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Abstract: Arising from cryogenic electron microscopy image analysis, “Einstein from

noise” refers to spurious patterns that can emerge as a result of averaging a large

number of white-noise images aligned to a reference image through rotation and

translation. Although this phenomenon is often attributed to model bias, quan-

titative studies on such bias are lacking. Here, we introduce a simple framework

under which an image of p pixels is treated as a vector of dimension p, and a white-

noise image is a random vector uniformly sampled from the (p − 1)-dimensional

unit sphere. Moreover, we adopt the cross-correlation of two images, which is a

similarity measure based on the dot product of image pixels. This framework ex-

plains geometrically how the bias results from averaging a properly chosen set of

white-noise images that are most highly cross-correlated with the reference image.

We quantify the bias in terms of three parameters: the number of white-noise im-

ages (n), the image dimension (p), and the size of the selection set (m). Under the

conditions that n, p, and m are all large and (lnn)2/p and m/n are both small, we

show that the bias is approximately
√

2γ/(1 + 2γ), where γ = (m/p) ln (n/m).

Key words and phrases: Cross correlation, cryogenic electron microscopy, extreme

value distribution, high dimensional data analysis, model bias, white-noise image.

1. Introduction

The phenomenon of “Einstein from noise” comes from the literature on cryo-

genic electron microscopy (cryo-EM). It refers to an artifact of model bias that

arises from averaging a large number of cryo-EM images aligned to a reference

(model) image. This artifact of model bias is strongly associated with the noisy

nature of cryo-EM images.

Developed for imaging biological macromolecules preserved in a frozen-hydra-

ted state, cryo-EM has become a major tool for the high-resolution structure de-

termination of molecules because of its recent breakthroughs in resolution. In con-

trast to X-ray crystallography, cryo-EM does not need crystals. Thus, it enables

us to determine the structure of proteins that are refractory to crystallization,
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including, in particular, membrane proteins (Liao et al. (2013)) and molecular

complexes that exhibit dynamic conformation behaviors (Yan et al. (2015)). In

recognition of its success, the Nobel Prize in Chemistry in 2017 was awarded to

J. Dubochet, J. Frank, and R. Henderson for their pioneering contributions to

the development of cryo-EM.

A technical difficulty encountered by the cryo-EM technique is that the orien-

tations of the molecules are not recorded during the imaging process. As a result,

these orientations need to be estimated at the post-imaging stage. However, to

mitigate radiation damage, only a minimal dose of electrons can be used to ac-

quire the projection images of individual molecules (called 2D particle images).

The resulting cryo-EM images are extremely noisy, with a signal-to-noise ratio

less than 0.1. A typical cryo-EM experiment tends to collect a large number of

particle images in the hope of increasing the signal-to-noise ratio by suitably av-

eraging the particle images, where the dimension of a particle image is extremely

high (larger than 100 by 100). Hence, the data characters of cryo-EM images,

including the strong noise contamination, huge dimension, and large sample size,

make its processing and statistical analysis very challenging. Henderson (2013)

points out how spurious patterns can easily emerge from averaging a large number

of white-noise images aligned to a reference image through rotation and trans-

lation. He refers specifically to the work of Stewart and Grigorieff (2004), who

conducted an experiment by generating 1,000 white-noise images and aligning

each of them to Einstein’s facial image using rotation and translation. A blurred

Einstein’s face emerged after averaging the 1,000 aligned images, which Hender-

son (2013) dubbed “Einstein from noise,” showing that an incorrect 3D density

map can be constructed if data are blindly fitted to a reference model.

In a recent review paper, Lai et al. (2020) discussed the “Einstein from

noise” phenomenon from a statistical perspective. To avoid the technical issue of

how rotating an image may destroy the pixel format, they considered a simple

mathematical framework under which an image of p pixels is treated as a vector

of dimension p, and a white-noise image is a random vector uniformly distributed

on the (p−1)-dimensional unit sphere. The cross-correlation (CC) of two images

is adopted, which is a similarity measure based on the dot product of the image

pixels and is widely used in image processing. Under this framework, in Section

2, we present a simulation study with n = 2× 106 white-noise images, where the

pixel number is p = 120×120. Among the 2×106 white-noise images, the largest

CC value with Einstein’s facial image (the reference) is just 0.039. However, the

CC increases dramatically to 0.650 after averaging the m = 800 images that have

the largest CC values with Einstein’s facial image. This illustrates the essence
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of the “Einstein from noise” phenomenon. This study investigates the “Einstein

from noise” phenomenon based on the statistical perspective laid out in Lai et al.

(2020). A main task is to approximate the distribution of the CC between the

(normalized) average of the m selected images and the reference, which is referred

to the (image selection) bias. Although the bias depends on the three parameters

n, p, and m in a convoluted manner, when n, p, and m are all large and (lnn)2/p

and m/n are both small, we show that the bias is approximately
√

2γ/(1 + 2γ),

where γ = (m/p) ln (n/m).

The rest of this paper is organized as follows. Section 2 introduces the

notation, terminology, and the statistical model and demonstrates the “Einstein

from noise” phenomenon. Section 3 consists of two parts: (i) it presents an

extreme value theory for the distribution of the largest cross-correlation value as

n and p both tend to infinity; and (ii) it states asymptotic results on the bias as

n, p, and m all tend to infinity. The theoretical results in part (ii) are validated

using a simulation study in Section 4. Section 5 concludes the paper. The proofs

of the asymptotic results in Section 3 are relegated to the Appendix. The online

Supplementary Material contains the proofs of the auxiliary lemmas.

2. Statistical Model

2.1. Notation, terminology, and model

Let R be the reference matrix (the digital version of the reference image) of

dimension d1 × d2. We assume that ‖R‖ = 1, where ‖ · ‖ denotes the Frobenius

norm of a matrix or the Euclidean norm of a vector. We generate n independent

and identically distributed (i.i.d.) white-noise images, as follows. Let Z1, . . . ,Zn
be i.i.d. d1 × d2 random matrices, such that the d1d2 components of each Zi are

i.i.d. standard normal. We refer to Zi/‖Zi‖, for i = 1, . . . , n (the normalized

version of Zi), as n i.i.d. white-noise images.

Let r = vec(R), the p-dimensional column vector that is the vectorized

version of R, where p = d1d2. The fact that ‖r‖ = 1 implies that r ∈ Sp−1 (the

(p− 1)-dimensional unit sphere). Let Xi = vec(Zi)/‖Zi‖. Thus, X1, . . . ,Xn are

i.i.d. uniformly distributed on Sp−1. We refer to both Zi/‖Zi‖ and Xi as the

ith white-noise image. With r> denoting the transpose of r, the CC of Xi and r

(or, equivalently, of Zi/‖Zi‖ and R) is defined as r>Xi (the inner product (dot

product) of Xi and r), which is a similarity measure of two images. Note that

r>Xi = cos Θi, where Θi is the angle between r and Xi.

The n white-noise images are ordered (and denoted by X(1), . . . ,X(n)) ac-

cording to their CC values with r. In other words, (X(1), . . . ,X(n)) is a permu-
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m=1 m=200 m=400 m=800

CC=0.039 CC=0.426 CC=0.536 CC=0.650

Figure 1. Example with Einstein’s face as the reference image.

tation of (X1, . . . ,Xn) such that r>X(1) ≥ r>X(2) ≥ · · · ≥ r>X(n). Let Θ1:n ≤
Θ2:n ≤ · · · ≤ Θn:n be the order statistics of the angles (Θ1, · · · ,Θn) such that

cos Θi:n = r>X(i), for i = 1, . . . , n. LetXm = m−1
∑m

i=1X
(i). Then,Xm/‖Xm‖

∈ Sp−1 is the normalized average of the m white-noise images that are most highly

cross-correlated with the reference image. Our goal is to find a good approxima-

tion of the distribution of ρn,p,m = r>Xm/‖Xm‖ when n, p, and m are large.

Note that for m = 1, ρn,p,1 = r>X(1) = cos Θ1:n is the largest CC value. Note too

that the distribution of ρn,p,m does not depend on r, because if X is uniformly

distributed on Sp−1, then the distribution of r>X is independent of r.

2.2. Demonstration of the “Einstein from noise” phenomenon

We now present two figures summarizing the simulation study described in

Section 1, where n = 2 × 106, p = d1 × d2 = 120 × 120 = 14,400, and m =

1, 200, 400, 800. In Figure 1, the leftmost (reference) image is Einstein’s face,

and the other four images correspond to Xm/‖Xm‖, for m = 1, 200, 400, 800.

The second image from the left corresponds to X(1), which has a CC value with

Einstein’s facial image of 0.039 (the largest among the 2×106 white-noise images

generated in the simulation). Although this image is rather noisy, Einstein’s face

emerges in the other three images with different degrees of blurring, corresponding

to CC values 0.426, 0.536, and 0.650.

Figure 2 shows similar results based on reference images of a simple chess-

board, the digits of 2020, a leopard cat, and the Statistics Building of Academia

Sinica, indicating that the phenomenon of “Einstein from noise” is robust across

various reference images. The CC values in Figure 2 are roughly the same across

the different reference images, which can be explained by the previously men-

tioned fact that if X is uniformly distributed on Sp−1, then the distribution of

r>X is independent of r.
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m=1 m=200 m=400 m=800

CC=0.041 CC=0.423 CC=0.530 CC=0.645

m=1 m=200 m=400 m=800

CC=0.043 CC=0.423 CC=0.536 CC=0.647

m=1 m=200 m=400 m=800

CC=0.042 CC=0.418 CC=0.530 CC=0.645

m=1 m=200 m=400 m=800

CC=0.044 CC=0.422 CC=0.535 CC=0.650

Figure 2. The phenomenon of “Einstein from noise” across various reference images.

3. Asymptotic Theory

3.1. Extreme value theory for the largest CC

Recall that cos Θ1:n is the largest CC. The following theorem provides an

approximation for the distribution of cos Θ1:n when n and p are large.

Theorem 1. Let

Kn,p = − lnn+
1

2
ln lnn− 1

2
ln

(
2(lnn)/p

1− exp[(−2lnn) /p]

)
+

1

2
ln(4π). (3.1)

We have

(p− 1) ln(sin Θ1:n)−Kn,p
d−→ G uniformly as n ∧ p→∞, (3.2)

where n∧p = min{n, p}, d→ denotes convergence in distribution, and the cumula-
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Figure 3. The approximate 100αth quantile of the distribution of cos Θ1:n (Mn,p(α))
versus log10 n, with p = 120× 120, α = 0.05, 0.5, 0.95.

tive distribution function (cdf) of G is given by G(t) = 1− e−et, for t ∈ R, which

is known as the extreme value distribution of Gumbel type.

Based on (3.2), for 0 < α < 1, the approximate 100αth quantile of the

distribution of cos Θ1:n is

Mn,p(α) =

√
1− exp

{
2(Kn,p + ln ln α−1)

(p− 1)

}
.

Recall that cos Θ1:n = 0.039 in the simulation study summarized in Figure 1,

where n = 2 × 106 and p = 120 × 120. This observed value is compatible with

the approximate 10th quantile Mn,p(0.1) = 0.039.

Figure 3 plots Mn,p(α) versus log10 n for n ≤ 10100, with p = 120× 120 and

α = 0.05, 0.5, 0.95. Note that the three quantile curves are very close to each

other, indicating that cos Θ1:n has a small standard deviation (s.d.). Figure 3

suggests that for P(cos Θ1:n ≥ 0.1) to be at least 0.05, n is required to be greater

than 1030, and for P(cos Θ1:n ≥ 0.15) to be at least 0.05, n is required to be

greater than 1070. In other words, it is unlikely for any of the n i.i.d. white-noise

images of dimension 120 × 120 to have a CC value with Einstein’s face greater

than 0.15, unless n is astronomically large.

3.2. Asymptotic results on ρn,p,m

When p = pn and m = mn both grow with n, the asymptotic expansions for

the distribution of ρn,p,m are more involved. Our analysis requires the condition

(lnn)2/p = o(1) (which is stronger than (ln n)/p = o(1)), so that terms such as
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(ln n)(ln ln n)/p become negligible. Let

βn,p,m =
m

p

{
2 ln

n

m
− ln ln

n

m
− ln(4π) + 2

}
,

which is a model bias index. Although the quantity βn,p,m plays an important role

in our asymptotic results below, we are unaware of any heuristic interpretation

of this quantity.

Theorem 2. Let p = pn →∞ satisfy (lnn)2/p = o(1) and m = mn →∞ satisfy

m/n = o(1). Then,

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)) .

Consequently, ρ2n,p,m − βn,p,m/(1 + βn,p,m)→ 0 in probability.

Theorem 3. Let p = pn →∞ satisfy (lnn)2/p = o(1) and m = mn →∞ satisfy

m(ln lnn)4/(lnn)2 = o(1). Then,

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

where αn,p,m = p
(
8m+ 2p β2n,p,m

)−1/2
(1 + βn,p,m)2 and N(0, 1) denotes the stan-

dard normal distribution.

Corollary 1. Let p = pn →∞ and m = mn →∞.

(i) If (lnn)2/p = o(1) and m/n = o(1), then

ρn,p,m√
βn,p,m/(1 + βn,p,m)

= 1 + op(1).

Consequently,

ρn,p,m =

√
βn,p,m

1 + βn,p,m
+ op(1) and E(ρn,p,m) =

√
βn,p,m

1 + βn,p,m
+ o(1).

(ii) In addition to the conditions specified in (i), if m (ln ln n)4/(ln n)2 = o(1),

then

α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)
d−→ N(0, 1),

where α̃n,p,m = 2αn,p,m
√
βn,p,m/(1 + βn,p,m).

Remark 1. In addition to the condition (lnn)2/p = o(1), Theorem 2 only re-

quires the mild condition m/n = o(1). Let γn,p,m = (m/p) ln(n/m). Because
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βn,p,m = 2γn,p,m(1 + o(1)) (i.e., 2γn,p,m is the leading term of βn,p,m), Theorem 2

implies

ρ2n,p,m =
2γn,p,m

1 + 2γn,p,m
+ op(1).

Consequently,

ρn,p,m =
√

2γn,p,m

1+2γn,p,m
+ op(1) and E(ρn,p,m) =

√
2γn,p,m

1+2γn,p,m
+ o(1). (3.3)

Remark 2. To establish the asymptotic normality of ρ2n,p,m (and ρn,p,m), The-

orem 3 (and Corollary 1) requires the stringent condition m(ln ln n)4/(ln n)2 =

o(1). It is unclear whether asymptotic normality still holds when m grows at a

rate faster than (ln n)2/(ln ln n)4. Note too that under the conditions in The-

orem 3, it is not true that αn,p,m
(
ρ2n,p,m − 2γn,p,m/(1 + 2γn,p,m)

) d−→ N(0, 1).

Thus, while 2γn,p,m is the leading term of βn,p,m, the remaining terms also play

a non-negligible role in the proof of asymptotic normality.

Remark 3. Fan, Shao and Zhou (2018) developed an asymptotic theory to ap-

proximate the distribution of the maximum spurious correlation of a response

variable Y with the best m linear combinations of p covariates X, based on an

i.i.d. sample of size n, when X and Y are independent; see also Fan, Guo and

Hao (2012) for related results. In our setting, the quantity ρn,p,m is the spurious

CC of the reference with the normalized average of the m white-noise images that

are most highly cross-correlated with the reference. Indeed, with the roles of n

and p reversed, ρn,p,m corresponds to another spurious correlation of the response

variable Y with the the average of the m (standardized) covariates in X that are

most highly correlated with Y when the p covariates in X and Y are all mutually

independent.

4. Simulation Results on ρn,p,m

By Corollary 1(i), if m is small compared to n, and (ln n)2 is small compared

to p, then E(ρn,p,m) is expected to be close to
√
βn,p,m/(1 + βn,p,m), while the

s.d. of ρn,p,m is expected to be small. We conducted a simulation study of the

distribution of ρn,p,m for various combinations of (n, p,m), with n = 104, 105, p =

104, 4× 104, and m = 100, 200, 400, 600. The results are reported in Tables 1 and

2, where E(ρn,p,m) and s.d.(ρn,p,m) are estimated based on 1,000 replications in

each case. Although
√
βn,p,m/(1 + βn,p,m) approximates E(ρn,p,m) well, it slightly

overestimates E(ρn,p,m), more notably for n = 104. Clearly, E(ρn,p,m) increases as

n or m increases or p decreases. On the other hand, s.d.(ρn,p,m) is small (< 0.005)
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Table 1. p = 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.257 0.323 0.395 0.437 0.318 0.408 0.509 0.570√
βn,p,m

1+βn,p,m
0.258 0.325 0.399 0.442 0.319 0.409 0.510 0.571

s.d.(ρn,p,m) 0.0043 0.0045 0.0046 0.0048 0.0039 0.0039 0.0040 0.0037

α̃−1
n,p,m 0.0051 0.0053 0.0055 0.0057 0.0041 0.0042 0.0040 0.0039

Prob. 0.974 0.967 0.942 0.870 0.967 0.959 0.947 0.953

Table 2. p = 4× 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.132 0.168 0.210 0.236 0.165 0.218 0.283 0.327√
βn,p,m

1+βn,p,m
0.132 0.169 0.212 0.239 0.166 0.219 0.284 0.328

s.d.(ρn,p,m) 0.0022 0.0024 0.0026 0.0027 0.0019 0.0020 0.0021 0.0022

α̃−1
n,p,m 0.0026 0.0028 0.0031 0.0033 0.0021 0.0022 0.0023 0.0023

Prob. 0.977 0.978 0.946 0.871 0.968 0.967 0.955 0.953

in all cases. In addition, s.d.(ρn,p,m) decreases as n or p increases, and is about

the same as m varies from 100 to 600. Also included in Tables 1 and 2 are α̃−1n,p,m
and the empirical probability (denoted as Prob.) that∣∣∣∣∣ρn,p,m −

√
βn,p,m

1 + βn,p,m

∣∣∣∣∣ < 1.96 α̃−1n,p,m.

It is clear from the tables that α̃−1n,p,m approximates s.d.(ρn,p,m) reasonably well

in all cases. By Corollary 1(ii), the Prob. value is expected to be close to

0.95 if the normal approximation is accurate. By Theorem 3 and Corollary 1,

αn,p,m
(
ρ2n,p,m − βn,p,m/(1 + βn,p,m)

)
and α̃n,p,m

(
ρn,p,m −

√
βn,p,m/(1 + βn,p,m)

)
are approximately standard normal under somewhat stringent conditions on the

growth rates of m and p as n→∞. None of the combinations of (n, p,m), with

n = 104, 105, p = 104, 4×104 and m = 100, 200, 400, 600, seem to satisfy the con-

dition that m (ln ln n)4/(ln n)2 be small. Nevertheless, the normal approximation

appears to be acceptable for n = 105, but less satisfactory for n = 104.

To obtain a more complete picture of the quality of the normal approxima-

tion in Corollary 1(ii), in Figures 4–7, we plot the empirical cdf of α̃n,p,m(ρn,p,m−√
βn,p,m/(1 + βn,p,m)) (based on 1,000 replications), along with the standard nor-

mal cdf for each combination of (n, p,m). (The value of Dks is the Kolmogorov–
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Figure 4. Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed curves) and

standard normal cdf (solid curves): n = 104, p = 104.
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Figure 5. Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed curves) and

standard normal cdf (solid curves): n = 105, p = 104.

Smirnov distance between the two cdfs.) Figures 4–7 show the cdf under four

different scenarios, depending on the values of n = 104, 105 and p = 104, 4× 104.

Each figure includes four plots, depending on the values of m = 100, 200, 400, 600.

The empirical cdf is shifted to the left of the standard normal cdf (particu-

larly for n = 104 in Figures 4 and 6), indicating that the mean of ρn,p,m −√
βn,p,m/(1 + βn,p,m) is negative. This is consistent with the results in Tables 1

and 2, where
√
βn,p,m/(1 + βn,p,m) (slightly) overestimates E(ρn,p,m) (particularly

for n = 104).
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Figure 6. Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed curves) and

standard normal cdf (solid curves): n = 104, p = 4× 104.
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Figure 7. Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed curves) and

standard normal cdf (solid curves): n = 105, p = 4× 104.

5. Conclusion

We have studied a simple statistical model in order to quantitatively examine

the “Einstein from noise” phenomenon. Specifically, for a given reference image

of dimension p and a set Sn of n i.i.d. white-noise images (with the common

uniform distribution on Sp−1), we derived the asymptotic behavior of the CC

ρn,p,m between the reference and the normalized average of the m “most biased”

members in Sn, in the sense that they have the largest CC values with the refer-

ence. Our theoretical results indicate that for m = 1 and p = 120× 120, unless n
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is far beyond the practical range (> 1070), ρn,p,1 is small (< 0.15) with high prob-

ability, implying that none of the n white-noise images even remotely resembles

the reference. On the other hand, for m moderately large (≥ 400), ρn,p,m exceeds

0.5 with high probability if n = 2 × 106. In this case, a blurred version of the

reference emerges from the normalized average of the m most biased members in

Sn.

Given a set Sn of n i.i.d. white-noise images, Cai, Fan and Jiang (2013)

derived the asymptotic distribution of the maximum of all pairwise CCs in Sn;

see also Cai and Jiang (2011, 2012), and the references therein. In the absence

of a reference image, their results may be applied to test the null hypothesis

that Sn consists of n i.i.d. white-noise images. On the other hand, given a

reference image, we can use our results to test such a null hypothesis against the

alternative that some of the n images in Sn are biased toward the reference by

checking whether ρn,p,m exceeds a threshold (determined by the null distribution

of ρn,p,m).

Our approach can be generalized directly to tackle a special case of multi-

ple references. Let r(1), . . . , r(k) be k given references of dimension p. Given a

set Sn of n i.i.d. white-noise images, for i = 1, . . . , k, let ρ
(i)
n,p,m (i = 1, . . . , k)

denote the CC between r(i) and the normalized average of those m members

in Sn with the largest CC values with r(i). It would be of interest to derive

the asymptotic distribution of max{ρ(i)n,p,m : i = 1, . . . , k}. If r(1), . . . , r(k) are

orthogonal (i.e., the pairwise CCs are all equal to zero), then it can be ar-

gued that ρ
(1)
n,p,m, . . . , ρ

(k)
n,p,m are asymptotically independent. In this case the

asymptotic distribution of max{ρ(i)n,p,m : i = 1, . . . , k} can be readily derived from

Corollary 1. However, it seems difficult to find the asymptotic distribution of

max{ρ(i)n,p,m : i = 1, . . . , k} when r(1), . . . , r(k) are not orthogonal.

The phenomenon of “Einstein from noise” originally arose in the context of

cryo-EM image analysis, where a key component is image alignment (including

rotation and translation). While addressing this more complicated problem is

beyond the scope of this study, note that the geometric shape of the reference

is likely to play a significant role in the asymptotic theory yet to be developed.

As an example, consider a rotationally invariant reference, such as an image of

a centered wheel. Because of the rotational symmetry of the reference, a data

image cannot fit the reference any better after rotation. We leave this challenging

problem for future work.
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Supplementary Material

The online Supplementary Material contains the proofs of Lemmas A6–A8

in the Appendix.
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A. Appendix

The Appendix consists of three sections. Section A.1 states some auxiliary

lemmas, Section A.2 contains the proof of Theorem 1, and Section A.3 provides

the proofs of Theorems 2 and 3 and Corollary 1. For easy reference, a complete

list of notations is given in Supplementary Material. Note that if X is uniformly

distributed on Sp−1, then the distribution of r>X is the same for all r ∈ Sp−1.
Without loss of generality, we assume r = (1, 0, . . . , 0)> ∈ Sp−1 in what follows.

A.1. Auxiliary lemmas

Lemma A1. (Lemma 6.2 of Cai and Jiang (2012)) For t ∈ (0, 1), we have(
1 +

1

pt2

)−1 1

(p+ 2)t
(1− t2)(p+2)/2 ≤

∫ 1

t
(1− u2)p/2du ≤ 1

(p+ 2)t
(1− t2)(p+2)/2.

Since Xi, i = 1, . . . , n are iid uniformly distributed on Sp−1 and Θi denotes

the angle between Xi and r = (1, 0, . . . , 0)>, we have (cf. Eq (5) of Cai, Fan and

Jiang (2013)) that Θi, i = 1, . . . , n are iid with the common cdf

Fp(θ) =

∫ θ

0

1√
π

Γ(p/2)

Γ((p− 1)/2)
(sinx)p−2dx

=

∫ 1

cos θ

1√
π

Γ(p/2)

Γ((p− 1)/2)
(1− u2)(p−3)/2du, θ ∈ [0, π]. (A.1)

Let

F p(θ) =
1√
π

Γ(p/2)

Γ((p− 1)/2)

sinp−1 θ

(p− 1)| cos θ|
. (A.2)

The following lemma is a consequence of Lemma A1.
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Lemma A2. For θ ∈ (0, π/2) and p > 3, we have(
1 +

1

(p− 3) cos2 θ

)−1
F p(θ) ≤ Fp(θ) ≤ F p(θ).

Let U1, U2, . . . be iid uniform (0,1) random variables and let U1:n ≤ · · · ≤ Un,n
denote the order statistics of U1, . . . , Un. Let S0 = 0, and Si = ξ1 + · · · + ξi,

i = 1, 2, . . . , where ξ1, ξ2, . . . are iid exponential random variables with mean 1.

The next lemma is well known; see e.g. Karlin and Taylor (1975). We write

X
d
= Y if random vectors X and Y are equal in distribution.

Lemma A3. (i) (U1:n, . . . , Un:n)
d
= (S1, . . . , Sn)/Sn+1. (ii) (S1, . . . , Sn)/Sn+1 is

independent of Sn+1.

Recall that (X(1), . . . ,X(n)) is a permutation of (X1, . . . ,Xn) such that

X
(1)
1 ≤ · · · ≤ X

(n)
1 , where X

(i)
1 = r>X(i) (the first component of X(i)). Let Vi

and V (i) be defined byXi = (Xi1, (1−X2
i1)

1/2V >i )> andX(i) = (X
(i)
1 , νiV

(i)>)>,

where νi = (1 −X(i)2
1 )1/2. In other words, Vi (V (i), respectively) ∈ Sp−2 is the

normalized subvector of Xi (X(i), respectively) with the first component deleted.

Lemma A4.

(i) Xi1 and Vi, i = 1, . . . , n are all independent.

(ii) Xi1, i = 1, . . . , n are iid.

(iii) Vi, i = 1, . . . , n are iid with the uniform distribution on Sp−2.

(iv) (V (1), . . . ,V (n)) is independent of (X11, . . . , Xn1) and hence independent of

(X
(1)
1 , . . . , X

(n)
1 ).

(v) V (i), i = 1, . . . , n are iid with the uniform distribution on Sp−2.

To show Lemma A4, let Zij , i = 1, . . . , n, j = 1, . . . , p, be i.i.d. standard

normal, and let

X∗i = (Zi1, . . . , Zip)
>
/√√√√ p∑

j=1

Z2
ij =

(
Zi1

/√√√√ p∑
j=1

Z2
ij , ν

∗
i V
∗
i

)>
, i = 1, . . . , n,

where ν∗i =
√∑p

j=2 Z
2
ij/
√∑p

j=1 Z
2
ij and V ∗i = (Zi2, . . . , Zip)

>/
√∑p

j=2 Z
2
ij .

It is readily seen that X∗i is uniformly distributed on Sp−1 and independent of∑p
j=1 Z

2
ij , and that V ∗i is uniformly distributed on Sp−2 and independent of Zi1
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and
∑p

j=2 Z
2
ij (hence independent of Zi1/

√∑p
j=1 Z

2
ij). Since (X1, . . . ,Xn)

d
=

(X∗1 , . . . ,X
∗
n) and (V1, . . . ,Vn)

d
= (V ∗1 , . . . ,V

∗
n ), Lemma A4 follows.

Recall that

Xm =
1

m

m∑
i=1

X(i) =

(
m−1

m∑
i=1

X
(i)
1 ,m−1

m∑
i=1

νiV
(i)>

)>
and that

ρ2n,p,m =

(
r>

Xm

‖Xm‖

)2

=

(
(1/m)

∑m
i=1X

(i)
1

)2
(

(1/m)
∑m

i=1X
(i)
1

)2
+
∥∥(1/m)

∑m
i=1 νiV

(i)
∥∥2 .

Let V ′i , i = 1, . . . , n be iid uniformly distributed on Sp−2 and independent of

X1, · · · ,Xn. Then the following lemma is a consequence of Lemma A4.

Lemma A5.

ρ2n,p,m
d
=

(
m−1

∑m
i=1X

(i)
1

)2
(
m−1

∑m
i=1X

(i)
1

)2
+ ‖m−1

∑m
i=1 νiV

′

i ‖2

=
An,p,m

An,p,m + Vn,p,m
, (A.3)

where

An,p,m =

(
1

m

m∑
i=1

X
(i)
1

)2

and Vn,p,m =

∥∥∥∥∥ 1

m

m∑
i=1

νiV
′
i

∥∥∥∥∥
2

. (A.4)

The long proofs of Lemmas A6-A8 below are given in Supplementary Mate-

rial.

Lemma A6. Let m = mn → ∞ satisfy m/n = o(1) and p = pn → ∞ satisfy

(lnn)2/p = O(1). Then

(i)

max
1≤i≤m

∣∣∣∣p ln(sin Θi:n) + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

(ii)

max
1≤i≤m

∣∣∣∣−p2 cos2 Θi:n + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

where Θ1:n ≤ Θ2:n ≤ · · · ≤ Θn:n are the order statistics of Θ1, . . . ,Θn.
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Lemma A7. Suppose that p = pn →∞ satisfies (lnn)2/p = O(1).

(i) If m = mn →∞ satisfies m/n→ 0, then

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
= Op(1).

(ii) If m = mn →∞ satisfies (lnm)3/(lnn)2 → 0, then

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2
= op(1).

(iii) If m = mn →∞ satisfies m(ln lnn)4/(lnn)2 → 0, then(m
8

)1/2{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2}
d−→ N(0, 1).

Lemma A8. Let W1, . . . ,Wn be iid uniformly distributed on Sp−1. Then√
p

2n2

∑
1≤i 6=`≤n

〈Wi,W`〉
d−→ N(0, 1) uniformly as n ∧ p→∞,

where 〈Wi,W`〉 denotes the inner product of Wi and W`.

A.2. Proof of Theorem 1

Theorem 1 is a special case of Theorem A1 below for m = 1.

Theorem A1. Let

Tn,p = (p− 1) ln(sin Θm:n)−Kn,p,

where Kn,p is defined as in (3.1). Let G∗m(t) = Gm(et), t ∈ R, where Gm denotes

the gamma distribution with shape parameter m and scale parameter 1. Then for

fixed m = 1, 2, . . . , Tn,p
d−→ G∗m uniformly as n ∧ p→∞.

Proof. We claim that

Tn`,p`
d−→ G∗m (A.5)

for any increasing sequences {n`} and {p`} satisfying n` → ∞, p` → ∞ and

(lnn`)/p` → α ∈ [0,∞] as ` → ∞. Assume for now that the claim (A.5) holds.

To show that Tn,p
d−→ G∗m uniformly as n∧ p→∞, suppose to the contrary that
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lim supn∧p→∞ supt∈R |P(Tn,p ≤ t)−G∗m(t)| > 0. Then there exist an ε > 0 and a

sequence {(n`, p`) : ` = 1, 2, . . . } such that lim`→∞ n` ∧ p` =∞ and

sup
t∈R
|P(Tn`,p` ≤ t)−G∗m(t)| > ε for ` = 1, 2, . . . . (A.6)

There exists a subsequence {(n`k , p`k) : k = 1, 2, . . . } such that (lnn`k)/p`k con-

verges to some value α ∈ [0,∞]. Then (A.6) contradicts (A.5), implying that

Tn,p
d−→ G∗m uniformly as n ∧ p→∞.

We now prove (A.5). For notational simplicity, we will deal only with the

special case where n` = `, ` = 1, 2, . . . . The general case can be treated similarly.

Specifically, we show that if p = pn → ∞ satisfies (lnn)/p → α ∈ [0,∞], then

Tn,p = Tn,pn
d→ G∗m.

Suppose p = pn → ∞ satisfies limn→∞(lnn)/p = α ∈ [0,∞]. For fixed m,

since Fp(Θm:n)
d
= Um:n, we have by Lemma A3

P(nFp(Θm:n) ≤ et) = P
(
nUm:n ≤ et

)
= P

(
n
Sm
Sn+1

≤ et
)

−→ P(Sm ≤ et) = Gm
(
et
)

= G∗m(t). (A.7)

For fixed t > 0, let tn ∈ [0, 1) be such that

p− 1

2
ln(1− t2n) = min{Kn,p + t, 0}.

Noting that

Kn,p = Kn,pn = −(lnn)(1 + o(1)) as n→∞, (A.8)

we have for large n
p− 1

2
ln(1− t2n) = Kn,p + t < 0. (A.9)

By Lemma A2,(
1 +

1

(p− 3)t2n

)−1
F p(cos−1 tn) ≤ Fp(cos−1 tn) ≤ F p(cos−1 tn),

implying that

P(nFp(Θm:n) ≤ nF p(cos−1 tn)) ≥ P(nFp(Θm:n) ≤ nFp(cos−1 tn))

≥ P

(
nFp(Θm:n) ≤

(
1 +

1

(p− 3)t2n

)−1
nF p(cos−1 tn)

)
. (A.10)
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Recalling α = limn→∞(lnn)/p, we claim that for every α ∈ [0,∞], as n→∞

nF p(cos−1 tn) = et + o(1), (A.11)

p t2n →∞, (A.12)

P(cos Θm:n ≤ −tn) → 0. (A.13)

By (A.7), (A.10), (A.11) and (A.12),

P(cos Θm:n ≥ tn) = P
(
nFp(Θm:n) ≤ nFp(cos−1 tn)

)
→ G∗m(t). (A.14)

Furthermore,

P(Tn,p ≤ t) = P

(
p− 1

2
ln(1− cos2 Θm:n)−Kn,p ≤ t

)
= P(cos2 Θm:n ≥ t2n) (by (A.9))

= P(cos Θm:n ≥ tn) + P(cos Θm:n ≤ −tn)

→ G∗m(t) (by (A.13) and (A.14)).

It remains to establish (A.11)-(A.13). Note that by Sterling’s formula (see e.g.

Tricomi and Erdélyi (1951)),

Γ(p/2)

Γ((p− 1)/2)
=

√
p

2

(
1 +O

(
1

p

))
as p→∞. (A.15)

We have

ln
(
nF p(cos−1 tn)

)
= ln

{
n√
π

Γ(p/2)

Γ((p− 1)/2)

(
(1− t2n)p−1

(p− 1)2t2n

)1/2
}

(by (A.2))

= ln

{
n

(
(1− t2n)p−1

2πpt2n

)1/2
}

+O

(
1

p

)
(by (A.15)))

=
p− 1

2
ln(1− t2n) + lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
= Kn,p + t+ lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
(by (A.9)).

(A.16)

By (A.8) and (A.9),

ln(1− t2n) = −2 lnn

p
(1 + o(1)), (A.17)
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implying that

tn →
(
1− e−2α

)1/2
, (A.18)

where limn→∞(lnn)/p = α ∈ [0,∞] and e−∞ := 0.

If α = 0, we have tn → 0+, so that by (A.17)

t2n =
2 lnn

p
(1 + o(1)), (A.19)

from which it follows that ln(pt2n) = ln(2 lnn) + o(1). By the definition of Kn,p,

we have Kn,p = − lnn + (ln lnn)/2 + ln(4π)/2 + o(1), so that Kn,p + lnn −
ln(pt2n)/2 − ln(2π)/2 = o(1), which together with (A.16) establishes (A.11) for

α = 0. If 0 < α < ∞, we have t2n = 1 − e−2α + o(1) (by (A.18)) and ln(pt2n) =

ln lnn−lnα+ln
(
1− e−2α

)
+o(1), so that Kn,p+lnn−ln(pt2n)/2−ln(2π)/2 = o(1),

which together with (A.16) establishes (A.11) for 0 < α <∞. If α =∞, we have

tn → 1−, so that by the definition of Kn,p,

Kn,p + lnn− 1

2
ln(pt2n)− 1

2
ln(2π)

= − lnn+
1

2
ln lnn− 1

2
ln

(
2 lnn

p

)
+

1

2
ln(4π) + lnn− 1

2
ln p− 1

2
ln(2π) + o(1)

= o(1),

which together with (A.16) establishes (A.11) for α =∞.

Next, (A.19) holds for α = 0, which implies (A.12). For 0 < α ≤ ∞, it

follows from (A.18) that tn → (1− e−2α)1/2 > 0, which implies (A.12).

Finally, to prove (A.13), note that

P(cos Θm:n ≤ −tn) ≤ P

(
Θm:n ≥

π

2

)
= P

(
B

(
n,

1

2

)
< m

)
→ 0,

where B(n, 1/2) denotes a binomial random variable with parameters n and 1/2

(success probability). This establishes (A.13) and completes the proof of Theorem

A1.

A.3. Proofs of Theorems 2-3 and Corollary 1

We first show that if m = mn → ∞ satisfies m/n → 0 and p = pn → ∞
satisfies (ln n)2/p→ 0, then

m

√
p

2

(
Vn,p,m −

1

m

)
d−→ N(0, 1), (A.20)
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where Vn,p,m = ‖1/m
∑m

i=1 νiV
′
i ‖2 with ν2i = 1 − cos2 Θi:n, and V ′1 , . . . ,V

′
m

are i.i.d. uniformly distributed on Sp−2, and (V ′1 , . . . ,V
′
m) is independent of

(ν1, . . . , νm).

We have

Vn,p,m =
1

m2

m∑
i=1

ν2i ‖V
′

i ‖2 +
1

m2

∑
1≤i 6=`≤m

νiν`〈V ′i ,V ′` 〉

=
1

m
+

1

m2

m∑
i=1

(ν2i − 1) +
1

m2

∑
1≤i 6=`≤m

{1 + (νiν` − 1)}〈V ′i ,V ′` 〉

=
1

m
+ V ′1,n + V ′2,n + V ′3,n, (A.21)

where

V ′1,n =
1

m2

m∑
i=1

(ν2i − 1) = − 1

m2

m∑
i=1

cos2 Θi:n,

V ′2,n =
1

m2

∑
1≤i 6=`≤m

〈V ′i ,V ′` 〉,

V ′3,n =
1

m2

∑
1≤i 6=`≤m

(νiν` − 1)〈V ′i ,V ′` 〉.

By Lemma A8, we have

m

√
p

2
V ′2,n

d−→ N(0, 1). (A.22)

It remains to prove

mp1/2V ′i,n = op(1), i = 1, 3. (A.23)

By Lemma A6(ii),

max
1≤i≤m

cos2 Θi:n = Op

(
ln n

p

)
,

implying that mp1/2V ′1,n = Op
(
ln n/p1/2

)
= op(1). To show mp1/2V ′3,n = op(1),

note that (ν1, . . . , νm) is independent of (V ′1 , . . . ,V
′
m) and E[〈V ′i ,V ′` 〉〈V ′i′ ,V ′`′〉] =

0 if i 6= `, i′ 6= `′ and {i, `} 6= {i′, `′}. Also, for i 6= `, E〈V ′i ,V ′` 〉2 =
∫ π
0 cos2(θ)

dFp−1(θ) = 1/(p− 1), where Fp is defined as in (A.1). We have

EV
′2
3,n =

2

m4

∑
1≤i 6=`≤m

E[(νiν` − 1)2]E〈V ′i ,V ′` 〉2
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=
2

m4

∑
1≤i 6=`≤m

E[(νiν` − 1)2]
1

p− 1

= o

(
1

m2p

)
, (A.24)

since |νi| ≤ 1 and νiν` − 1 → 0 in probability uniformly in 1 ≤ i 6= ` ≤ m. It

follows from (A.24) that mp1/2V ′3,n = op(1). This proves (A.23) and completes

the proof of (A.20).

Proof of Theorem 2. Since by (A.3) ρ2n,p,m
d
= An,p,m/(An,p,m + Vn,p,m), we

have

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
=

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

+
(1/m− Vn,p,m)βn,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)
. (A.25)

Since βn,p,m = (m/p) {2 ln (n/m)− ln ln (n/m)− ln(4π) + 2}, it follows from

Lemma A7(i) and (A.20) that

p(An,p,m −
1

m
βn,p,m) = Op(1),

mVn,p,m = 1 + op(1),

pβn,p,mVn,p,m = (2 + op(1)) ln
( n
m

)
.

Thus,

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
p(An,p,m − βn,p,m/m)

(pβn,p,mAn,p,m + pβn,p,mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
,

(1/m− Vn,p,m)βn,p,m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
(1−mVn,p,m)

(mAn,p,m +mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
.

We have by (A.25),

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)).

The proof is complete.
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Proof of Theorem 3. By (A.21)-(A.23),

m

√
p

2

(
Vn,p,m −

1

m

)
= m

√
p

2

(
V ′1,n + V ′2,n + V ′3,n

)
= m

√
p

2
V ′2,n + op(1). (A.26)

Let

Z1,n = p

√
m

8

(
An,p,m −

1

m
βn,p,m +

2

p2

(
ln
n

m

)2)
,

Z2,n = m

√
p

2
V ′2,n,

γn = (An,p,m + Vn,p,m)(1 + βn,p,m).

We have by (A.25) and (A.26)

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
= γ−1n

{
1

p
√
m/8

Z1,n −
βn,p,m

m
√
p/2

m

√
p

2

(
Vn,p,m −

1

m

)}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

{√
8

mp2
Z1,n −

√
2

m2p
βn,p,m(Z2,n + op(1))

}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

(
8

mp2
+

2

m2p
β2n,p,m

)1/2

{c1,nZ1,n + c2,n(Z2,n + op(1))}

− γ−1n
2

p2

(
ln
n

m

)2
, (A.27)

where

c1,n =

√
8

mp2

(
8

mp2
+

2

m2p
β2n,p,m

)−1/2
,

c2,n = −
√

2

m2p
βn,p,m

(
8

mp2
+

2

m2p
β2n,p,m

)−1/2
.

Since ρ2n,p,m
d
= An,p,m/(An,p,m + Vn,p,m), we have by Theorem 2

An,p,m
An,p,m + Vn,p,m

=
βn,p,m

1 + βn,p,m
(1 + op(1)). (A.28)
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It follows from Lemma A7(i) and (p/m)βn,p,m = 2 ln (n/m)(1 + o(1)) that

mAn,p,m
βn,p,m

=
pAn,p,m

(p/m)βn,p,m
= 1 + op(1). (A.29)

So we have

γn

(
8

mp2
+

2

m2p
β2n,p,m

)−1/2
=

pm√
8m+ 2pβ2n,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)

=
pmAn,p,m√

8m+ 2pβ2n,p,m

An,p,m + Vn,p,m
An,p,m

(1 + βn,p,m)

=
pmAn,p,m/βn,p,m√

8m+ 2pβ2n,p,m

(1 + βn,p,m)2(1 + op(1)) (by(A.28))

=
p√

8m+ 2pβ2n,p,m

(1 + βn,p,m)2(1 + op(1)) (by (A.29))

= αn,p,m(1 + op(1)), (A.30)

where αn,p,m = p
(
8m+ 2p β2n,p,m

)−1/2
(1 + βn,p,m)2 .

Also,

0 <
2

p2

(
ln
n

m

)2( 8

mp2
+

2

m2p
β2n,p,m

)−1/2
≤ 2

p2

(
ln
n

m

)2( 2

m2p
β2n,p,m

)−1/2
=

2

p2

(
ln
n

m

)2{ 2

p3

( p
m
βn,p,m

)2}−1/2
=

√
2

p

(
ln
n

m

)2 (
2 ln

n

m
(1 + o(1))

)−1
=

1√
2p

ln
n

m
(1 + o(1)) = o(1),

which together with (A.30) implies that

αn,p,m
γn

2

p2

(
ln

n

m

)2
=

{
αn,p,m
γn

(
8

mp2
+

2

m2p
β2n,p,m

)1/2
}{

2

p2

(
ln

n

m

)2( 8

mp2
+

2

m2p
β2n,p,m

)−1/2}
= (1 + op(1))o(1) = op(1). (A.31)
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It follows from (A.27), (A.30), and (A.31) that

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d
=
αn,p,m
γn

(
8

mp2
+

2

m2p
β2n,p,m

)1/2

{c1,nZ1,n + c2,nZ2,n(1 + op(1))}

−αn,p,m
γn

2

p2

(
ln

n

m

)2
= (1 + op(1)) {c1,nZ1,n + c2,nZ2,n(1 + op(1))}+ op(1). (A.32)

Note that c1,n and c2,n are constants (depending on n, pn,mn), which satisfy

c21,n + c22,n = 1. By Lemma A7(iii),

−Z1,n =

√
m

8

{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln (4π) + 2− 2

p

(
ln

n

m

)2}
d−→ N(0, 1).

By (A.22), Z2,n
d−→ N(0, 1). Note that Z1,n and Z2,n are independent (since

An,p,m and V ′2,n are independent). We have

c1,nZ1,n + c2,nZ2,n
d−→ N(0, 1),

which together with (A.32) implies that

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1).

The proof is complete.

Proof of Corollary 1. Part (i) follows immediately from Theorem 2. To prove

part (ii), we have by part (i) and Theorem 3 that

2αn,p,m

√
βn,p,m

1 + βn,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)

=
2
√
βn,p,m/(1 + βn,p,m)

ρn,p,m +
√
βn,p,m/(1 + βn,p,m)

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

completing the proof.
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Tricomi, F. G. and Erdélyi, A. (1951). The asymptotic expansion of a ratio of gamma functions.

Pacific Journal of Mathematics 1, 133–142.

Yan, C., Hang, J., Wan, R., Huang, M., Wong, C. C. and Shi, Y. (2015). Structure of a yeast

spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191.

Shao-Hsuan Wang

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.

E-mail: pico@stat.sinica.edu.tw

Yi-Ching Yao

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.

E-mail: yao@stat.sinica.edu.tw

Wei-Hau Chang

Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.

E-mail: weihua@chem.sinica.edu.tw

I-Ping Tu

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.

E-mail: iping@stat.sinica.edu.tw

(Received August 2020; accepted October 2020)

mailto:pico@stat.sinica.edu.tw
mailto:yao@stat.sinica.edu.tw
mailto:weihua@chem.sinica.edu.tw
mailto:iping@stat.sinica.edu.tw

	Introduction
	Statistical Model
	Notation, terminology, and model
	Demonstration of the ``Einstein from noise'' phenomenon

	Asymptotic Theory
	Extreme value theory for the largest CC
	Asymptotic results on n,p,m

	Simulation Results on n,p,m
	Conclusion
	Appendix

