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S1 Background literature, proof of Theorem 2, and

simulation study

We have summarized in the second paragraph of Section 2.2 some back-

ground literature on local linear regression estimate of µj(·) in the regret

(2.1) and the associated minimax risk. We want to add here the works

of Yang and Zhu (2002) and Rigollet and Zeevi (2010) who consider local

polynomials of degree 0 (i.e., piecewise constant or “binned” regression esti-

mates), and subsequent work along this line by Perchet and Rigollet (2013).

We need to emphasize upfront a major difference between our method (in

particular, ∆j,t−1 defined by (2.4)) and these previous approaches to con-

textual bandits via nonparametric classification and regression (involving
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minimax estimation of µj(·) for j = 1, 2, . . . , k). As pointed out in the last

sentence of that section, ∆j,t−1 originated from the GLR statistic (2.5) in

parametric contextual bandits reviewed in Section 1.3, where Theorem 1

provides a definitive result on the asymptotic lower bound for the regret

and attainment of that bound by using ε-greedy randomization and arm

elimination. Since (µ̂j,`−1(x`) − µ̃j,`−1(x`))+ is the key ingredient in (2.4),

contextual bandits should consider estimation of (µj(·) − maxj′ 6=j µj′(·))+,

instead of µj(·), 1 6 j 6 k in the previous methods. This approach yields

that if µj(·) exceeds maxj′ 6=j µj′(·) by a substantial amount over a covari-

ate set B ⊂ suppH as in Theorem 1(i), then the regret over B is of order

O(log n). On the other hand, if B contains leading arm transitions for which

it is difficult to distinguish locally two leading arms j and j′, then the re-

gret is of O((log n)2) under smoothness conditions on µj(·)−µj′(·). Perchet

and Rigollet (2013, p.695) have actually introduced an “adaptively binned

successive elimination (ABSE)” procedure to “partition the space of covari-

ates in a fashion that adapts to the local difficulty of the problem: cells are

smaller when different arms are hard to distinguish and bigger when one

arm dominates the other”, which seems to be similar to our approach. On

the other hand, the regret rate of ABSE which is claimed in their Section 5

to be “optimal in a minimax sense” (of nonparametric k-class classification
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due to Audibert and Tsybakov, 2007) differs from the minimax rate over

B ⊂ suppH in Theorem 2 on the asymptotic statistical decision problem

associated with nonparametric contextual k-armed bandits.

Choice of bandwidth in Theorem 2. For univariate covariates (p = 1),

Fan (1993) has shown that the bandwidth choice bn ≈ n−1/5 for the local

linear regression estimate

m̂(x) =
n∑
`=1

w`(x)y`

/ n∑
`=1

(
w`(x) + n−2

)
(S1)

of a regression function m(x) =
∫
yf(y|x)dν(y), based on a random sample

(x`, y`), 1 6 ` 6 n, from a distribution with unknown conditional density

function f(·|x) with respect to some measure ν, yields asymptotically min-

imax rates for mean squared errors, where ≈ denotes the same order of

magnitude (i.e., c1n
−1/5 6 bn 6 c2n

−1/5 for some constant c1 < c2). The

weights w`(x) in (S1) are given by

w`(x) = K
(
(x−x`

)/
bn
){
sn,2−(x−x`)sn,1

}
, sn,j =

n∑
`=1

K
(
(x−x`)

/
bn
)(
x−x`

)j

for j = 0, 1, 2, in which K > 0 is a kernel function (i.e.,
∫∞
−∞K(u)du =

1). For multivariate covariates x`, Ruppert and Wand (1994) define the
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n× (p+ 1), (p+ 1)× 1, and n× 1 matricies

An(x) =



1

1

...

1



xT1 − xT

xT2 − xT

...

xTn − xT




, e =



1

0

...

0


, Yn =



y1

y2

...

yn


, (S2)

and the p× p bandwidth matrix Bn = diag(b1
n, . . . , b

p
n) so that

m̂(x) := eT
[
An(x)Wn(x)An(x)

]−1

AT
n (x)Wn(x)Yn (S3)

is the local linear regression estimate of m(x) := E(Y |x), in whichWn(x) =

diag
(
Kn(x1 − x), . . . , Kn(xn − x)

)
, where Kn(u) = |Bn|−1/2K

(
B

1/2
n u

)
and K is a bounded kernel such that

∫
uuTK(u)du ∝ Ip when certain

regularity conditions are satisfied; see Ruppert and Wand (1994, p.1349–

1350). Hence Fan’s argument can be extended to multivariate covariates

by choosing bin ≈ n−1/5 for i = 1, . . . , p.

Choice of δt in (2.2) and regularity conditions in Theorem 2. Kim and

Lai (2019) choose δt > 0 such that δ2
t =

(
2 log t)/t, which they use to prove

Theorem 1(iii) given in Section 1.3 above. As will be shown in the proof of

Theorem 2 in the next paragraph, this choice also works for nonparametric

contextual bandits for which it is particularly effective in the vicinity of

leading arm transitions. We next state the regularity conditions, which

relax somewhat those of Ruppert and Wand (1994, p.1349–1350) and Fan
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(1993, p.199, in the simpler case p = 1), for Theorem 2:

(a) The common distribution H of the i.i.d. covariate vectors xt has a pos-

itive density function f (with respective to Lebesgue measure) which

is continuously differentiable on a hyperrectangle in Rp.

(b) m is twice continuously differentiable and σ2(x) := Var
(
Y |x

)
is posi-

tive and continuous on suppH (i.e., the hyperrectangle in (a)).

(c) The bounded kernel K is continuous and
∫
|u|rK(u)du < ∞ for all

r > 1,
∫
uiK(u)du = 0 for i = 1, . . . , p.

Least favorable parametric subfamily and nonparametric minimax rates

in asymptotic decision theory. In Section 2.1 we have mentioned the least

favorable parametric subfamily approach to deriving lower bounds for the

risk functions in statistical decision problems. This idea dated back to

Stein (1956), and Bickel (1982) gave a review of the developments in adap-

tive estimation during the twenty-five years after Stein’s seminal work on

the problem of “estimating and testing about a Euclidean parameter θ, or

more generally, a function q(θ) in the presence of an infinite-dimensional

nuisance parameter G” so that θ or q(θ) can be estimated nonparametri-

cally (without knowledge of G) as well asymptotically as knowing G. Begun

et al. (1983) develop these lower bounds for semiparametric estimation of a
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finite-dimensional (multivariate) parameter θ in the presence of an infinite-

dimensional nuisance parameter G via “representation theorems (for regu-

lar estimators) and asymptotic minimax bounds”. In particular, they apply

this approach to prove the efficiency of Cox regression for censored data in

the proportional hazards model for survival analysis. Lai and Ying (1992)

consider rank estimators in the usual regression model when the observed

responses are subject to left truncation and right censoring, for which they

extend the asymptotic minimax bounds of Begun et al. (1983) by making

use of (a) the martingale structure of left truncated and right censored data

and martingale central limit theorem, (b) quadratic-mean differentiability

of the hazard function, and (c) the Hájek convolution theorem for regu-

lar estimators in parametric submodels of the nonparametric model for G.

To estimate a regression function that satisfies regularity conditions of the

type in the preceding paragraph, Fan (1993) shows that the local linear

estimator introduced therein attains asymptoticlly minimax rates in the

sense that the minimax risk (Bickel, 1982; Pinsker, 1980; Donoho, Liu and

MacGibbon, 1990) has order ≈ n−4/5 whereas the local linear estimator has

minimax risk of the order n−4/5+o(1); Fan considers the univariate case p = 1

and mean squared error as the risk function.

Exponential bounds for self-normalized statistics. Exponential bounds
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have been established for the GLR statistics (2.5), which are self-normalized,

in parametric models; see de la Peña, Lai and Shao (2009, p.207–210, 216).

The Welch statistics (2.4) in the nonparametric setting are generalized Stu-

dentized (and therefore self-normalized) statistics, for which exponential

bounds hold and play an important role in the proof of Theorem 2.

Minimax theorem and asymptotic decision theory. Whereas the asymp-

totic minimax rates of the background literature reviewed in the preceding

paragraphs are stated in terms of nonparametric regression or classification,

the nonparametric contextual k-armed bandit problem is actually about

asymptotically minimax statistical decision rules for sequential selection

(rather than estimation or classification) from k given arms as described

in Section 2.1; see Strasser (1985, p.238–242, 308–327) for an overview of

asymptotic statistical decision theory and minimax decision rules. A subtle

point is that the minimax bounds and statistical decision theory in this and

preceding references are for samples of fixed size n, hence the asymptotic

rates associated with n → ∞, whereas adaptive allocation in multi-armed

bandits is a sequential decision problem as we have already reviewed in

Section 1. A key to bridge the differences between the fixed-sample and

sequential theories is provided by Kim and Lai (2019). It is summarized

in Section 2.2 that describes the sequential Arm Elimination procedure as
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follows: Choose ni ∼ ai for some integer a > 1, let nj,t−1 = Tt−1(j) and

eliminate surviving arm j at time t ∈ {ni−1 + 1, . . . , ni} if (2.3) holds, in

which ∆j,t−1 is the GLR statistic (2.5). This idea actually dates back to

Lai (1987, p.1100-1103) in the proof of his theorem that the Bayes risk of

UCB rules (with respect to general prior distributions H on θ) satisfies

(1.4). For contextual parametric bandits, H is a distribution on the covari-

ate space (instead of a prior distribution on θ), and Kim and Lai (2019)

basically modifies the aforementioned argument of Lai (1987) to derive a

similar result.

Proof of Theorem 2. Consider the regret (2.1) over B ⊂ suppH as the

risk function of the statistical decision problem of sequential selection of k

given arms as mentioned in the preceding paragraph, in which it is pointed

out that ni ∼ ai plays the role of the fixed sample size in the asymptotic

minimax rates for local linear regression estimates of µj(·). We first explain

the choice δ2
t = (2 log t)/t and why it is “particularly effective in the vicinity

of leading arm transitions”, as mentioned in the paragraph on the regularity

conditions for Theorem 2. Note that (2.2) lumps treatments whose effect

sizes are close to that of the apparent leader into a single set Jt of leading

arms j ∈ Jt for which µ̃j,t−1(·) = µ̂j,t−1(·) (and therefore ∆j,t−1 = 0 in view

of (2.4)). Such lumping is particularly important when the covariates are
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near leading arm transitions at which a leading arm can transition to an

inferior one due to transitions in the covariate values. Because of the stated

regularity conditions, the transition does not change its status as a member

of the set of leading arms so that the ε-greedy randomization algorithm still

chooses it with probability (1− ε)/|Jt|. For parametric contextual bandits,

Kim and Lai (2019) choose ni ∼ ai for some integer a > 1 and consider

ni−1 < t 6 ni. For j ∈ Kt, θ̂j,t−1 and θ̃j,t−1 are based on samples of size ni.

Combining this with the expected time for elimination of arm j ∈ Kt \ Jt

shows that the parametric version of φopt (with (2.5) replacing (2.4)) attains

the asymptotic lower bounds in Theorem 1(i), (ii). As pointed out in the

preceding paragraph, the details of the proof basically modifty those of Lai

(1987, p.1100–1103).

Nonparametric contextual bandits are much more difficult because the

sample size of the local linear regression estimate (µ̂j,t−1(·) − µ̃j,t−1(·))+

for ni−1 < t 6 ni and j ∈ Kt is of the order n
4/5
i if the selected band-

width has order n
−1/5
i for univariate covariates as in Fan (1993), or if

b1
ni
≈ · · · ≈ bpni

≈ n
−1/5
i for multivariate covariates with bandwidth ma-

trix Bni
= diag(b1

ni
, · · · , bpni

) as in Ruppert and Wand (1994). It is not

possible to obtain precise lower bounds of the type in Theorem 1(i) and (ii)

and to attain these bounds using φopt (with (2.5) instead of (2.4)). Instead
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of the p-dimensional parametric family considered by Kim and Lai (2019),

we use a cubic spline with evenly spaced knots (with the bandwidth as

the spacing) in the univariate case and tensor product of these univariate

splines for multivariate covariates. Details are give in the next paragraph.

In conjunction with this parametric choice of m(x), we also use the true

density function of (y−m(x))
/
σ(x) (Ruppert and Wand, 1994, p.1347) to

define a parametric subfamily. It will be shown in the next paragraph that

the minimax risk, under this parametric subfamily, of sequential selection

of k arms up to time horizon n is of order n4/5 and that φopt has minimax

risk of order n4/5 + o(1) under the regularity conditions of Theorem 2. This

proves that the parametric subfamily is least favorable and that φopt attains

the minimax rate of the risk function for adaptive allocation rules.

Minimax risk is the minimum (over all adaptive allocation rules) of the

worse-case (or maximum) risk over Borel subsets B of suppH, which occurs

around leading arm transitions. For the parametric subfamily in Theorem

1, the minimax risk is of order (log n)2 and is attained by φopt with (2.5)

replacing (2.4). For the parametric subfamily in the preceding paragraph,

because the spacing between the knots of the cubic spline for the regression

function is of order n−1/5, a straightforward modification of the argument

in the proof of Theorem 1(ii) can be used to show that the minimax risk is
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of order n4/5. Moreover, combining this argument with those of Fan (1993)

and Ruppert and Wand (1994) shows that φopt has minimax risk of order

n4/5+o(1) under the regularity conditions (a), (b), and (c) listed above.

We next report a simulation study of the performance of φopt in the

setting of k = 6 arms and univariate covariates xt that are i.i.d. with

common uniform distribution Unif(−2, 2). Given xt, the reward of arm j

follows a normal distribution with mean µj(xt) = sin
(
xt+

j
6
π
)

and standard

deviation 0.1; Figure 1 plots the six mean reward functions and shows the

locations of leading arm transitions. Figure 2 plots Eµ̂j,ni
(·) of the local

linear regression estimate µ̂j,ni
(·) (details of which are given in the last

paragraph of S1) at times n1 = 1000, n2 = 3000, and n3 = 30000.

Figure 2 shows the limitation of minimax-rate results for nonparametric

contextual bandits. As already noted in Section 1.3, and in particular The-

orem 1 (see also S1), the statistical problem of sequential selection from

k arms can have risks O(log n) over certain subsets B of suppH, while

still attaining the minimax rate of the risk in the vicinity of leading arm

transitions. This was first pointed out by Robbins for “asymptotically sub-

minimax” decision rules in the context of compound statistical decision

problems. Subsequently Hannan and Robbins (1955) related this to an em-

pirical Bayes approach, which Robbins, Stein, and Efron later developed
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Figure 1: Mean Reward Function of Six Arms

Figure 2: Means of Estimated Reward Functions

Figure 3: Cumulative Regret for φopt, φ
bin
opt, and φ

bin
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into a foundational methodology for statistical analysis and modeling. Fig-

ure 3 compares the cumulative regret Ct,φ :=
∫
Rt,φ(x)dH(x) over time for

φ = φopt with that of φ = φbin or φbinopt defined below, where Rt,φ(x) is the

Radon–Nikodym derivative of the measure (2.1) (where n is replaced with

t) with respect to H. Yang and Zhu (2002) and Rigollet and Zeevi (2010)

used “binned” regression estimates (i.e., piecewise constant functions or lo-

cal polynomials of degree zero) to estimate µj(·), and their procedure does

not involve arm elimination. Moreover, although Rigollet and Zeevi still

used the UCB rule, Yang and Zhu used ε-greedy randomization, which is

what we refer to as φbin. Replacing the local linear regression in φopt with a

binned (piecewise constant) regression leads to the procedure φbinopt. Figure

3 , which plots the cumulative regret Ct,φ for φ = φopt (blue), φbinopt (green),

and φbin (red), shows great improvement of φopt over φbinopt, which is, in turn,

a marked improvement over φbin.

S2 Information-theoretic minimax rates and machine

learning for applications in Big Data Era

Birgé and Massart (1993) and Shen and Wong (1994) have derived conver-

gence rates of minimum contrast estimators and sieve MLE or other sieve
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estimators obtained by optimizing some empirical criteria. As noted by

Shen and Wong (1994, p.581), the rate derived has not been proved to be

optimal “although it coincides with the known optimal rate in several spe-

cial cases of density estimation and nonparametric regression.” Yang and

Barron (1999) subsequently proved general results to determine minimax

rates for the risk in density estimation using global measures of loss such

as integrated squared error, squared Hellinger distance or Kullback–Leibler

divergence, by applying information theory such as Fano’s inequality; see

Yu (1996), Cover and Thomas (2006, p.38–40, 146–153). The problem of

minimax rates for the risk in nonparametric regression, however, is much

more difficult than density estimation, and was solved by Yang and Tokdar

(2015) that we review in the next paragraph.

To estimate the regression function µ(·) nonparametrically from the

regression model

yt = β + µ(xt) + εt, 1 6 t 6 n, (S4)

in which εt are i.i.d. with mean 0 and variance σ2 and are independent

of the i.i.d. xt ∈ Rp with p = pn such that Eµ(xt) = 0, Yang and Tok-

dar (2015, p.653, 657) make the following assumption M3 on the regression

function µ(·) and assumption Q on the common distribution H of the xt.

Assumption M3 : µ ∈ L2(H) depends on d ≈ min(nγ, pn) variables for some
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0 < γ < 1 and is generated from a generalized additive model (Hastie and

Tibshirani, 1986) such that the `th summand in the additive representation

of µ(·) depends on a small number d` of these variables, precise details of

which will be stated using the notation of the next paragraph.

Assumption Q : H is compactly supported, hence it can be assumed without

loss of generality that suppH ⊂ [0, 1]p. Moreover, H is absolutely contin-

uous with respect to Lebesgue measure on [0, 1]p with density function h

such that q̄ := supx h(x) < ∞ and there exist q > 0 and δ > 0 such that

infx:|xi−1/2|6δ,∀i h(x) > q.

To state their main result under these assumptions, they have intro-

duced the following notation in their Section 2. Let Cα,d denote the Banach

space of Hőlder α-smooth functions f on [0, 1]d with the norm

||f ||α =
∑
a6α

||Daf ||∞ + max
x6=y∈[0,1]d

∣∣∣Dbαcf(x)−Dbαcf(y)
∣∣∣/||x− y||α−bαc,

where Da = ∂a/∂xa1
1 . . . ∂x

ap
p for a = a1 + . . . ap such that each ai is a

nonnegative integer. Let Cα,d
1 denote the unit ball of Cα,d. For b = b1 +

· · · + bp such that bi ∈ {0, 1} for 1 6 i 6 p, define T b : C(Rb) → C(Rp) by

(f(xi), bi = 1) 7→ (T bf)(x) for x ∈ Rp, and let

Σp(λ, α, d) =

( ⋃
bi∈{0,1}:b1+···+bp=d

T b
(
λCα,d

1

))⋂{
f ∈ C([0, 1])p) :

∫
f(x)dx = 0

}
be the space of centered elements of C([0, 1]p) that are α-smooth functions
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with sparsity d and bound λ. With this notation, Yang and Tokdar (2015,

p.655) define the sparse additive representation of µ in Assumption M3

as µ =
∑L

`=1 λ`T
b`f`, where f` ∈ Cα`,d`

1 and b1, . . . , bL ∈ {0, 1} such that

b1 + · · · + bL 6 d̄. Their Theorem 3.1 states that there exist 0 < c1 < 1 <

c2 and positive integer n0, all depending on d̄,max16`6L λ`,min16`6L λ`,

max` α`,min` α`,max` d` such that

c1ε
2
n 6 inf

µ̂∈An

sup
µ∈Σd̄

p,L(λ,α,d)

Eβ,σ,H ||µ̂− µ|| 6 c2ε̄
2
n, where

ε2n =
L∑
`=1

λ2
`

(√
nλ`/σ

)−4α`/(2α`+d`) +
σ2

n

( L∑
`=1

d`

)
log

(
p
/ L∑

`=1

d`

)
,

ε̄2n =
L∑
`=1

λ2
`

(√
nλ`/σ

)−4α`/(2α`+d`) +
σ2

n

( L∑
`=1

d`

)
log

(
p
/

min
16`6L

d`

)
.

(S5)

In (S5) An is “the space of all measurable mappings of data to L2(H)”,

Eβ,σ,H denotes expectation under the model E
(
yt|xt

)
= β,Var

(
yt|xt

)
= σ2

and xt ∼ H, and Σd̄
p,L

(
λ, α, d

)
consists of µ ∈ Σp(λ, α, d) that satisfies the

aforementioned sparse additive representation µ =
∑L

`=1 λ`T
b`f`.

Assumption M3 with the sparse additive representation “offers a plat-

form to break away from (previously assumed and overly restrictive) spar-

sity conditions” in the literature, as have been assumed by Raskutti, Wain-

wright, Yu (2012) and others who are inspired by variable selection such as

the Lasso and the Dantzig selector for high-dimensional sparse regression to

assume that µ depends on a small subset of d predictors with d 6 min(n, p).
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This corresponds to the special case L = 1 = d̄ in (S5), in which the second

summand in ε2n or ε̄2n is “the typical risk associated with variable selection

uncertainty” and the first summand is the “minimax risk of estimating a

d-variate, α-smooth regression function when there is no parameter uncer-

tainty”; see Remark 3.3 of Yang and Tokdar (2015, p.658) who point out

the implication of (S5) that in this case “meaningful statistical learning is

possible only when the true number of important predictors is much smaller

than the total predictor count”.

For the application to contextual nonparametric k-armed bandits with

high-dimensional covariates, we choose ni ∼ ai for some integer a > 1 and

use Yang and Tokdar’s minimax-optimal nonparametric regression estimate

µ̂j,t−1(·) (or the constrained estimate µ̃j,t−1(·)) of µj(·) for ni−1 < t 6 ni

and j = 1, . . . , k. Under assumptions Q on H and M3 on µj for j =

1, . . . , k, with the sparse additive representation µj =
∑L

`=1 λ
j
`T

b`jf`, in

which b1
j , . . . , b

L
j ∈ {0, 1}, λ

j
` and βj depend on j (whereas α,L and d̄ can

be assumed to be applicable to all k arms), it follows from (S5) that we

still have the ingredients of the proof of Theorem 2 given in the last part

of S1. Hence the argument used there for fixed p can be modified via (S5)

to extend it to the case of high-dimensional covariates under assumptions

M3 and Q.
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The past five years have witnessed major advances in machine learn-

ing methods that facilitate the implementation of personalized prediction

and recommender systems which make use of high-dimensional covariate

information. In particular, personalized information filtering developed by

Zhu, Shen and Ye (2016) uses a “likelihood method to seek a sparsest

latent factorization (of a user-over-item preference matrix into two matri-

ces, each representing a user’s preference and an item preference by users)

from a class of overcomplete factorizations, possibly with a high percent-

age of missing values”, thereby providing “additional sparsity beyond rank

reduction.” Computationally, because the method involves a “decomposi-

tion and combination strategy” that breaks large-scale optimization “into

many small subproblems to solve in a recursive and parallel manner”, it can

be implemented “through multi-platform shared-memory parallel program-

ming, and through Mahout, a library for scalable machine learning and

data mining, for mapReduce computation.” The method is shown through

theoretical and numerical investigations to be a “significant improvement

over state-of-the-art methods” such as collaborative filtering and content-

based filtering. An alternative method, subsequently developed by Bi, Qu

and Shen (2018), uses a multilayer tensor to integrate information from

multiple sources as in “context-aware recommender systems” (CARS) that
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incorporate the effect of contextual variables (such as time, location, users’

companions, stores’ promotion strategies in business marketing), with “an

additional layer of nested latent factors to accommodate between-subjects

dependency”, thereby addressing the “cold-start issue in the absence of in-

formation from new customers, new products or new contexts” through

subgroup information. A scalable algorithm is also developed to carry

out the computations by “incorporating a maximum block improvement

strategy into a cyclic blockwise-coordinate-descent procedure.” Subsequent

modifications and enhancements were developed by Dai et al. (2019, 2020).
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