Y (z1z2)

}{
Y w(z∗1z

∗
2)− Y (z∗1z

∗
2)
}
,

(2.9)

Sin(z1z2, z
∗
1z
∗
2) =

∑W
w=1

∑
i∈Ωw

{
Yi(z1z2)− Y w(z1z2)

}{
Yi(z

∗
1z
∗
2)− Y w(z∗1z

∗
2)
}

W (M − 1)
.

(2.10)

Here, M is the common size of the WPs in the balanced case and Y w(z1z2) =

M−1
∑

i∈Ωw
Yi(z1z2), for each w and z1z2. The quantities Sbt(z1z2, z

∗
1z
∗
2) and

Sin(z1z2, z
∗
1z
∗
2) represent, respectively, the between- and within-WP mean squares

or products in an analysis of variance/covariance decomposition of the potential

outcomes, that is, of the quantity

W∑
w=1

∑
i∈Ωw

{
Yi(z1z2)− Y (z1z2)

}{
Yi(z

∗
1z
∗
2)− Y (z∗1z

∗
2)
}
.

In addition, they defined the following quantity, which is a function of the

observed outcomes and can be computed from experimental data:

v̂(τ̂) =
∑
z1∈Z1

∑
z2∈Z2

∑
z∗
2∈Z2

{r1(z1)}−1g(z1z2)g(z1z
∗
2)s (z1z2, z1z

∗
2) , (2.11)

where

s (z1z2, z1z
∗
2) =

∑
w∈T1(z1)

{
Y

obs
w (z1z2)− Y obs

(z1z2)
}{

Y
obs
w (z1z

∗
2)− Y obs

(z1z
∗
2)
}

r1(z1)− 1
.

(2.12)

We now summarize the main results of Zhao et al. (2018) in the following

theorem on the sampling variance of τ̂ and its estimation.

Theorem 1 (Zhao).

(a) The sampling variance of τ̂ is given by

varS-P(τ̂) =
∑
z1∈Z1

∑
z2∈Z2

∑
z∗
2∈Z2

g(z1z2)g(z1z
∗
2) {Sbt (z1z2, z1z

∗
2)− Sin (z1z2, z1z

∗
2)}

Mr1(z1)

+
∑
z1∈Z1

∑
z2∈Z2

{g(z1z2)}2 Sin (z1z2, z1z2)

r1(z1)r2(z2)
−
∑W

w=1 (τw − τ)2

W (W − 1)
,

where
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τw = M−1
∑
i∈Ωw

τi =
∑
z1∈Z1

∑
z2∈Z2

g(z1z2)Y w(z1z2), (w = 1, . . . ,W ).

(b) E{v̂(τ̂)} ≥ varS-P(τ̂), with equality holding for every treatment contrast τ if

and only if between-WP additivity holds, which means Y w(z1z2) − Y w(z∗1z
∗
2) is

the same over w = 1, . . . ,W , for every pair of treatment combinations z1z2 and

z∗1z
∗
2.

Thus, to summarize, Zhao et al. (2018) obtained an estimator of the sampling

variance that, like most variance estimators in finite-population causal inference

Mukerjee, Dasgupta and Rubin (2018)), has a nonnegative bias. Further, they

noted that this bias vanishes for every treatment contrast τ if and only if between-

WP additivity holds, which means

Y 1(z1z2)− Y 1(z∗1z
∗
2) = · · · = Y W (z1z2)− Y W (z∗1z

∗
2), (2.13)

for every pair of treatment combinations z1z2 and z∗1z
∗
2 .

3. Sampling Variance and its Estimation

In this section, we derive an expression for the sampling variance. Then,

we find a variance estimator that generalizes the results in Section 2.2 to the

unbalanced case, and examine its properties. Note that these results revolve

around the quantities Sbt(z1z2, z
∗
1z
∗
2) and Sin(z1z2, z

∗
1z
∗
2) defined in equations (2.9)

and (2.10), respectively, and both depend on the common WP size M . Because

Mw varies across whole plots in an unbalanced split-plot design, it is difficult to

guess what the counterparts of these two quantities will be in the unbalanced

case.

Note that by (2.2), Y (z1z2) = N−1
∑W

w=1MwY w(z1z2), where Y w(z1z2) =

M−1
w

∑
i∈Ωw

Yi(z1z2) is the average potential outcome of all units in WP Ωw

for treatment combination z1z2. A helpful feature of the balanced case is that

Y (z1z2), is then the simple average of Y w(z1z2) for w = 1, . . . ,W , and similarly,

Y
obs

(z1z2) in (2.6) is the simple average of Y
obs
w (z1z2), for w ∈ T1(z1). We first

translate this “simple average” feature to the unbalanced case, with a view to

facilitating the derivation there. To that end, we convert the “raw” potential

outcomes Yi(z1z2) to “adjusted” potential outcomes

Ui(z1z2) =
Mw

M
Yi(z1z2), (3.1)

for each z1 ∈ Z1, z2 ∈ Z2, i ∈ Ωw, and w = 1, . . . ,W . For each z1z2, define
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Uw(z1z2) = M−1
w

∑
i∈Ωw

Ui(z1z2), w = 1, . . . ,W, and

U(z1z2) = W−1
W∑
w=1

Uw(z1z2).

By (3.1), U(z1z2) = Y (z1z2), that is, Y (z1z2) is the simple average of Uw(z1z2),

for w = 1, . . . ,W , irrespective of whether or not M1, . . . ,MW are equal. As seen

later in equation (3.5), a similar simple average relationship holds also between

their observed counterparts. The points just noted simplify the derivation to

some extent, but additional complications remain to be addressed, for example,

rw2(z2) not being constant over w in the unbalanced case.

Next, for z1, z
∗
1 ∈ Z1 and z2, z

∗
2 ∈ Z2, define

Sbt(z1z2, z
∗
1z
∗
2) =

M

W − 1

W∑
w=1

{
Uw(z1z2)− U(z1z2)

}{
Uw(z∗1z

∗
2)− U(z∗1z

∗
2)
}
,

Sin,w(z1z2, z
∗
1z
∗
2) =

1

Mw − 1

∑
i∈Ωw

{
Ui(z1z2)− Uw(z1z2)

}{
Ui(z

∗
1z
∗
2)− Uw(z∗1z

∗
2)
}
.

Some additional notation is necessary. First, let

τw =
1

Mw

∑
i∈Ωw

τi =
∑
z1∈Z1

∑
z2∈Z2

g(z1z2)Y w(z1z2), w = 1, . . . ,W, (3.2)

denote the WP-level treatment contrasts, where Y w(z1z2), defined earlier, is the

average potential outcome of all units in WP Ωw for treatment combination z1z2.

The second equality in (3.2) follows from (2.1). Furthermore, from (2.3) and

(3.2), it follows that

τ =
1

W

W∑
w=1

Mw

M
τw. (3.3)

Now, define

∆ =
1

W (W − 1)

W∑
w=1

{
Mw

M
τw − τ

}2

, (3.4)

where τw is given by (3.2). Then, extending the ideas of Zhao et al. (2018), after

considerable algebra, we obtain the following result on the sampling variance of

τ̂ , the unbiased estimator of τ .
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Theorem 2. The sampling variance of τ̂ is

var(τ̂) =
∑
z1∈Z1

∑
z2∈Z2

∑
z∗
2∈Z2

g(z1z2)g(z1z
∗
2)

r1(z1)

(
Sbt(z1z2, z1z

∗
2)

M
−

W∑
w=1

Sin,w(z1z2, z1z
∗
2)

WMw

)

+
∑
z1∈Z1

∑
z2∈Z2

{g(z1z2)}2

Wr1(z1)

W∑
w=1

Sin,w(z1z2, z1z2)

rw2(z2)
−∆.

Next, to obtain an estimator of the sampling variance, we first define the

counterparts of Y
obs
w (z1z2) and Y

obs
(z1z2) in (2.5) and (2.6) in terms of the ad-

justed potential outcomes:

U
obs
w (z1z2) =

1

rw2(z2)

∑
i∈Tw2(z2)

Ui(z1z2), w ∈ T1(z1) and

U
obs

(z1z2) =
1

r1(z1)

∑
w∈T1(z1)

U
obs
w (z1z2).

Then, it is easy to see from (2.5), (2.6), and (3.1) that

Y
obs

(z1z2) = U
obs

(z1z2). (3.5)

Note that U
obs

(z1z2) is the simple average of U
obs
w (z1z2), for w ∈ T1(z1), irrespec-

tive of whether or not M1, . . . ,MW are equal. This is precisely what the relation-

ship between Y
obs

(z1z2) and Y
obs
w (z1z2) in (2.6) reduces to when M1 = · · · = MW ,

providing us with the intuition to generalize the results of Zhao et al. (2018) by

using of the adjusted potential outcomes, in particular, replacing Y
obs

(z1z2) in

(2.7) with U
obs

(z1z2), because of (3.5). We now define the following estimator of

the sampling variance in Theorem 2:

V̂ (τ̂) =
∑
z1∈Z1

∑
z2∈Z2

∑
z∗
2∈Z2

g(z1z2)g(z1z
∗
2)

r1(z1)
Ŝ(z1z2, z1z

∗
2), (3.6)

where

Ŝ(z1z2, z1z
∗
2) =

1

r1(z1)− 1

∑
w∈T1(z1)

{
U

obs
w (z1z2)− Uobs

(z1z2)
}{

U
obs
w (z1z

∗
2)− Uobs

(z1z
∗
2)
}
.

Again, considerable algebra yields the following result.
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Theorem 3. The variance estimator V̂ (τ̂) given by (3.6), estimates the sampling

variance of τ̂ with a nonnegative bias ∆ defined by (3.4), that is, E{V̂ (τ̂)} =

var(τ̂) + ∆.

Remark 1. Theorem 3 shows that V̂ (τ̂) is a conservative estimator of var(τ̂) with

a nonnegative bias ∆. This property is in line with variance estimators in other

situations of randomization-based causal inference. Moreover, in the balanced

case, by (3.4), the bias ∆ vanishes when τ1 = · · · = τW = τ , which happens for

every treatment contrast τ if and only if (2.13), that is, between-WP additivity,

holds. This shows how the results of Zhao et al. (2018), presented in Section

2.2, follow from Theorem 3. A disturbing feature of the variance estimator V̂ (τ̂),

however, emerges in the unbalanced case, which is the main focus of this study.

Then, V̂ (τ̂) remains biased, even if between-WP additivity holds, because by

(3.2) and (3.3), condition (2.13) implies τ1 = · · · = τW = τ and, hence,

∆ =
τ2

W (W − 1)M
2

W∑
w=1

(Mw −M)2,

which is positive when M1, . . . ,MW are not all equal, unless τ = 0. The situation

remains unchanged even under the stronger assumption of strict additivity or

homogeneity of treatment effects Splawa-Neyman, Dabrowska and Speed (1990)),

which enforces the constancy of Yi(z1z2) − Yi(z∗1z∗2) over i = 1, . . . , N for every

pair of treatment combinations z1z2 and z∗1z
∗
2 .

This property of V̂ (τ̂) described in Remark 1 is a matter of concern because

a requirement typically imposed on a variance estimator in causal inference is

that it should become unbiased, at least under Neymanian strict additivity, if

not under milder versions thereof, such as between-WP additivity in the present

context. The estimator V̂ (τ̂), obtained by generalizing the arguments in the

balanced case, fails to meet this requirement when M1, . . . ,MW are not all equal.

In the rest of the paper, we investigate the existence of a variance estimator that

overcomes this difficulty and show how, under wide generality, such an estimator

can be obtained by appropriately modifying V̂ (τ̂) as given by (3.6).

4. A New Variance Estimator

We begin our search for an improved variance estimator by expanding the

bias term ∆ defined in (3.4) as follows:
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∆ =

(
1

N

)2
 W∑
w=1

M2
wτ

2
w −

W∑
w=1

W∑
w∗(6=w)=1

{
MwMw∗

W − 1

}
τwτw∗

 . (4.1)

Note that in (4.1), the term τ2
w is not unbiasedly estimable, but for w 6= w∗,

τwτw∗ allows unbiased estimation. This is because, by (3.2),

τ2
w =

(
1

Mw

)2 ∑
z1∈Z1

∑
z2∈Z2

∑
z∗
1∈Z1

∑
z∗
2∈Z2

∑
i∈Ωw

∑
i∗∈Ωw

g(z1z2)g(z∗1z
∗
2)Yi(z1z2)Yi∗(z∗1z

∗
2).

(4.2)

The sums over i and i∗ in (4.2) include the case i = i∗. There is at least one pair

of distinct treatment combinations z1z2 and z∗1z
∗
2 such that g(z1z2)g(z∗1z

∗
2) 6= 0

and Yi(z1z2)Yi(z
∗
1z
∗
2) is never observable, because unit i cannot be assigned si-

multaneously to both z1z2 and z∗1z
∗
2 . Hence, τ2

w does not allow unbiased esti-

mation. On the other hand, for w 6= w∗, τwτw∗ does not involve terms such as

Yi(z1z2)Yi(z
∗
1z
∗
2), and is unbiasedly estimable. For each w, let z1w denote the

level combination of the WP factors assigned to WP Ωw. Now, define

Gobs
w =

∑
z2∈Z2

g(z1wz2)Y
obs
w (z1wz2).

Proposition 2. For w,w∗ = 1, . . . ,W , w 6= w∗, an unbiased estimator of τwτw∗

is given by

Hww∗ =
W (W − 1)Gobs

w Gobs
w∗

r1(z1w) {r1(z1w∗)− δ(z1w, z1w∗)}
,

where δ(z1w, z1w∗) is an indicator equal to one if z1w = z1w∗, and zero otherwise.

We can now use Proposition 2 to construct a new estimator of var(τ̂). Con-

sider any symmetric matrix B = ((bww∗)) of order W such that bww = M2
w, for

w = 1, . . . ,W . Now, define the variance estimator

Ṽ (τ̂) = V̂ (τ̂) +
1

N2

W∑
w=1

W∑
w∗(6=w)=1

[
bww∗ +

MwMw∗

W − 1

]
Hww∗ , (4.3)

where V̂ (τ̂) is the variance estimator defined in Section 3, and Hww∗ is as defined

in Proposition 2. Then, from (4.1), (4.3), Theorem 3, and Proposition 2, it is

easy to see that

E
{
Ṽ (τ̂)

}
= var(τ̂) + ∆ +

1

N2

W∑
w=1

W∑
w∗( 6=w)=1

[
bww∗ +

MwMw∗

W − 1

]
τwτw∗
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= var(τ̂) + ∆̃,

where

∆̃ =
1

N2

W∑
w=1

W∑
w∗=1

bww∗τwτw∗ . (4.4)

Clearly, if the matrix B is nonnegative definite, then the bias ∆̃ is nonnega-

tive, making Ṽ (τ̂) a conservative estimator of var(τ̂). Furthermore, by (4.4), this

bias vanishes if and only if τ1 = · · · = τW , when B has each row sum equal to

zero, and is a positive semidefinite (psd) matrix of rank W − 1. These facts are

summarized in Theorem 4, which is the main result of this section.

Theorem 4. Let there exist a psd matrix B = ((bww∗)) of order W and satisfying

the following conditions: (c1) bww = M2
w, for w = 1, . . . ,W , (c2)

∑W
w∗=1 bww∗ =

0, for w = 1, . . . ,W , and (c3) rank(B) = W − 1. Then, the variance estimator

Ṽ (τ̂) defined in (4.3) estimates var(τ̂) with a nonnegative bias ∆̃ given by (4.4),

which vanishes if and only if τ1 = · · · = τW .

Remark 2. Recall that the between-WP additivity condition (2.13) is equivalent

to τ1 = · · · = τW for every treatment contrast. Thus, even when the WP sizes

M1, . . . ,MW are not all equal, by Theorem 4, the bias ∆̃ vanishes for every

treatment contrast if and only if between-WP additivity holds. Thus, if a psd

matrix B satisfying conditions (c1)–(c3) is available, then Theorem 4 provides

us with a variance estimator that possesses properties similar to those derived

by Zhao et al. (2018) for the balanced case. However, the issue of the existence

of such a matrix turns out to be quite challenging, and is explored in the next

section.

Remark 3. In Theorem 4, conditions (c1) and (c2) ensure the “if” part, while

(c3) accounts for the “only if” part. To see the role of (c3) in some detail, from

(4.4), note that ∆̃ vanishes. Hence, Ṽ (τ̂) becomes unbiased for var(τ̂) whenever

(τ1, . . . , τW ) ∈ Rorth(B), where Rorth(B) is the orthocomplement of the row

space of B. If rank(B) is allowed to be less than W–1 by dropping (c3), then

Rorth(B) is broader than the space of vectors (τ1, . . . , τW ) that have all elements

equal. Hence, Ṽ (τ̂) becomes unbiased under a wider variety of situations than

τ1 = · · · = τW alone. However, this gain comes at a cost. Along the lines of

Proposition 3 in Section 6, given (c1) and (c2), the largest eigenvalue of B is at

least as large as
∑W

w=1M
2
w/rank(B), and hence it can get considerably inflated

if rank(B) < W–1. As discussed later in Section 6 and illustrated in Example

1, this, in turn, can significantly increase the bias of Ṽ (τ̂) when (τ1, . . . , τW ) /∈
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Rorth(B). This is why we retain condition (c3), which not only ensures the “only

if” part of Theorem 4, but also helps in controlling the bias when the condition

τ1 = · · · = τW does not hold.

5. Existence and Construction

We now study the existence of a psd matrix B satisfying conditions (c1)–

(c3) stated in Theorem 4 as a purely mathematical problem. Without loss of

generality, we assume hereafter that

M1 ≤M2 ≤ · · · ≤MW . (5.1)

To motivate the ideas, consider first the case W = 3, where conditions (c1) and

(c2) determine B uniquely as

B =

 M2
1

M2
3−M2

1−M2
2

2
M2

2−M2
1−M2

3

2
M2

3−M2
2−M2

1

2 M2
2

M2
1−M2

2−M2
3

2
M2

2−M2
3−M2

1

2
M2

1−M2
3−M2

2

2 M2
3

 . (5.2)

This matrix is also psd, and satisfies (c3) if and only if its principal minor, given

by the first two rows and columns, is positive. A simplification of this condition

and an application of (5.1) yields M3 < M1 +M2 as the necessary and sufficient

condition for B to satisfy (c1)-(c3). This construction of B for W = 3 raises the

following questions with respect to the general case W ≥ 3:

(a) Is the condition

MW < M1 + · · ·+MW−1, (5.3)

necessary and sufficient for the existence of a psd matrix B satisfying (c1)–

(c3)?

(b) If so, then under (5.3), can one construct such a matrix B using an extension

of the form in (5.2) to the general case?

Later in this section, Theorem 5 answers (a) in the affirmative. On the

other hand, the question in (b) does not allow a conclusive answer. To see why,

observe that the most obvious extension of (5.2) to general W ≥ 3 is given by

B = ((bww∗)), with

bww = M2
w, w = 1, . . . ,W,

bww∗ =
M2

1 + · · ·+M2
W

(W − 1)(W − 2)
− M2

w +M2
w∗

W − 2
, w, w∗ = 1, . . . ,W, w 6= w∗. (5.4)
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The divisors in (5.4) ensure condition (c2) about zero row sums, and make

it consistent with (5.2) when W = 3. The form (5.4) is also natural because,

in keeping with M2
1 , . . . ,M

2
W as the diagonal elements of B, it takes the off-

diagonal elements as linear combinations of M2
1 , . . . ,M

2
W in a systematic manner.

However, unlike the case of W = 3, the matrix B given by (5.4) may not be psd

for W ≥ 4, even when condition (5.3) holds. For instance, if W = 4, then

this condition holds for both the configurations (M1, . . . ,M4) = (8, 8, 12, 12) and

(6, 6, 14, 14). The matrix B in (5.4) is psd of rank 3 (= W − 1) for the first

configuration, but has a negative eigenvalue for the second.

The above discussion makes it clear that, in general, the task of obtaining a

psd matrix B satisfying (c1)–(c3) under condition (5.3) can be far more complex

than the form (5.2) arising for W = 3. Theorem 5 establishes condition (5.3) as

a necessary and sufficient condition for the existence of such a matrix.

Theorem 5. Let W ≥ 3. Then, condition (5.3), that is, MW < M1+· · ·+MW−1,

is necessary and sufficient for the existence of a psd matrix B = ((bww∗)) of

order W and satisfying the conditions (c1) bww = M2
w, for w = 1, . . . ,W , (c2)∑W

w∗=1 bww∗ = 0, for w = 1, . . . ,W , and (c3) rank(B) = W − 1.

The sufficiency part of the proof of Theorem 5 leads to a construction pro-

cedure of the matrix B satisfying conditions (c1)–(c3). If M1 = · · · = MW (=

M, say), then one can simply take M2 at each diagonal position of B, and

−M2/(W − 1) at each off-diagonal position. With regard to the case of unequal

M1 ≤ · · · ≤ MW , suppose condition (5.3) holds. Let µ = (M1, . . . ,MW−1)′,

where the prime denotes transposition, and let e denote the (W − 1) × 1 vector

of ones. Then, the steps involved in the construction of the matrix B are:

Step 1: Find a vector x with elements ±1 satisfying the condition

|µ′x| < MW . (5.5)

Step 2: Find nonnegative constants a1 and a2, satisfying a1 + a2 < 1, such that

a1

{(
µ′x
)2 − µ′µ}+ a2

{(
µ′e
)2 − µ′µ} = M2

W − µ′µ. (5.6)

Step 3: Construct the matrix A = D {a1xx
′ + a2ee

′ + (1− a1 − a2)I}D, where

x, a1, and a2 are obtained from steps 1 and 2 above, I is the identity matrix

of order W − 1, and D = diag(M1, . . . ,MW−1).
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Step 4: Construct matrix B as follows:

B =

[
A −Ae
−e′A e′Ae

]
.

Then, B is psd of order W and satisfies (c1)–(c3) by the proof of the sufficiency

part of Theorem 5. A lemma, crucial in this proof, appears in the Supplementary

Material and guarantees the existence of the vector x in step 1 and the constants

a1 and a2 in step 2 under condition (5.3).

Remark 4. It is satisfying that condition (5.3) holds under wide generality. It

only requires that the largest WP not be too large compared to the others and

holds, in particular, when there is a tie for the largest WP. Moreover, in some

situations, it may be possible to adjust the composition of the WPs so as to

meet (5.3) without significantly increasing the cost of the experiment. As an

illustration, consider a variant of the school example of Section 1, where the 40

schools are spread over four counties with 8, 6, 6, and 20 schools, respectively,

so that (5.3) does not hold. In this case, if the third and fourth counties are

contagious and two schools of the fourth county are close to their border, then

these two may be clubbed with the third county, leading to WPs of sizes 8, 6, 8,

and 18 respectively, and ensuring (5.3) is met.

Remark 5. For W = 3, one can check that the construction stated above yields

the unique B in (5.2). For W ≥ 4, however, a psd matrix B meeting (c1)–(c3) is

non-unique. Indeed, then the above construction can yield a wide class of such

matrices B, considering all vectors x that satisfy (5.5), and for each such x, all

nonnegative a1, a2 satisfying a1 + a2 < 1 and (5.6). Thus, the issue of discrim-

inating between rival choices of B becomes important. Such a discriminating

strategy is discussed in Section 6.

6. Minimax Estimators Unbiased under between-WP Additivity

As seen in Section 5, while condition (5.3) guarantees the existence of the

matrix B and, consequently, a variance estimator that is unbiased under between-

WP additivity, such a matrix is non-unique. Thus, it is important to define a

criterion that can discriminate between possible choices of B. Clearly, a good

choice should control the bias ∆̃ = (1/N2)
∑W

w=1

∑W
w∗=1 bww∗τwτw∗ given by

(4.4) that is associated with the estimation of var(τ̂). The hurdle here is that

τ1, . . . , τW are unknown. Even the idea of minimaxity does not work without

further refinement, because B is psd, and hence ∆̃ is unbounded with respect
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to variation of τ1, . . . , τW in the W -dimensional real space. On the other hand,

by (3.3), multiplication of τ1, . . . , τW by any nonzero constant only rescales the

treatment contrast τ , without essentially altering it. We, therefore, consider

minimization of ∆̃ subject to
∑W

w=1 τ
2
w = 1. This is motivated by Mukerjee,

Dasgupta and Rubin (2018), who touched upon split-plot designs only in the

balanced case. It is easy to see that the above formulation calls for obtaining B,

subject to (c1)–(c3), so as to minimize λmax(B), the largest eigenvalue of B. The

following proposition provides us with a lower bound for λmax(B).

Proposition 3. For any psd matrix B satisfying (c1)–(c3), a lower bound for

λmax(B) is given by λ0 =
∑W

w=1M
2
w/(W−1), but this bound is not sharp whenever

M1, . . . ,MW are not all equal.

Given Proposition 3, an analytical solution to the minimaxity problem above

seems to be intractable in the unbalanced case. This is anticipated, because a

complete characterization of matrices B satisfying (c1)–(c3) is hard, even though

in Section 5, we were able to outline a general method for constructing such ma-

trices when condition (5.3) holds. As a practical strategy, therefore, it makes

sense to concentrate on matrices B that can be obtained via this method, with

a view to minimizing λmax(B) among these matrices. It is reassuring that even

then, the class of competing matrices B is quite large, as noted in Remark 5.

In practice, these competing matrices B can be generated quite fast by (i) enu-

merating vectors x with elements ±1 and satisfying (5.5), and (ii) for each such

x, performing a grid search to find nonnegative (a1, a2) satisfying a1 + a2 < 1

and (5.6). To implement (ii), we vary a1 from 0 to 0.9999 in steps of 0.0001,

such that the corresponding a2, found from (5.6), meets 0 ≤ a2 < 1–a1. Finding

the matrix B that has the smallest λmax among all candidate matrices identified

through (i) and (ii) is fast and easy. This enumeration becomes even faster noting

that, without loss of generality, the first element of x in (i) can be taken as +1,

because replacing x by –x does not affect Steps 1–4 of Section 5.

Example 1. Returning to the school example in Sections 1 and 2, where we have

N = 40, W = 4, and (M1,M2,M3,M4) = (8, 8, 12, 12), the smallest λmax(B) ob-

tainable using steps 1 through 4 described in Section 5 is 192, which corresponds

to

B =


64 32 − 48 − 48

32 64 − 48 − 48

−48 − 48 144 − 48

−48 − 48 − 48 144

 ,



UNBALANCED SPLIT PLOT DESIGNS 609

Table 2. Simulation settings.

Population θ1 θ2 θ3 θ4 σ2
1 σ2

2 σ2
3 σ2

4 ρ1 ρ2 ρ3 ρ4

I (5,8,7,8) (7,9, 4,6) (8,11,7,8) (7,8,6,9) 2.5 2 2 3 0.5 0.5 0.5 0.5

II (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 1 1 1 1

III (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 0.5 0.5 0.5 0.5

IV (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 0.2 0.4 0.6 0.8

V (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 0 0 0 0

VI (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 -0.3 -0.3 -0.3 -0.3

VII (10,5,9,8) (5,9,10,8) (10, 9,8,5) (10,5,8,9) 2.5 2 2 3 -0.3 0.3 -0.3 0.3

as given by x = (1, 1,−1)′, a1 = 0.5, and a2 = 0. Clearly, this B meets (c1)–(c3)

of Theorem 4, and quite reassuringly, it has the smallest possible λmax(B) over

all psd matrices B satisfying (c1) and (c2), as one can verify numerically. On

the other hand, if B satisfies only (c1) and (c2), but not (c3), that is, rank(B) <

W–1(= 3), then following Remark 3, λmax(B) gets inflated. For example, if

rank(B) = 2, then λmax(B) ≥
∑W

w=1M
2
w/2 = 208. Further, if rank(B) = 1, then

by (c1) and (c2), B = qq′, where q is equal to (8, –8, –12, 12)′ or (8, –8, 12, –12)′

and λmax(B) becomes as large as 416.

7. Simulation Results and Performance Comparisons

Whereas Theorem 4 establishes the unbiasedness of Ṽ (τ̂) under (5.3) and

between-WP additivity, and minimaxity is expected to provide protection under

extreme departures from additivity, it is also important to understand how the

bias of Ṽ (τ̂) compares with that of V̂ (τ̂) under different levels of treatment effect

heterogeneity. In addition, the theoretical results do not provide any clue about

whether the bias adjustment comes at the cost of an undesirable inflation of the

MSE. We now conduct some simulations to study these two aspects. We consider

the estimation of the main effect of factor F2 in the setting of Example 1. The

unit-level treatment contrast τi is equal to {−Yi(00)+Yi(01)−Yi(10)+Yi(11)}/2,

for i = 1, . . . , 40 Dasgupta, Pillai and Rubin (2015)). The finite-population

contrast of interest is τ =
∑40

i=1 τi/40. The vector of potential outcomes for

unit i, denoted by Yi = (Yi(00), Yi(01), Yi(10), Yi(11)), is generated using the

multivariate normal model Yi ∼ N4 (θw,Σw), for i ∈ Ωw, w = 1, . . . , 4, where

Σw = σ2
w {(1− ρw)I4 + ρwJ4} is the covariance matrix for WP Ωw that depends

on two parameters: the variance σ2
w and the correlation ρw. Matrices In and Jn

denote the nth-order identity matrix and the matrix of ones, respectively. Seven

possible scenarios (listed in Table 2) for generating the potential outcomes are

considered.
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Table 3. Median bias and median MSE of the variance estimators from 25 sets of potential
outcomes under seven settings.

Population V̂ (τ̂) Ṽ (τ̂)

Bias MSE Bias MSE

I 0.0533 0.2317 0.0000 0.2613

II 0.6400 5.9011 0.2800 5.8343

III 0.6403 5.7001 0.2740 5.5989

IV 0.7096 5.5829 0.3306 5.8072

V 0.7284 6.1943 0.3285 5.8122

VI 0.7667 5.2141 0.3719 5.3680

VII 0.5921 5.2011 0.2915 5.5709

The potential outcomes for population I are forced to ensure, via an appro-

priate command in R, that the WP means τ1, . . . , τ4 are always two. Population

II generates different τ1, . . . , τ4, but guarantees the same τi within each WP.

Populations III through VII differ only with respect to the correlation parame-

ters that lead to different types of treatment effect heterogeneity. These include

all zero correlations in population V, all negative correlations in population VI,

and a mix of positive and negative correlations in population VII.

From each population, 25 sets of potential outcomes are generated, and the

biases of the variance estimators V̂ (τ̂) and Ṽ (τ̂) are compared. Note that these

biases are ∆ given by (3.4) and ∆̃ given by (4.4), respectively. Because we

do not have any theoretical expressions for the MSEs of V̂ (τ̂) and Ṽ (τ̂), we

estimate them empirically. For each set of potential outcomes, we generate 10,000

treatment assignments, and thus 10,000 sets of observed outcomes, calculate V̂ (τ̂)

and Ṽ (τ̂) for each set, and estimate their MSEs from these 10,000 values. The

results are summarized in Table 3.

The results suggest that with respect to bias, the variance estimator Ṽ (τ̂)

outperforms the estimator V̂ (τ̂) uniformly across all seven populations. As ex-

pected, the bias of Ṽ (τ̂) is zero for population I. However, with respect to the

MSE, there appears to be no clear winner. The estimator Ṽ (τ̂) performs slightly

better than V̂ (τ̂) in populations II, III, and V, and slightly worse in the other

populations with respect to the MSE. However, it is encouraging to note that the

bias reduction associated with the estimator Ṽ (τ̂) does not appear to come at

the cost of a significant sacrifice of MSE.
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8. Discussion

We have seen that the attempt to generalize Neymanian variance estimation

from balanced to unbalanced split-plot designs is a highly nontrivial problem. The

results from unbalanced block designs cannot be used in such a setting. Following

an intricate chain of arguments, it is possible to derive a variance estimator that

is unbiased under assumptions of treatment homogeneity, similar to that in the

balanced case, and is also robust under departures from such an assumption.

Our empirical results suggest that this bias reduction does not come at the cose

of an undesirably high inflation of the MSE. It would be interesting to examine

the performance of the two estimators considered in this paper with respect to

their coverage of asymptotic confidence intervals for the true contrast τ . Such

a comparison will, however, entail considerable theoretical work to establish the

asymptotic distribution of τ̂ , because of the complex setting of the unbalanced

split-plot assignment mechanism. We plan to pursue this in future research.

Supplementary Material

The online Supplementary Materials contains the proofs of all results stated

in the main manuscript.
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