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S1 Proof of Theorem 2

Section 1 of Chan and Lai (2006) reviews the literature on selection and

ranking, and in particular the δ-difference zone approach (Bechhofer, Kiefer,

and Sobel, 1968), which we now apply to multi-armed bandits. For the one-

parameter exponential family, UCB of an individual arm based on observa-

tions up to time t from that arm is derived by inverting a GLR test; see Lai

(1987, Section 2), where logα−1 ∼ logB for the confidence level 1−α under

δ-indifference and B is the sample size in Theorem 1. The asymptotic lower

bound for the regret that we have reviewed in Section 2.3 can be translated

in terms of the total sampling cost CT since infx g(x) > 0 is assumed in

Theorem 2. Extension of this argument to the multiparameter exponential
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family, which is the setting of Theorems 1 and 2, is straightforward, partic-

ularly since we use ε-greedy sampling instead of upper confidence bounds

(UCB) that Lai (1987) has defined only in the one-parameter case. Auer,

Cesa-Bianchi and Fischer (2002, Theorem 3) have shown that the ε-greedy

sampling method introduced by Sutton and Barto (1998) can also attain

the asymptotic lower bound for the regret1.

S2 Proof of Theorem 1

Chan and Lai (2006, Section 5.2) consider the one-dimensional case of con-

dition (C) but does not provide details2 on how the procedure (which we

have just described in the case infx g(x) > 0) still yields under (C) “an

asymptotically optimal selection procedure with expected total sampling

cost of the order of | logα|”. Since condition (C) is the counterpart of the

assumption infx g(x) > 0 in Theorem 2, the preceding proof of Theorem 2

has already provided these details even for the multiparameter exponential

family, thereby proving Theorem 1.

We now explain the “empirical Bayes hyperparameter tuning” refor-

1The result stated in that paper is for time-varying εt. It is also applicable to time-invariant ε when

t does not exceed a finite upper bound T , which is assumed in Theorems 1 and 2.
2Chan and Lai (2006) only mention the asymptotic lower bound for the regret in multi-armed bandit

problem or exponential families and refer to Lai (1987) for the UCB rule that attains the bound.
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mulation of Theorem 1 mentioned in the paragraph following the theorem.

Assume that g satisfies condition (C) and that Zt are independent with

density from a multiparameter exponential family. Let λopt denote the opti-

mal hyperparameter of a metaheuristic optimization algorithm to minimize

CT (λ) =
∑J

j=1 g
(
x∗ − xtj(λ)

)
τj for a particular problem or system, and let

Πλ be a prior distribution on λopt so that B(λ) is the Bayes rule that min-

imizes the Bayes risk
∫
ECT (λ) dΠλ. The Empirical Bayes (EB) approach

to hyperparameter tuning uses empirical performance to choose λ ∈ Λ for

the Bayes rule B(λ). In the group sequential setting of Section 2.1, an

efficient group sequential EB hyperparameter tuning procedure is given by

sequence {λ̂1, . . . , λ̂J} of Theorem 1, which shows that the sequence has

asymptotically minimal Bayes risk, of order O(logB) as B → ∞, among

all group sequential hyperparameter tuning procedures with Bayes risks of

order o(Br) for any r > 0.
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S3 Figures 1 and 2 for Examples 1 and 2 (Section 4.1)

Figure 1: Pareto surface for compound optimality criterion (3.6), with colormap (using

Matplotlib in MATLAB) explaining the colors of the surface.

Figure 2: Pareto curve for (3.6) with λ3 = 0 and known θ.

S4 Recent advances and background literature

We give below an overview, with additional references, of the recent ad-

vances in the theory and applications of adaptively tuned metaheuristic

optimization algorithms, which are mentioned in Section 5. We use the
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same alphabetic labeling of these advances as Section 5.

(a) Lai, Sklar, and Weissmueller (2020) describe the application of the

efficient group sequential design methodology for early-phase dose-finding

and efficacy testing trials to the Fast Real-time Assessment of Combination

Therapies in Immuno-Oncology (FRACTION) platform trial recently “de-

signed to rapidly evaluate new combinations of I-O agents and targeted

therapies” by Bristol-Myers Squibb (Simonsen et al., 2018). A key feature

of FRACTION is that “new combination regimens are added to the ongo-

ing study as they become available”, while “combination treatment arms

in FRACTION studies that demonstrate futility will be terminated early,

whereas those arms that meet early efficacy criteria will enroll additional

patients” to obtain more precise estimates of the treatment effect or to test

for other efficacy endpoints in Phase II/III registration trials. Moreover,

“the safety, dose, schedule and preliminary antitumor activity of new com-

binations will be determined separately in prior Phase I studies.” This is,

therefore, in the spirit of efficient group sequential designs of early-phase tri-

als in Section 4.2, which considers a single new combination therapy instead

of multiple combination therapies in the “master protocol” of FRACTION.

In fact, the computational advantages, for this task, of the adaptively tuned

PSO algorithm are even more conspicuous for multiple combination ther-
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apies than a single one as Lai, Xu, and Weismueller3 have recently shown

how the Phase I/II component of the group sequential design of early-phase

dose-finding trials in Section 4.2 can be simultaneously computed by PSO

for multiple combination therapies.

As pointed out by Woodcock and LaVange (2017) and FDA’s 2018

Guidance for Industry on Master Protocols, a master protocol refers to an

overarching clinical trial design that evaluates multiple hypotheses, with

the objective to improve efficiency in the development of different inter-

ventions. While there were fewer than 10 master-protocol-guidance studies

in the public domain by 2010, the subsequent decade saw rapid growth

of master protocols in support of clinical development, leading to 83 clin-

ical trials in the public domain that used master protocols. This rapid

growth was catalyzed by the successful immuno-oncology (I-O) therapies

inhibiting CTLA-4 (cytotoxic T lymphocyte-associated antigen 4) protein

receptor (ipilimumab) and the PD-1 (programmed death-1) signaling path-

way (pembrolizumab and nivolumab). Simonsen et al. (2018, p.260) point

out that “beyond PD-1 and CTLA-4 blockade therapies, a rapidly growing

number of novel I-O agents are in early development, supported by preclin-

ical antitumor activity” involving other receptors and signaling pathways,

3Nikolas Weismueller is Associate Director of Advanced Analytics and Real World Data at Bristol-

Myer Squibb.
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and that “combination therapies may improve treatment outcomes relative

to monotherapies because of their additive or synergistic effects”. Bas-

ket trials, platform and umbrella trials are implementation structures of

master protocols. Whereas basket trials investigate a single drug or a sin-

gle combination therapy across multiple patient populations, umbrella and

platform trials involve multiple therapies in one or multiple patient popula-

tions, with addition or removal of studies specified in the master protocol of

a platform trial. FRACTION is a platform trial that has been motivated by

“the success of combination therapy with nivolumab and ipilimumab (that

was approved for treatment of metastatic melanoma, which) suggests that

other combination approaches for modulating immunosuppression may also

be applicable to other malignancies” including non-small cell lung cancer,

renal cell carcinoma, gastric and esophageal cancers. “When additional

combination therapies have sufficient safety data and scientific rationale

(from prior Phase I trials) to enter FRACTION, they will be introduced

via a new Sub-Protocol”, which can also incorporate its own design features.

(b) We begin with additional references and further discussion on Phase

II in Section 4.2 and its extension to a late-phase confirmatory trial via a

seamless Phase II/III design. In this connection we also supplement the

overview of Phase I in Section 4.1 and the second paragraph of Section 4.2
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with Chapter 2 and Section 4.1 of Chen, Heyse and Lai (2018), abbrevi-

ated by CHL hereafter. In particular, besides summarizing rule-based and

model-based Phase I designs, Section 4.1 of CHL also introduces threshold

designs of Ji, Li, and Bekele (2007) that use model-based “toxicity prob-

ability intervals” to address the uncertainty in the MTD estimates from

the observed toxicity outcomes, and extensions to combination therapies

by Yin and Yuan (2009), Lee, Fan, and Lu (2017) and others. Chapter 2

of CHL gives an overview of pharmacokinetic-pharmacodynamic (PK-PD)

models that quantify responses to a drug through (i) the time course of drug

concentration in plasma or blood after drug administration during which

the processes of absorption, distribution, metabolism and elimination are

studied (PK), and (ii) the relationship between drug concentration at the

effect site and therapeutic effects which can be efficacy or toxicity effects

or both (PD). It also introduces modern machine learning methods to esti-

mate a quantitative structure-toxicity relationship (QSTR) or quantitative

structure-activity relationship (QSAR) for the prediction of toxicity or bi-

ological activity from the chemical attributes and/or physical properties of

the drug molecules. We can now add adaptively tuned metaheuristic op-

timization algorithms to the machine learning/AI. Concerning additional

references on Phase II designs in Section 4.2, Section 4.2 of CHL gives an
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overview of the safety considerations for the design of Phase II and Phase III

clinical trials and describes the REST (Rotavirus Efficacy and Safety Trial)

of Merck’s rotavirus vaccine and its statistical analysis by conditioning on

rare adverse events (intussusceptions during infancy in the case of rotavirus

vaccines); see Heyse et al. (2008) who “basically use a repeated significance

test that terminates the study after n intussusceptions cases are observed”

(p.108 of CHL). After hearing a presentation by Heyse and Jie Chen on

their design based on sequential GLR (generalized likelihood ratio) statis-

tics could be used to improve the REST design and analysis. This led to

Shih et al. (2011) and Lai’s decade-long collaboration with Chen and Heyse;

see Chapter 5 of Bartroff, Lai and Shih (2013), whose Section 6.7 (Supple-

ment 3) and Section 7.5 contain information and discussions of Phase II/III

design of oncology trials. Moreover, in addition to BLN (Bartroff, Lai and

Narasimhan, 2014) that Phase II in Section 4.2 has focused on, we should

also refer to Dale (1986), Yin, Li, and Ji (2006) and Yuan and Yin (2011)

whose works paved the way for the comprehensive development in Section

3.2 of BLN.

We next consider the issue of valid statistical inference from the data in

adaptive confirmatory group sequential trials, e.g., those with master pro-

tocols or at the termination of a Phase II/III trial. Section 3.1 of Lai, Sklar,
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and Weissmueller (2020) describes how the hybrid resampling method in-

troduced by Chuang and Lai (1998, 2000) and subsequently extended by

Lai and Li (2006), Lai, Shih, and Su (2009) can be used to analyze these

confirmatory group sequential trials; see Section 7.3 and 7.4 of Bartroff,

Lai, and Shih (2013). The methodology has been recently extended to in-

clude variable selection and multiple testing for high-dimensional covariates

and change-point time series models by Lai, Choi, and Tsang (2019) and

Dai and Tsang (2020). The last sentence of Section 1 remarks that some

of the designs and analytic methods for oncology platform trials are also

applicable to the recent adaptive platform trials for COVID-19 vaccine and

drug development. We refer to Chen, Choi, and Lai (2020) who “begin

with a description of the collaborative public-private partnership known

as Accelerating Covid-19 Therapeutic Interventions and Vaccines (ACTIV)

Initiatives” and the statistical, computational and commercial challenges in

data sharing among the partner companies and government agencies, and

then “describe the basic science of SARS-Cov-2” and “discuss some recent

advances in adaptive confirmatory trial designs and valid statistical infer-

ence methods to ensure reproducible findings from such trials in a highly

adaptive setting.”

(c) Other metaheuristic algorithms include quantum PSO mentioned
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in Section 1 and differential evolution (DE) which was recently used by Xu

et al. (2019) to find high-dimensional D-optimal designs for logistic mod-

els. DE was proposed by Storn and Price (1997) as an enhancement of the

Genetic Algorithm (GA) that dated back to John Holland and his students

in the 1970s; see Goldberg (1989) and the R package DEoptim (Global

Optimization by Differential Evolution), version 2.2.5 in CRAN. Both GA

and DE have their origins in genetics and their operations involve mutation,

crossover, and selection; see Xu et al. (2019, pp.7135-7136) who propose the

following adaptive enhancement of mutation to be used in conjunction with

a new crossover method called multiple exponential recombination (MER)

for gradient-free high-dimensional optimization. The selection and muta-

tion components are integrated into a “novelty-based mutation strategy”

which selects a group of individuals that explore different and novel regions

in the search space, and which “can balance exploration and exploitation

at the early or medium stage of evolution”, hence the name “novelty-based

DE” (NovDE) of this DE enhancement, details of which are given in Xu

et al. (2019, pp.7137-7138). In particular, the scaling factor F for mutation

and crossover rate CR vary with the stage i of the evolution, thereby choos-

ing adaptively the tuning parameter λ = (F, CR) of NovDE which already

uses a novelty-based mutation strategy for “exploration and exploitation”,
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similar to the multi-armed bandits in Section 2.2.

In his survey of the major developments during the past seven decades

on stochastic approximation (SA) that was “introduced in 1951 to provide a

new theoretical framework for root finding and optimization of a regression

function in the then-nascent field of statistics”, Lai (2020) describes in his

Section 2.3 a general approach to the convergence proof of recursive stochas-

tic algorithms via an “almost supermartingale” introduced by Robbins and

Siegmund (1971) and later generalized to an “extended stochastic Liapunov

function” by Lai (1989). His Section 3.3 shows how this approach can be ap-

plied to prove weak convergence of adaptive PSO, the non-adaptive version

of which was proved earlier by Yuan and Yin (2015). The same approach

can be used to prove almost sure convergence by using the stability bounds

established by Tong et al. (2020). This general framework can clearly be

applied to other metaheuristic optimization algorithms such as differential

evolution by developing similar stability bounds.

(d) Multi-armed bandits with covariates, also called “contextual multi-

armed bandits”, arise in many fields of application in the current Big Data

and Multi-Cloud era, ranging from personalized health and medicine to on-

line personalized advertising and recommender systems. This has called

for the extension of classical bandit theory in Section 2.2 to nonparametric
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contextual bandits, and Kim, Lai, and Xu (2020) have recently provided

a definitive extension. This extension leads to the far-reaching generaliza-

tion of Theorems 1 and 2 from the exponential family to semiparametric

families. The key underlying idea is to replace the UCB rule in classical

multi-armed bandits by ε-greedy randomization and an arm elimination

scheme. Details are given in Section 2.2 of Kim, Lai, and Xu (2020) whose

Section 3 also extends the theory to high-dimensional covariates, for which

recent advances in machine learning for recommender systems (e.g., Dai

et al. (2019)) have enabled implementation of the theory.
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