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SHARPENING THE ROSENBAUM SENSITIVITY BOUNDS

TO ADDRESS CONCERNS ABOUT INTERACTIONS

BETWEEN OBSERVED AND UNOBSERVED COVARIATES

Siyu Heng and Dylan S. Small

University of Pennsylvania

Abstract: In observational studies, it is typically unrealistic to assume that treat-

ments are assigned randomly, even conditional on adjusting for all observed covari-

ates. Therefore, a sensitivity analysis is often needed to examine how hidden biases

due to unobserved covariates affect inferences on treatment effects. In matched

observational studies, where each treated unit is matched to one or multiple un-

treated controls for observed covariates, the Rosenbaum bounds sensitivity analysis

is one of the most popular sensitivity analysis models. We show that in the presence

of interactions between observed and unobserved covariates, directly applying the

Rosenbaum bounds almost inevitably exaggerates the report of sensitivity of causal

conclusions to hidden bias. We give sharper odds ratio bounds to fix this deficiency.

We illustrate our new method by studying the effect of a anger/hostility tendency

on the risk of experiencing heart problems.

Key words and phrases: Causal inference, gene-environment interaction, interaction

terms, matching, observational studies, sensitivity analysis.

1. Introduction

In a randomized experiment, units are assigned randomly to the treatment or

control groups. In contrast, in an observational study, treatments are not assigned

randomly to units. As such, differences between the outcomes of the treated and

control groups can be a biased estimate of the true treatment effect because of

baseline differences between the two groups. Baseline differences that can be

captured by observed covariates can often be removed by model-based adjust-

ments or matching. Among these methods, matching has been used extensively

as a nonparametric way of adjusting for the observed covariates in observational

studies: each treated unit is matched to one or several controls (i.e., untreated

units) on baseline observed covariates such that the treated units and controls are

similar in measured confounders, as they would be under a randomized experi-

ment, and the comparisons are made within these matched sets (Rubin (1973);
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Rosenbaum (2002, 2010); Hansen (2004); Stuart (2010); Zubizarreta, Cerdá and

Rosenbaum (2013); Pimentel et al. (2015); Zubizarreta and Keele (2017)).

However, some important baseline covariates may be unobserved, which

means the treatment assignments may not be random within each matched set.

A sensitivity analysis asks how a departure from the random assignment of a

treatment affects the causal conclusion drawn from a primary analysis that as-

sumes the treatment is assigned randomly, conditional on the observed covariates.

Among various sensitivity analysis models in matched observational studies, the

Rosenbaum bounds sensitivity analysis (Rosenbaum (1987, 2002)) is one of the

most popular. The analysis introduces a uniform sensitivity parameter Γ ≥ 1

bounding the ratio of the odds of treatment within each matched set: the more

Γ departs from one, the more the treatment assignment potentially departs from

random assignment in each matched set. Then, researchers typically consider the

“worst-case” p-value, which is defined as the largest p-value, given the sensitivity

parameter Γ, over all possible arrangements of unobserved covariates (i.e., un-

measured confounders) (Rosenbaum (2002)). For examples of studies that use the

Rosenbaum bounds sensitivity analysis, see Normand et al. (2001), Rosenbaum

(2002), Rosenbaum (2004), Heller, Rosenbaum and Small (2009), Silber et al.

(2009), Stuart and Hanna (2013), Zubizarreta, Cerdá and Rosenbaum (2013), Hsu

et al. (2015), Zubizarreta et al. (2016), Ertefaie, Small and Rosenbaum (2018),

Karmakar, French and Small (2019), Zhao (2019), Cohen, Olson and Fogarty

(2020), Fogarty (2020), and Zhang et al. (2021). Many other sensitivity analysis

models also build on the Rosenbaum bounds sensitivity analysis (e.g., Gastwirth,

Krieger and Rosenbaum, 1998; Ichino, Mealli and Nannicini, 2008; Rosenbaum

and Silber, 2009; Nattino and Lu, 2018; Fogarty and Hasegawa, 2019).

Here, we show that in the presence of any interactions between the ob-

served and unobserved covariates in a logit model of the treatment assignment

probability, the Rosenbaum bounds are almost inevitably loose for some of the

matched sets. Interactions between observed and unobserved covariates com-

monly exist in observational studies. One such setting is the extensively studied

“gene–environment interaction” (G×E), where two different genotypes respond to

environmental variations in different ways (Ottman, 1996; Caspi et al., 2002). In

many studies, such genotypes are not identified, measured, or publicly available,

and should be considered as unobserved covariates that interact with observed

environmental covariates (Pérusse and Bouchard (1999)). Directly applying the

Rosenbaum bounds sensitivity analysis in such settings can greatly exaggerate the

sensitivity of the causal conclusion to hidden bias. To perform a more informative

and less conservative sensitivity analysis in matched studies, we give sharper odds
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ratio bounds when there is concern about a possible interaction between an ob-

served covariate and an unobserved covariate. We apply our new result to study

the causal effect of anger/hostility tendency on the risk of experiencing heart

disease. The data used for this work are publicly available at https://www.ssc.

wisc.edu/wlsresearch/. The code and codebook used for this work are avail-

able at https://github.com/siyuheng/Sharpening-the-Rosenbaum-Bounds.

2. A Brief Review of the Rosenbaum Bounds Sensitivity Analysis

We briefly review the classical framework for the Rosenbaum bounds sensi-

tivity analysis for a matched observational study in which each treated unit is

matched to one or more controls (Rosenbaum (2002)). There are I matched sets

i = 1, . . . , I, and matched set i contains ni (ni ≥ 2) units, yielding N =
∑I

i=1 ni
units in total. In each matched set, one unit receives the treatment and the

others receive the control. Let Zij = 1 if unit j in matched set i received the

treatment, otherwise let Zij = 0. Therefore, we have
∑ni

j=1 Zij = 1, for all i. Let

xij = (xij(1), . . . , xij(K))
T denote the K observed covariates, and let uij be an

unobserved covariate of unit j in matched set i. The sets are matched for the ob-

served covariates, but not for the unobserved covariate. Therefore, xij = xij′ for

all i, j, and j′, but possibly uij 6= uij′ if j 6= j′ (Rosenbaum (2002)). Denote the

common observed covariates for units in matched sets i as xi = (xi(1), . . . , xi(K))
T ,

where xi = xij = xij′ , for all i, j, j′. Under the potential outcomes framework, if

unit j in matched set i received the treatment (i.e., Zij = 1), we observe the po-

tential outcome rT ij ; otherwise (i.e., Zij = 0), we observe the potential outcome

rCij (Neyman (1990); Rubin (1974)). Therefore, the observed outcome for each

i, j is Rij = ZijrT ij + (1 − Zij)rCij . Denote the collection of observed outcomes

as R = (R11, . . . , RInI
)T and the collection of unobserved covariates as u =

(u11, . . . , uInI
)T . Write F = {(rT ij , rCij ,xij , uij), i = 1, . . . , I, j = 1, . . . , ni},

and let Z be the set of all possible values of Z = (Z11, . . . , ZInI
)T , where Z ∈ Z

if and only if
∑ni

j=1 Zij = 1, for all i. Let |A| denote the number of elements

of a finite set A, and define the indicator function 1{A} = 1 if A is true, and

1{A} = 0 otherwise. Let a� b denote that a is much greater than b.

Fisher’s sharp null hypothesis of no treatment effect asserts that H0 : rT ij =

rCij , for all i, j. In a randomized experiment, we can assume that pr(Z = z |
F ,Z) = 1/|Z| = 1/(

∏I
i=1 ni) for all z ∈ Z. In a stratified randomized ex-

periment, with one unit in each matched set being assigned randomly to the

treatment, the significance level of a test statistic T being greater than or equal

https://www.ssc.wisc.edu/wlsresearch/
https://www.ssc.wisc.edu/wlsresearch/
https://github.com/siyuheng/Sharpening-the-Rosenbaum-Bounds
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to the observed value t can be computed as

pr(T ≥ t | F ,Z) =
∑
z∈Z

1{T (z,R) ≥ t} pr(Z = z | F ,Z)

=
|{z ∈ Z : T (z,R) ≥ t}|

|Z|
.

In an observational study, it is often unrealistic to assume that a treatment

is assigned randomly, even within a matched set of units with the same observed

covariates, owing to the possible presence of an unobserved covariate. A sensi-

tivity analysis is therefore needed to determine how departures from a random

assignment of the treatment affect the causal conclusions drawn from a primary

analysis that assumes the treatment is assigned randomly within each matched

set. Let πij = P (Zij = 1 | F) denote the probability that unit j in matched set i

will receive the treatment. The Rosenbaum bounds sensitivity analysis considers

that two units ij and ij′ in the same matched set i, with the same observed

covariates xij = xij′ = xi, may differ in their odds of receiving the treatment by

at most a factor of Γ ≥ 1:

Γ−1 ≤ πij(1− πij′)
πij′(1− πij)

≤ Γ, for all i ∈ {1, . . . , I} and j, j′ ∈ {1, . . . , ni}. (2.1)

Constraint (2.1) is also known as the Rosenbaum bounds (DiPrete and Gangl

(2004)). It is clear that the more Γ departs from one, the more the treatment

assignment potentially departs from a random assignment. In the Rosenbaum

bounds sensitivity analysis, researchers are interested in the “worst-case” (i.e.,

the largest possible) p-value reported by a test statistic T , given its observed

value t under constraint (2.1) (Rosenbaum (2002)). In practice, researchers grad-

ually increase the sensitivity parameter Γ, report the “worst-case” p-value under

each Γ, and find the largest Γ such that the “worst-case” p-value exceeds the

prespecified level α. Such a changepoint Γ is called a “sensitivity value” and

informs the magnitude of the potential hidden bias required to alter the causal

conclusion (Zhao (2019)).

For example, in a paired study where ni = 2 for all i, a commonly used

family of test statistics are sign-score statistics, including McNemar’s test and

Wilcoxon’s signed rank test. Their general form is Tss =
∑I

i=1 di
∑2

j=1 cijZij ,

where both di ≥ 0 and cij ∈ {0, 1} are functions of R, and so are fixed under

H0. When each Rij is binary, setting di = 1 and cij = Rij gives McNemar’s test.

For i = 1, . . . , I, define TΓ,i as independent random variables taking the di with
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probability p+
i and the value zero with probability 1− p+

i , where

p+
i =


0 if ci1 = ci2 = 0,

1 if ci1 = ci2 = 1,
Γ

1 + Γ
if ci1 6= ci2.

As shown in Section 4.3 in Rosenbaum (2002), under the Rosenbaum bounds

(2.1), for all t and Γ ≥ 1, we have pr(Tss ≥ t | F ,Z) ≤ pr(
∑I

i=1 TΓ,i ≥ t |
F ,Z). That is, in the Rosenbaum bounds sensitivity analysis, the “worst-case”

p-value under Γ reported by Tss given t is pr(
∑I

i=1 TΓ,i ≥ t | F ,Z). Assuming

no interactions between observed and unobserved covariates, the upper bound

pr(
∑I

i=1 TΓ,i ≥ t | F ,Z) is sharp in the sense that it can be achieved for some

arrangements of unobserved covariates; see Section 4.3 in Rosenbaum (2002).

However, as we show in Theorem 1 in Section 3, in the presence of interactions

between observed and unobserved covariates, the upper bound pr(
∑I

i=1 TΓ,i ≥
t | F ,Z) induced from the Rosenbaum bounds (2.1) is in general loose, in the

sense that it cannot be achieved for any arrangements of unobserved covariates.

The result in Theorem 1 also holds for general matching regimes (including pair

matching, matching with multiple controls, and full matching).

3. The Rosenbaum Bounds are Loose in the Presence of X–U Inter-

actions

The Rosenbaum bounds (2.1) are an odds ratio bound imposed on all matched

sets that does not explicitly involve the observed covariates xij and a hypoth-

esized unobserved covariate uij ; it is natural to consider how it can be derived

from a model expressed in terms of xij and uij for the treatment assignment

probability πij (Rosenbaum (2002)). Since the first paper on the Rosenbaum

bounds sensitivity analysis (Rosenbaum (1987)), considering a logit form linking

πij to xij and uij with no interactions between xij and uij has been a routine way

of interpreting the Rosenbaum bounds (2.1) and has been applied in numerous

studies (Rosenbaum (2002); DiPrete and Gangl (2004)):

log

(
πij

1− πij

)
= g(xij) + γuij , uij ∈ [0, 1], (3.1)

where γ ∈ R is unknown, and g(·) is an arbitrary unknown function of xij . Note

that the constraint uij ∈ [0, 1] is no more restrictive than assuming a bounded

support of uij , and is only imposed to make the scalar γ more interpretable
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(Rosenbaum (1987, 2002)). For example, if the original unobserved covariate

ũij ∈ [0, ξ], for some 0 < ξ < +∞, we just need to consider a normalized un-

observed covariate uij = ξ−1ũij ∈ [0, 1] and consider the logit model of πij in

terms of xij and uij = ξ−1ũij ∈ [0, 1]. It is then straightforward to show that the

Rosenbaum bounds (2.1) can be implied from (3.1) with Γ = exp(|γ|) (Rosen-

baum (2002); DiPrete and Gangl (2004)). Note that the Rosenbaum bounds (2.1)

are a type of nonparametric odds ratio bounds that can be implied from more

general models on πij than model (3.1), with an appropriate equation linking Γ

and the proposed model on πij . In the previous literature, model (3.1) is used

extensively as a working model for interpreting the Rosenbaum bounds, owing to

its simplicity and clarity. However, as we show in the rest of this section, only

considering model (3.1) and ignoring potential interactions between observed and

unobserved covariates can be harmful in a sensitivity analysis.

In this section, we instead consider a more general model of πij in terms of

xij and uij , allowing for any possible additive two-way interactions between each

xij(k) and uij (X–U interactions):

log

(
πij

1− πij

)
= g(xij) + βTxij × uij + γuij , uij ∈ [0, 1], (3.2)

where βT ∈ RK and γ ∈ R are unknown, and g(·) is an arbitrary unknown

function of xij . Similarly to the arguments under model (3.1), the constraint

uij ∈ [0, 1] is no more restrictive than assuming a bounded support of uij , and

is only imposed to make βT and γ more interpretable. When βT = 0 (i.e., no

X–U interactions), model (3.2) reduces to the original model (3.1) that moti-

vated the Rosenbaum bounds sensitivity analysis (Rosenbaum (1987)). Under

(3.2), according to the definition of Γ in the Rosenbaum bounds (2.1), the follow-

ing equation linking the prespecified sensitivity parameter Γ and the unknown

parameters (βT , γ) can be obtained:

Γ = max
i,j,j′

πij(1− πij′)
πij′(1− πij)

subject to xij = xij′ and uij , uij′ ∈ [0, 1] for all i, j, j′

= max
i=1,...,I

exp(|βTxi + γ|). (3.3)

See the Appendix for a derivation of equation (3.3). Note that when βT = 0,

equation (3.3) reduces to the commonly used equation Γ = exp(|γ|) obtained

under model (3.1). A key insight from equation (3.3) is that, in the presence of

X–U interactions, setting the sensitivity parameter Γ not only incorporates our

prior belief on the unknown structural parameters (βT , γ), but also information
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about the matched observed covariates xi, for i = 1, . . . , I. The following result

claims that the Rosenbaum bounds (2.1) will almost inevitably be conservative

if there are any interactions between observed and unobserved covariates.

Theorem 1. Consider the sensitivity parameter Γ defined in the Rosenbaum

bounds (2.1). Let Γ > 1, and suppose that there exist two matched sets i1 and i2
such that xi1 6= ±xi2. Then, we have under model (3.2), there exist some x∗ ∈ RK

and a subset E of RK of Lebesgue measure zero, such that for any βT 6= 0 (i.e., if

there exist any interaction terms between xij and uij) and βT /∈ E, the Rosenbaum

bounds (2.1) are loose for any matched set i with xi 6= ±x∗, in the sense that for

any matched set i with xi 6= ±x∗, there exists some Υi < Γ such that

Υ−1
i ≤

πij(1− πij′)
πij′(1− πij)

≤ Υi, for all j, j′.

Proofs of all theorems and corollaries presented here are provided in the

Appendix. We consider a simple example to illustrate the principle of Theorem 1.

Example 1. Suppose there is only one observed covariate xij ∈ {0, 1}, and also

an unobserved covariate uij ∈ [0, 1]. Under model (3.2), we have log(πij/(1− πij))
= g(xij)+βxijuij+γuij . According to (3.3), we have Γ = max{exp(|γ|), exp(|β+

γ|)}. It is clear that if β 6= 0 or −2γ, we have exp(|γ|) 6= exp(|β + γ|). If

Γ = exp(|γ|) > exp(|β + γ|), then the Rosenbaum bounds (2.1) are loose for

any matched set i with the common observed covariate xi = 1. That is, for all

matched sets i with xi = 1, we have

Γ−1 < exp(−|β + γ|) ≤ πij(1− πij′)
πij′(1− πij)

≤ exp(|β + γ|) < Γ,

for all j, j′ and uij , uij′ ∈ [0, 1].

Similarly, if Γ = exp(|β + γ|) > exp(|γ|), the Rosenbaum bounds (2.1) are loose

for any matched set i with xi = 0. Therefore, when β 6= 0, unless β ∈ {−2γ}
(a subset of R of Lebesgue measure zero), the Rosenbaum bounds are loose for

either all matched sets i with xi = 0 or all matched sets i with xi = 1.

4. Sharper Odds Ratio Bounds Accounting for X–U Interactions

In this section, we give new odds ratio bounds that are sharper than the

Rosenbaum bounds (2.1) when a researcher is concerned about the possible in-

teraction between a particular observed covariate, say, the kth component x(k) of

the observed covariates vector x, and the unobserved covariate u. We consider a

sub-model of (3.2) that allows for a possible interaction term linking x(k) and u:
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logit(πij) = log

(
πij

1− πij

)
= g(xij) + β̃ x̃ij(k)uij + γuij , uij ∈ [0, 1], (4.1)

where β̃, γ ∈ R are unknown, and g(·) is an unknown function of xij . Again,

the unobserved covariate uij ∈ [0, 1] is normalized to make β̃ and γ more in-

terpretable. Each x̃ij(k) = (xij(k) −mini,j xij(k))/(maxi,j xij(k) −mini,j xij(k)) ∈
[0, 1] is also normalized to make β̃ more interpretable. Note that when β̃ = 0,

model (4.1) reduces to the original model assuming no interaction terms that

motivated the Rosenbaum bounds sensitivity analysis (Rosenbaum (1987)). In

addition to the sensitivity parameter Γ defined in (2.1) that quantifies the magni-

tude of the largest possible bias over all matched sets, when Γ > 1, we introduce

another prespecified sensitivity parameter λ under model (4.1) as

λ =
(∂logit(πij)/∂uij) | xij(k) = maxi,j xij(k)

(∂logit(πij)/∂uij) | xij(k) = mini,j xij(k)
=
β̃ + γ

γ
, γ 6= 0. (4.2)

The sensitivity parameter λ quantifies how distinct the effects of u can be on the

treatment assignment probability under the largest and smallest possible values

of x(k). Note that when β̃ = 0 (i.e., no interaction between x(k) and u), we have

λ = 1. Let x̃i(k) denote the normalized common covariate xi(k) for matched set i;

therefore, x̃i(k) = x̃ij(k) = x̃ij′(k), for all j, j′. Then, we have the following sharper

odds ratio bounds.

Theorem 2. Consider the sensitivity parameter Γ defined in the Rosenbaum

bounds (2.1) with Γ > 1. Under model (4.1), which allows for a possible interac-

tion between the observed covariate x(k) and the normalized unobserved covariate

u, consider the sensitivity parameter λ defined in (4.2). Then, we have

Γ−1
λ,i ≤

πij(1− πij′)
πij′(1− πij)

≤ Γλ,i for all i ∈ {1, . . . , I} and j, j′ ∈ {1, . . . , ni}, (4.3)

where

Γλ,i =

{
Γ|(λ−1)x̃i(k)+1| if |λ| ≤ 1,

Γ|(1−λ
−1)x̃i(k)+λ−1| if |λ| > 1.

We have 1 ≤ Γλ,i ≤ Γ, for all i, and the equality Γλ,i = Γ holds for matched set

i if and only if at least one of the following three conditions holds: (a) λ = 1;

(b) |λ| ≤ 1 and xi(k) = mini xi(k); (c) |λ| ≥ 1 and xi(k) = maxi xi(k). The bounds

(4.3) are sharp in the sense that for all i, j, j′, there exist uij , uij′ ∈ [0, 1] such

that {πij(1− πij′)}/{πij′(1− πij)} = Γλ,i.

A key feature of the sharper odds ratio bounds in Theorem 2 is that they in-
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Table 1. Γλ,i in the sharper odds ratio bounds proposed in Theorem 2 under various Γ,
λ, and x̃i(k) ∈ [0, 1]. Note that Γλ,i = Γ when λ = 1.

Γ = 2 λ = 1
8 λ = 1

4 λ = 1
2 λ = 1 λ = 2 λ = 4 λ = 8

x̃i(k) = 0 2.00 2.00 2.00 2.00 1.41 1.19 1.09

x̃i(k) = 1
5 1.77 1.80 1.87 2.00 1.52 1.32 1.23

x̃i(k) = 2
5 1.57 1.62 1.74 2.00 1.62 1.46 1.39

x̃i(k) = 3
5 1.39 1.46 1.62 2.00 1.74 1.62 1.57

x̃i(k) = 4
5 1.23 1.32 1.52 2.00 1.87 1.80 1.77

x̃i(k) = 1 1.09 1.19 1.41 2.00 2.00 2.00 2.00

Γ = 3 λ = 1
8 λ = 1

4 λ = 1
2 λ = 1 λ = 2 λ = 4 λ = 8

x̃i(k) = 0 3.00 3.00 3.00 3.00 1.73 1.32 1.15

x̃i(k) = 1
5 2.48 2.54 2.69 3.00 1.93 1.55 1.39

x̃i(k) = 2
5 2.04 2.16 2.41 3.00 2.16 1.83 1.69

x̃i(k) = 3
5 1.69 1.83 2.16 3.00 2.41 2.16 2.04

x̃i(k) = 4
5 1.39 1.55 1.93 3.00 2.69 2.54 2.48

x̃i(k) = 1 1.15 1.32 1.73 3.00 3.00 3.00 3.00

corporate the information of the observed covariates among the matched samples,

which is ignored by the Rosenbaum bounds (2.1). In Table 1, we present numeri-

cal illustrations of the gap between the sensitivity parameter Γ in the Rosenbaum

bounds (2.1) and Γλ,i in the sharper odds ratio bounds proposed in Theorem 2.

If the observed covariate x(k) ∈ {0, 1} is a binary (dummy) variable, model

(4.1) reduces to

logit(πij) = g(xij) + β̃ xij(k)uij + γuij , xij(k) ∈ {0, 1}, uij ∈ [0, 1], (4.4)

and the sensitivity parameter λ as defined in (4.2) reduces to

λ =
(∂logit(πij)/∂uij) | xij(k) = 1

(∂logit(πij)/∂uij) | xij(k) = 0
=
β̃ + γ

γ
, γ 6= 0.

That is, the sensitivity parameter λ is simply the ratio of the effect of u on the

logit of the treatment assignment probability (denoted as ∂logit/∂u) conditional

on x(k) = 1 to that conditional on x(k) = 0. Theorem 2 implies the following

sharper odds ratio bounds when x(k) is binary.

Corollary 1. Under the same setting as that in Theorem 2, if the observed

covariate x(k) ∈ {0, 1} is a binary (dummy) variable, we have:

1. If |λ| = 1, then the Rosenbaum bounds (2.1) are sharp for all matched sets,
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in the sense that for all i, j, j′, there exist some uij , uij′ ∈ [0, 1] such that

{πij(1− πij′)}/{πij′(1− πij)} = Γ or Γ−1.

2. If |λ| < 1, then the Rosenbaum bounds (2.1) are sharp for all matched sets i

with xi(k) = 0. However, for all matched sets i with xi(k) = 1, the Rosenbaum

bounds (2.1) can be improved as follows: for all i, j, j′ with xi(k) = 1, we

have Γ−|λ| ≤ {πij(1− πij′)}/{πij′(1− πij)} ≤ Γ|λ|.

3. If |λ| > 1, then the Rosenbaum bounds (2.1) are sharp for all matched sets i

with xi(k) = 1. However, for all matched sets i with xi(k) = 0, the Rosenbaum

bounds (2.1) can be improved as follows: for all i, j, j′ with xi(k) = 0, we

have Γ−1/|λ| ≤ {πij(1− πij′)}/{πij′(1− πij)} ≤ Γ1/|λ|.

Corollary 1 implies that in the binary covariate case, the sign of the sensitivity

parameter λ does not matter in a sensitivity analysis. It also implies that in this

case, the more |λ| departs from one, the less the treatment assignments can

potentially depart from random assignments within some matched sets. When

|λ| = 1, the bounds in Corollary 1 reduce to the Rosenbaum bounds (2.1).

Remark 1. Note that even if some observed covariates are not exactly matched

for some matched sets, the sharper odds ratio bounds proposed in Theorem 2

and Corollary 1 can still be used as approximate sensitivity bounds, as long as

the following three conditions hold: 1) the function g(xij) in model (4.1) is a

continuous function; 2) the observed covariates are very close among individuals

within each matched set i (i.e., xij ≈ xij′ , for all i, j, j′); and 3) the observed

covariates x(k) that can interact with the unobserved covariate are equal among

individuals within each matched set (i.e., xij(k) = xij′(k) = xi(k), for all i, j, j′).

Then, the following calculation, combined with the arguments in the proof of

Theorem 2 in the Appendix, justify the validity of the approximation:

πij(1− πij′)
πij′(1− πij)

=
exp{g(xij) + β̃ x̃ij(k)uij + γuij}

exp{g(xij′) + β̃ x̃ij′(k)uij′ + γuij′}

=
exp{g(xij)}
exp{g(xij′)}

exp{β̃ x̃ij(k)uij + γuij}
exp{β̃ x̃ij′(k)uij′ + γuij′}

≈ exp{(β̃ x̃i(k) + γ)(uij − uij′)
(because xij ≈ xij′ and x̃ij(k) = x̃ij′(k) = x̃i(k)).
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5. Implementation of the Proposed Sharper Odds Ratio Bounds

As we have shown in Theorem 2 in Section 4, considering potential X–U

interactions can lead to sharper odds ratio bounds than the Rosenbaum bounds

(2.1). By implementing the sharper bounds proposed in Theorem 2, researchers

can perform a less conservative sensitivity analysis than when applying the Rosen-

baum bounds directly. The sharper bounds proposed in Theorem 2 can be embed-

ded directly in many previous results based on a Rosenbaum bounds sensitivity

analysis: in many cases, researchers just need to follow the procedure of the

Rosenbaum sensitivity analysis, replacing all sensitivity parameters Γ with Γλ,i
proposed in Theorem 2 in each matched set. For example, the following result

shows how applying Theorem 2 to perform a sensitivity analysis with a sign-score

statistic Tss can result in a less conservative “worst-case” p-value than the one

reported by directly applying the Rosenbaum bounds sensitivity analysis with

Tss.

Corollary 2. Let Tss =
∑I

i=1 di
∑2

j=1 cijZij be a sign-score statistic as introduced

in Section 2. Consider testing Fisher’s sharp null of no treatment effect H0, and

the sensitivity parameters Γ defined in the Rosenbaum bounds (2.1) and λ defined

in (4.2) under model (4.1). Define Γλ,i as in Theorem 2 and TΓ,i as in Section 2.

For i = 1, . . . , I, define T̃Γ,λ,i to be independent random variables taking the di
with probability p̃λ,i and the value zero with probability 1− p̃λ,i, where

p̃λ,i =


0 if ci1 = ci2 = 0,

1 if ci1 = ci2 = 1,
Γλ,i

1 + Γλ,i
if ci1 6= ci2.

Then, for all t and any fixed Γ > 1 and λ ∈ R, we have pr(Tss ≥ t | F ,Z) ≤
pr(
∑I

i=1 T̃Γ,λ,i ≥ t | F ,Z), for any u ∈ [0, 1]N , and we have pr(
∑I

i=1 T̃Γ,λ,i ≥ t |
F ,Z) ≤ pr(

∑I
i=1 TΓ,i ≥ t | F ,Z). The upper bound pr(

∑I
i=1 T̃Γ,λ,i ≥ t | F ,Z) is

sharp in the sense that it can be achieved for some u.

6. Illustration: The Effect of Anger/Hostility Tendency on Heart Prob-

lems

Type-A behavior is characterized by hostility, intense ambition, a competi-

tive “drive,” a constant preoccupation with deadlines, and a sense of time urgency

(Rosenman et al. (1976)). Early research data suggested that type-A behavior

was related to heart problems, but the original findings have not been supported

by subsequent research (Myrtek (2001)). Some researchers have turned their fo-
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cus to whether tending to be angry and hostile—one of the specific aspects of

a type-A personality—could cause heart problems (Chida and Steptoe (2009)).

To study this, we consider data among males from the Wisconsin Longitudinal

Study, a long-term study of a random sample of individuals who graduated from

Wisconsin high schools in 1957 (Herd, Carr and Roan (2014)). We define a binary

indicator of tending to be angry/hostile (i.e., treated), taking the value one if the

respondent said on the 1992–1993 survey (when respondents were approximately

53) that in the last week there were three or more days on which he felt angry

or hostile for several hours, and zero (i.e., control) if there were no such days

in the last week. We compare high anger/hostility tendency (i.e., treatment) to

low anger/hostility tendency (i.e., control) and exclude middle levels. We take

the outcome (heart problem indicator) to be one if the respondent reported hav-

ing had a heart attack, coronary heart disease, or other heart problems in the

2003–2005 survey, and zero otherwise. We pair match each treated individual

with a control on the following cardiovascular disease risk factors (Kawachi et al.

(1996)): age, educational attainment, body mass indicator, drinking alcohol or

not, smoking regularly or not, and childhood maltreatment indicator. The child-

hood maltreatment indicator is one if the respondent reported any childhood

physical or sexual abuse, and zero otherwise. Childhood maltreatment has been

found to be associated with both anger/hostility tendency and heart problems

(Carver et al. (2014); Korkeila et al. (2010)), and therefore is a confounder that

needs to be controlled for. We discarded all records with missing outcomes or co-

variates, and used optimal matching (Rosenbaum (2010)) to match each treated

with a control for the six baseline observed covariates, leaving 54 matched pairs.

The absolute standardized differences (i.e., difference in means divided by the

pooled standard deviation) between the treated and control groups are less than

0.1 for all six baseline observed covariates, indicating good overall balance (Rosen-

baum (2010)). The smoking indicator and childhood maltreatment indicator are

exactly matched between the treated unit and control within each matched pair.

Although the other four covariates, that is, age, educational attainment, body

mass indicator, and drinking alcohol or not, are not exactly matched between

the treated unit and its matched control for all pairs, they are closely matched

for most pairs, because the correlations for these four covariates equal 0.92, 0.98,

0.95, and 0.86, respectively. Therefore, according to Remark 1, in our study, the

sharper odds ratio bounds developed in Section 4 can be applied as approximate

sensitivity bounds in our sensitivity analysis.

Another covariate we are concerned about as a confounder is the genotype

monoamine oxidase A (MAOA), which has been found to be associated with both
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Table 2. The “worst-case” p-values reported by McNemar’s test under various Γ and λ.
When |λ| = 1, they are the same as those reported by the Rosenbaum bounds sensitivity
analysis.

|λ| = 1
8 |λ| = 1

4 |λ| = 1
2 |λ| = 1 |λ| = 2 |λ| = 4 |λ| = 8

Γ = 1.31 0.037 0.039 0.042 0.050 0.033 0.027 0.024

Γ = 1.37 0.043 0.045 0.050 0.060 0.038 0.030 0.026

Γ = 1.42 0.048 0.050 0.056 0.068 0.042 0.032 0.028

Γ = 1.44 0.050 0.052 0.058 0.072 0.043 0.033 0.028

Γ = 1.52 0.058 0.061 0.069 0.087 0.050 0.036 0.031

Γ = 1.81 0.090 0.098 0.114 0.150 0.076 0.050 0.040

Γ = 2.11 0.127 0.140 0.166 0.223 0.105 0.065 0.050

Sensitivity value 1.44 1.42 1.37 1.31 1.52 1.81 2.11

aggressive behavior and heart disease (McDermott et al. (2009); Kaludercic et al.

(2011)). The genetic data of the Wisconsin Longitudinal Study are not publicly

available, therefore we treat the MAOA genotype as an unobserved covariate. We

denote the unobserved MAOA genotype indicator (i.e., u in model (4.1)) as one if

the individual has a low-activity MAOA genotype (MAOA-L), and zero if it is a

high-activity MAOA genotype (MAOA-H). According to a controlled experiment

done in McDermott et al. (2009), individuals with MAOA-L are more likely to

show aggression, suggesting γ > 0 in model (4.1). Childhood maltreatment has

been shown to significantly interact with the MAOA genotype to confer risk for

aggressive behavior: maltreated children with MAOA-L are more likely to develop

violent behavior or show hostility (Caspi et al. (2002); Byrd and Manuck (2014)),

suggesting that the coefficient of the interaction term β̃ in model (4.1) is greater

than zero, and that the sensitivity parameter λ = (β̃ + γ)/γ > 1. While setting

a precise range for λ needs further empirical study, some related studies suggest

that λ � 1. For example, according to Figure 2A in Caspi et al. (2002), among

severely maltreated (during childhood) males, the logit of probability of conduct

disorder among those with MAOA-L is much greater than that among those

with MAOA-H. In contrast, among non-maltreated males, these two logits are

extremely close. Therefore, if we treat the conduct disorder indicator as a proxy

for the anger/hostility tendency indicator, the results from Caspi et al. (2002)

suggest that ∂logit/∂u if maltreated is much greater than that if non-maltreated

(i.e., β̃ + γ � γ), implying λ� 1.

We use Corollary 2 to calculate the “worst-case” p-values pr(
∑I

i=1 T̃Γ,λ,i ≥
t | F ,Z) reported by McNemar’s test under various Γ and λ, where λ quantifies

the possible interaction between the childhood maltreatment indicator and the
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MAOA genotype; see Table 2. We also report corresponding sensitivity values

under various λ. Note that when |λ| = 1, the “worst-case” p-values are the same

as those reported by the Rosenbaum bounds sensitivity analysis. As discussed

above, we are particularly concerned about the cases with λ > 1. From Table 2,

we can see that by applying the sharper odds ratio bounds developed in Sec-

tion 4, the “worst-case” p-values are much less conservative than those reported

by applying the Rosenbaum bounds sensitivity analysis directly, especially when

λ is much greater than one (i.e., there is a significant X–U interaction), making

a sensitivity analysis significantly more insensitive to hidden bias caused by the

potential unobserved covariate. Therefore, for this particular data set, directly

applying the Rosenbaum bounds sensitivity analysis can only detect a significant

treatment effect up to a moderate magnitude of hidden bias (i.e., Γ = 1.31). In

contrast, applying our sharper odds ratio bounds to perform a sensitivity analy-

sis allows the researcher to detect a significant treatment effect when there is a

significant X–U interaction, say, λ ≥ 2, up to a significantly larger magnitude of

hidden bias, Γ = 1.52. A bias of Γ = 1.5 is nontrivial because it corresponds to an

unobserved covariate that doubles the odds of treatment and increases the odds

of a positive treated-minus-control difference in observed outcomes by a factor of

four (Rosenbaum and Silber (2009)).

7. Discussion

We here provide practical guidance for empirical researchers on when and

how our new odds ratio bounds should be used when conducting a Rosenbaum-

type sensitivity analysis in matched studies. On the one hand, if a researcher has

some prior knowledge about which direction or to what extent the effects of the

concerned unobserved covariate should vary on the treatment assignment proba-

bility with different values of the related observed covariate (i.e., a plausible range

of the sensitivity parameter λ defined in (4.2)), we strongly recommend that, in

addition to a sensitivity analysis using the traditional Rosenbaum bounds (2.1)

(i.e., setting λ = 1), she or he report the results of a sensitivity analysis under a

plausible range of λ to better incorporate the expert knowledge, thus making the

sensitivity analysis more informative and less conservative, as shown in Section 6.

On the other hand, even if there is no evidence of any X–U interactions or cred-

ible information on the range of λ for the concerned X–U interaction term, an

empirical researcher could still benefit from using our new methods. Suppose a

researcher conducted the Rosenbaum bounds sensitivity analysis and found that

the “worst-case” p-values > α = 0.05, even under Γ close to one; that is, the
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sensitivity value is small. Instead of rushing to claim that the causal conclusion

is inevitably sensitive to hidden bias, the researcher can diagnose the reasons for

sensitivity by selecting candidate X–U interaction terms, and checking the corre-

sponding “worst-case” p-values and sensitivity values under various λ using our

new odds ratio bound. If the sensitivity values are always small for a reasonably

wide range of λ, then she or he can confirm that the causal conclusion should

indeed be sensitive to hidden bias, regardless of potential X–U interactions. If

instead the sensitivity value becomes substantially larger as λ departs from one,

then this implies that the previous finding that the causal conclusion is sensi-

tive to hidden bias could be due to ignoring the possible X–U interactions, in

which case, the researcher can further investigate the possibility of actual X–U

interactions to report the sensitivity analysis in a more comprehensive way.

There are limitations to the new odds ratio bound introduced in this work.

First, it is only applicable for two-way X–U interactions. For example, if there

is an additional three-way interaction term x̃ij(k)x̃ij(k′)uij in the treatment as-

signment probability model (4.1) for some k 6= k′, then the sensitivity parameter

λ defined in (4.2) cannot fully capture how the effects of the unobserved covari-

ate uij vary on the treatment assignment probability πij with different values

of the two observed covariates x̃ij(k) and x̃ij(k′). Second, when the observed

covariate x̃ij(k) in the concerned X–U interaction term is not binary, our new

odds ratio bound is not applicable if the interaction term in model (4.1) is in-

stead f(x̃ij(k))uij , where f(x̃ij(k)) is nonlinear in x̃ij(k). Third, our new odds ratio

bound cannot directly handle multiple X–U interaction terms, for example, when

there are two interaction terms x̃ij(k)uij and x̃ij(k′)uij in model (4.1). Although,

in principle, this type of problem can be solved by introducing additional sen-

sitivity parameters into the odds ratio bounds, doing so can make a sensitivity

analysis complicated and difficult to interpret. Fourth, in the presence of X–U

interactions, after computing the sensitivity value, it requires further study to

clarify how large the sensitivity value needs to be to make a study insensitive

to hidden bias. Assuming no X–U interactions, Hsu and Small (2013) proposed

a strategy that calibrates the values of the sensitivity parameters in matched

observational studies to the observed covariates to help empirical researchers set

plausible ranges of values for the sensitivity parameters. It would be helpful

to investigate how to extend Hsu and Small (2013) approach to the settings al-

lowing X–U interactions. Fifth, in this work, we test only Fisher’s sharp null

hypothesis and have not discussed testing other types of null hypotheses, such as

Neyman’s weak null hypothesis. In pair-matched observational studies, a promis-

ing direction for extending the proposed method to allow testing Neyman’s weak
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null hypothesis is to investigate whether the sharper bounds proposed in Theo-

rem 2 can be incorporated into the studentized sensitivity analysis framework for

the sample average treatment effect developed in Fogarty (2020). Despite these

limitations, this work shows how investigating the confounding mechanism more

carefully in a matched observational study can make a sensitivity analysis more

informative and comprehensive. It might be fruitful for future research to explore

how other structural constraints besides the one we explored here might be used.
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Appendix

A derivation of equation (3.3)

According to the definition of Γ in the Rosenbaum bounds (2.1),

Γ = max
i,j,j′

πij(1− πij′)
πij′(1− πij)

subject to xij = xij′ and uij , uij′ ∈ [0, 1] for all i, j, j′.

So we have under model (3.2),

Γ = max
i,j,j′

max
uij ,uij′∈[0,1]

πij(1− πij′)
πij′(1− πij)

= max
i,j,j′

max
uij ,uij′∈[0,1]

exp{g(xij) + βTxij × uij + γuij}
exp{g(xij′) + βTxij′ × uij′ + γuij′}

= max
i,j,j′

max
uij ,uij′∈[0,1]

exp{(βTxi + γ)(uij − uij′)} (because xij = xij′ = xi)

= max
i,j,j′

exp(|βTxi + γ|)

= max
i=1,...,I

exp(|βTxi + γ|).
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Therefore the desired equation holds.

Proof of Theorem 1

Proof. Let x∗ ∈ {x1, . . . ,xI} be an observed covariate vector such that Γ =

maxi=1,...,I exp(|βTxi+γ|) = exp(|βTx∗+γ|) > 1. Since there exist two matched

sets i1 and i2 such that xi1 6= ±xi2 , we have {x1, . . . ,xI} \ {x∗,−x∗} 6= ∅. For

any matched set i such that xi 6= ±x∗, define the set

Ei =
{
βT ∈ RK : exp(|βTxi + γ|) = exp(|βTx∗ + γ|) and βT 6= 0

}
.

Since xi 6= ±x∗, for any γ ∈ R we have

Ei =
{
βT ∈ RK : βT (xi − x∗) = 0 and βT 6= 0

}
∪
{
βT ∈ RK : βT (xi + x∗) + 2γ = 0 and βT 6= 0

}
is a subset of RK of Lebesgue measure zero. Let E = ∪i: xi 6=±x∗Ei, then E is

also a subset of RK of Lebesgue measure zero. For any matched set i such that

xi 6= ±x∗, when βT 6= 0 and βT /∈ E, note that

πij(1− πij′)
πij′(1− πij)

=
exp{g(xij) + βTxij × uij + γuij}

exp{g(xij′) + βTxij′ × uij′ + γuij′}
= exp{(βTxi + γ)(uij − uij′)} (because xij = xij′ = xi)

≤ exp(|βTxi + γ|) (because uij , uij′ ∈ [0, 1])

< exp(|βTx∗ + γ|) (by the definition of E)

= Γ,

therefore setting Υi = exp(|βTxi + γ|) we have, by symmetry,

Γ−1 < exp(−|βTxi + γ|) ≤ πij(1− πij′)
πij′(1− πij)

≤ exp(|βTxi + γ|) < Γ, for all j, j′.

So the desired result follows.

Proof of Theorem 2

Proof. Under model (4.1), according to the definition of Γ in the Rosenbaum

bounds (2.1), we have

Γ = max
i,j,j′

πij(1− πij′)
πij′(1− πij)

subject to xij = xij′ and uij , uij′ ∈ [0, 1] for all i, j, j′,
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where

πij(1− πij′)
πij′(1− πij)

=
exp{g(xij) + β̃ x̃ij(k)uij + γuij}

exp{g(xij′) + β̃ x̃ij′(k)uij′ + γuij′}

= exp{(β̃ x̃i(k) + γ)(uij − uij′)}
(because xij = xij′ = xi and x̃ij(k) = x̃ij′(k) = x̃i(k))

≤ exp(|β̃ x̃i(k) + γ|) (because uij , uij′ ∈ [0, 1]).

Therefore, we have

Γ = max
i,j,j′

πij(1− πij′)
πij′(1− πij)

subject to xij = xij′ and uij , uij′ ∈ [0, 1] for all i, j, j′

= max
i=1,...,I

exp(|β̃ x̃i(k) + γ|)

= max{exp(|γ|), exp(|β̃ + γ|)}(
because x̃i(k) =

xi(k) −mini xi(k)

maxi xi(k) −mini xi(k)
∈ [0, 1]

)
.

• Case 1: |λ| = |(β̃ + γ)/γ| ≤ 1. In this case we have Γ = max{exp(|γ|), exp(|β̃+

γ|)} = exp(|γ|). Therefore, we have

πij(1− πij′)
πij′(1− πij)

≤ exp(|β̃ x̃i(k) + γ|)

= exp

{
|γ| ×

∣∣∣( β̃ + γ

γ
− 1

)
x̃i(k) + 1

∣∣∣}
= Γ|(λ−1)x̃i(k)+1|

(
because Γ = exp(|γ|) and λ =

β̃ + γ

γ

)
.

Therefore, by symmetry we have

Γ−|(λ−1)x̃i(k)+1| ≤ πij(1− πij′)
πij′(1− πij)

≤ Γ|(λ−1)x̃i(k)+1|, for all i, j, j′,

and the above bounds are sharp in the sense that the upper bound can be

achieved when uij − uij′ = sign(β̃ x̃i(k) + γ), and the lower bound can be

achieved when uij−uij′ = −sign(β̃ x̃i(k) +γ), where we let sign(x) equal 1 if

x > 0, equal −1 if x < 0, and equal 0 if x = 0. Since x̃i(k) ∈ [0, 1] and |λ| ≤ 1,

we have Γ|(λ−1)x̃i(k)+1| ≤ Γ and the equality holds if and only if at least one

of the following three conditions holds: (a) λ = 1; (b) xi(k) = mini xi(k) (i.e.,

x̃i(k) = 0); (c) λ = −1 and xi(k) = maxi xi(k) (i.e., x̃i(k) = 1).
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• Case 2: |λ| = |(β̃ + γ)/γ| > 1. In this case we have Γ = max{exp(|γ|), exp(|β̃+

γ|)} = exp(|β̃ + γ|). So we have

πij(1− πij′)
πij′(1− πij)

≤ exp(|β̃ x̃i(k) + γ|)

= exp

{
|β̃ + γ| ×

∣∣∣(1− γ

β̃ + γ

)
x̃i(k) +

γ

β̃ + γ

∣∣∣}
= Γ|(1−λ

−1)x̃i(k)+λ−1|(
because Γ = exp(|β̃ + γ|) and λ =

β̃ + γ

γ

)
.

Therefore, by symmetry we have

Γ−|(1−λ
−1)x̃i(k)+λ−1| ≤ πij(1− πij′)

πij′(1− πij)
≤ Γ|(1−λ

−1)x̃i(k)+λ−1|, for all i, j, j′,

and the above bounds are sharp, which is similar to the argument in Case 1.

Since x̃i(k) ∈ [0, 1] and |λ| > 1, we have Γ|(1−λ
−1)x̃i(k)+λ−1| ≤ Γ and the equality

holds if and only if xi(k) = maxi xi(k) (i.e., x̃i(k) = 1).

The desired result follows from combining the arguments in Case 1 and Case

2.

Proof of Corollary 1

Proof. Consider the Γλ,i defined in Theorem 2.

• Case 1: |λ| = 1. In this case, we have Γλ,i = Γ|(λ−1)x̃i(k)+1| = Γ for xi(k) ∈
{0, 1}.

• Case 2: |λ| < 1. In this case, if xi(k) = 0, we have Γλ,i = Γ|(λ−1)x̃i(k)+1| = Γ.

If xi(k) = 1, we have Γλ,i = Γ|(λ−1)x̃i(k)+1| = Γ|λ|.

• Case 3: |λ| > 1. In this case, if xi(k) = 1, we have Γλ,i = Γ|(1−λ
−1)x̃i(k)+λ−1| =

Γ. If xi(k) = 0, we have Γλ,i = Γ|(1−λ
−1)x̃i(k)+λ−1| = Γ1/|λ|.

Then the desired result follows immediately from applying Theorem 2.

Proof of Corollary 2

Proof. The proof follows from a direct adjustment of the proof of Proposition 13

in Rosenbaum (2002). For each fixed β̃, γ, uij , i = 1, . . . , I and j = 1, 2, the test

statistic Tss is the sum of I independent random variables, where the ith variable

equals di with probability
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pi =
ci1 exp{(β̃ x̃i(k) + γ)(ui1 − ui2)}+ ci2

1 + exp{(β̃ x̃i(k) + γ)(ui1 − ui2)}
,

and equals 0 with probability 1 − pi. Note that from the proof of Theorem 2,

we have Γλ,i = exp{|β̃ x̃i(k) + γ|}. Following the proof of Proposition 13 in

Rosenbaum (2002), the upper bound distribution pr(
∑I

i=1 T̃Γ,λ,i ≥ t | F ,Z) is

the distribution of Tss when uij = cij if β̃ x̃i(k) + γ ≥ 0 and uij = 1 − cij if

β̃ x̃i(k) + γ < 0, resulting in the desired

p̃λ,i =


0 if ci1 = ci2 = 0,

1 if ci1 = ci2 = 1,

exp{|β̃ x̃i(k) + γ|}
1 + exp{|β̃ x̃i(k) + γ|}

if ci1 6= ci2.

=


0 if ci1 = ci2 = 0,

1 if ci1 = ci2 = 1,
Γλ,i

1 + Γλ,i
if ci1 6= ci2.

Applying Theorem 2, the inequality pr(
∑I

i=1 T̃Γ,λ,i ≥ t | F ,Z) ≤ pr(
∑I

i=1 TΓ,i ≥
t | F ,Z) holds for all t, Γ > 1 and λ ∈ R.
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Kaludercic, N., Carpi, A., Menabò, R., Di Lisa, F. and Paolocci, N. (2011). Monoamine oxidases

(MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochimica et

Biophysica Acta (BBA)-Molecular Cell Research 1813, 1323–1332.

Karmakar, B., French, B. and Small, D. S. (2019). Integrating the evidence from evidence factors

in observational studies. Biometrika 106, 353–367.

Kawachi, I., Sparrow, D., Spiro III, A., Vokonas, P. and Weiss, S. T. (1996). A prospective study

of anger and coronary heart disease: The normative aging study. Circulation 94, 2090–2095.
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