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Abstract: “Multi-armed bandits” were introduced as a new direction in the then-

nascent field of sequential analysis, developed during World War II in response to

the need for more efficient testing of anti-aircraft gunnery, and later as a concrete

application of dynamic programming and optimal control of Markov decision pro-

cesses. A comprehensive theory that unified both directions emerged in the 1980s,

providing important insights and algorithms for diverse applications in many sci-

ence, technology, engineering and mathematics fields. The turn of the millennium

marked the onset of a “personalization revolution,” from personalized medicine and

online personalized advertising and recommender systems (e.g. Netflix’s recomm-

endations for movies and TV shows, Amazon’s recommendations for products to

purchase, and Microsoft’s Matchbox recommender). This has required an extension

of classical bandit theory to nonparametric contextual bandits, where “contextual”

refers to the incorporation of personal information as covariates. Such theory is

developed herein, together with illustrative applications, statistical models, and

computational tools for its implementation.

Key words and phrases: Contextual multi-armed bandits, ε-greedy randomization,

personalized medicine, recommender system, reinforcement learning.

1. Introduction and Background

The k-armed bandit problem was introduced by Robbins (1952) for k =

2 in his seminal paper on the sequential design of experiments, in which he

outlined new directions in sequential statistical methods beyond Wald’s sequential

probability ratio test (SPRT). Specifically, he considered sequential sampling from

two populations with unknown means to maximize the total expected reward

E(y1 + · · · + yn), where yi has mean µ1 (or µ2) if it is sampled from population

1 (or 2), and n is the total sample size. Letting sn = y1 + · · · + yn, he applied

the law of large numbers to show that limn→∞ n
−1Esn = max(µ1, µ2) is attained

by the following rule: sample from the population with the larger sample mean,

except at times belonging to a designated sparse set Tn of times, and sample from
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the population with the smaller sample size at these designated times. Here Tn is

called “sparse” if #(Tn)→∞, but #(Tn)/n→ 0 as n→∞, where #(·) denotes

the cardinality of a set.

Thirty years later Robbins developed a definitive solution to the problem

of the optimal rule of convergence for n(max16j6k µk) − E
(∑n

t=1 yt
)
, leading

to his 1985 paper with Lai, who was working on a general theory of sequential

tests of composite hypotheses around that time. The first key idea of Lai and

Robbins (1985) is the formulation of an adaptive allocation rule φ as a sequence of

random variables φ1, . . . , φn with values in the set {1, . . . , k}, such that the event

{φi = j}, for j ∈ {1, . . . , k}, belongs to the σ-field Fi−1 generated by the previous

observations φ1, y1, . . . , φi−1, yi−1. Letting µ(θ) = Eθy and θ = (θ1, . . . , θk), it

follows that

Eθ

(
n∑
t=1

yt

)
=

n∑
t=1

k∑
j=1

Eθ
{
Eθ
(
ytI{φt=j}|Ft−1

)}
=

k∑
j=1

µ(θj)Eθτn(j),

where τn(j) = #{1 6 t 6 n : φt = j} and Πj is assumed to have density function

fθj (·) from a parametric family of distributions. Hence, maximizing Eθ
(∑n

t=1 yt
)

is equivalent to minimizing the regret

Rn(θ) = nµ∗(θ)− Eθ
( n∑
t=1

yt

)
=

∑
j:µ(θj)<µ∗(θ)

(µ∗(θ)− µ(θj))Eθτn(j),
(1.1)

where µ∗(θ) = max16j6k µ(θj). This representation enabled Lai to apply sequen-

tial testing theory, with which Lai and Robbins (1985) derived the basic lower

bound for the regret (1.1) of uniformly good rules:

Rn(θ) >

 ∑
j:µ(θj)<µ∗(θ)

µ(θ∗)− µ(θj)

I(θj , θ∗)
+ o(1)

 log n, (1.2)

where θ∗ = θj(θ), j(θ) = argmax16j6kµ(θj), and an adaptive allocation rule is

called “uniformly good” if Rn(θ) = o(na) for every a > 0 and θ ∈ Θk. Using the

duality between hypothesis testing and confidence intervals, they also developed

“upper confidence bound” (UCB) rules to attain the asymptotic lower bound

(1.2).

In the remainder of this section, we first summarize the dynamic program-

ming approach to multi-armed bandits introduced by Bellman (1957), before pre-
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senting an index policy based on the dynamic allocation index (Gittins (1979);

Whittle (1980)) of an arm, which Chang and Lai (1987) and Lai (1987) showed

to be asymptotically equivalent to the UCB. This unified theory is reviewed

in Section 1.1. Sections 1.2 and 1.3 give overviews of two areas of subsequent

developments. The first extends the parametric setting to nonparametric multi-

armed bandits, and the second extends the parametric setting to (parametric)

contextual bandits that also incorporate covariate information in the definition

of regret. Section 2 develops the methodology of nonparametric contextual ban-

dits, and Section 3 describes its extension to high-dimensional covariates in the

current big-data and multi-cloud era.

1.1. UCB rule and Gittins index: asymptotic theory

Bellman (1957) introduced the dynamic programming approach for the two-

armed adaptive allocation problem considered by Robbins (1952), generalizing it

to k arms, and calling it a “k-armed bandit problem.” The name is derived from

an imagined slot machine with k arms (levers), such that when an arm is pulled,

the player wins a random reward. For each arm j, there is an unknown probability

distribution Πj of the reward. Hence, there is a fundamental dilemma between

“exploration” (to generate information about Π1, . . . ,Πk by pulling the individual

arms) and “exploitation” (of the information so that inferior arms are pulled

minimally). Dynamic programming offers a systematic solution to the dilemma

in the Bayesian setting, but suffers from the “curse of dimensionality” as k and

n increase. Gittins and Jones (1974) and Gittins (1979) considered a discounted

version of this problem (thereby circumventing large horizon n), and showed that

the k-dimensional stochastic optimization problem has an “index policy” (which

does not suffer from the curse of dimensionality) as its solution. At stage t, pull

the arm with the largest “dynamic allocation index” (DAI), which depends only

on the posterior distribution of the reward, given the observed rewards from that

arm up to stage t. The DAI is the solution to a nonstandard optimal stopping

problem that maximizes the quotient Ej
(∑τ−1

t=0 β
tZt
)
/Ej
(∑τ−1

t=0 β
t
)
, where Ej

denotes expectation under the posterior distribution of Πj of the reward Zt from

arm j, given the observed rewards from the arm up to the stopping time τ , and

0 < β < 1 is a discount factor. Whittle (1980) provided an alternative formulation

of the DAI, which he called the “Gittins index,” in terms of a family (indexed

by a retirement reward M) of standard optimal stopping problems (involving Ej ,
but not the quotient) that can be solved using dynamic programming.

We next review Lai (1987), who (a) connects the UCB to generalized likeli-

hood ratio (GLR) test statistics and to the Gittins index, and (b) shows that the
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UCB rule is uniformly good and attains the asymptotic lower bound (1.2) for the

regret. He begins by considering the special case of k = 2 normal populations

with means θ1, θ2, and variance one, in which θ2 = 0 is known and θ1 has a prior

distribution with mean zero. In this case, the optimal rule is to sample from Π1

until stage ñ = inf{m 6 n : m−1
∑m

i=1 yi + am,n < 0}, and then take the re-

maining n− ñ observations from Π2, where am,n are positive constants. Writing

t = m/n,w(t) = (y1 + · · · + ym)/n1/2, δ = θn1/2, and treating 0 < t 6 1 as a

continuous variable for large n, he approximates the Bayes stopping time for this

special case as nτ̃(h), where τ̃(h) = inf{t ∈ (0, 1] : w(t) + h(t) 6 0}. He then

shows that the following UCB rule is asymptotically optimal solution: sample at

stage t+ 1 from Π1 or Π2 (with known mean 0) according to U1,t > 0 or U1,t 6 0,

where Uj,t is the UCB

Uj,t = inf

{
θ : θ > θ̂j,t and I

(
θ̂j,t, θ

)
> t−1g

(
t

n

)}
, (1.3)

(inf ∅ = ∞), I(λ, θ) is the the Kullback–Leibler information number, and θ̂j,n is

the MLE of θj based on the observations from Πj up to stage n. For the normal

case, θ̂1,n is the sample mean from Π1, I(λ, θ) = (λ−θ)2/2, and h(t) = (2tg(t))1/2.

Lai (1987) also extends the UCB rule to the exponential family in the k-armed

bandit problem: sample at stage n+ 1 from arm Πj with the largest UCB (1.3).

It is also shown in Lai (1987) that the UCB rule asymptotically minimizes the

Bayes regret as n → ∞ for a general class of prior distributions H. Although

one can, in principle, use dynamic programming to minimize the Bayes regret∫
Rn(θ)dH(θ), this approach is analytically and computationally intractable for

large n. Instead of the finite-horizon problem that involves a given horizon n,

Gittins (1979) considers the discounted infinite-horizon problem of maximizing∫
· · ·
∫
Eθ
[∑∞

i=1 β
i−1yi

]
dν1(θ1) · · · dνk(θk), assuming a discount factor 0 < β < 1

and independent prior distributions νj on the parameter space Θ. The optimal

rule samples at stage t+1 from the arm Πj with the largest Gittins index G(νj,t),

where νj,t is the posterior distribution of θj based on all observations sampled

from Πj up to stage t; see Whittle (1980). The index G(ν) of a distribution ν on

θ is shown in Chang and Lai (1987) to be asymptotically equivalent to the UCB

(1.2) when n ∼ 1/(1− β) and t = o(n). Lai (1987) shows that the UCB rule also

attains the Bayes regret ∫
Rn(θ)dH(θ) ∼ C(log n)2, (1.4)

where C depends on the prior density function, which is assumed to be positive
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and continuous over θj ∈ (θ∗j−ρ, θ∗j +ρ), for 1 6 j 6 k, ρ > 0, and θ∗j = maxi 6=j θi.

1.2. Nonparametric extensions of classical bandit theory

Using large deviation bounds for sums of uniformly recurrent Markov chains

or mixing stationary sequences, Lai and Yakowitz (1995) extended the logarith-

mic lower bound (1.2) for the regret and the UCB rule. As such, they attained the

bound in the nonparametric setting, pioneered by Yakowitz and Lowe (1991), in

which “the only observables are the cost values, and the probability structure and

loss function are unknown to the designer” of the “black-box methodology.” As-

suming independent and bounded observations so that the “Chernoff–Hoeffding”

large deviation bounds for their sums can be applied, Auer, Cesa-Bianchi and

Fischer (2002) developed another nonparametric method to attain the logarith-

mic lower bound (1.2) for the regret. Instead of a UCB-type rule, they use

the ε-greedy randomization algorithm in reinforcement learning, as proposed by

Sutton and Barto (1998). Further theoretical background and implementation

details of the algorithm are in Section 2.2, where we also generalize it for our

development of nonparametric contextual bandit methods.

1.3. Covariate information and parametric contextual bandits

Contextual multi-armed bandit problems, also called multi-armed bandits

with side information, refer to the case where the decision-maker also observes a

covariate vector xt that contains information on θj if yt is sampled from Πj at

time t. Thus, arm Πj is characterized by the conditional densities fθj (·|xt) for the

reward yt when the arm is pulled at time t > 1. Woodroofe (1979) was the first to

consider the contextual multi-armed bandit problem for the case of k = 2 popula-

tions and univariate xt with distribution H, such that fθ1(y|x) = f(y−x−θ1) for

some given density function f (i.e., fθ1 is a location family), and fθ2(y|x) = f(y|x)

does not have unknown parameters. Assuming a prior density function on θ1 that

is positive and continuous over an open interval and is zero outside the interval, he

showed that the myopic rule, which selects Π1 whenever xt exceeds the posterior

mean of θ1 given the observations up to time t− 1, is asymptotically optimal for

the Bayesian discounted infinite-horizon problem of minimizing E(
∑∞

t=1 βt−1yt)

as β → 1. This result was subsequently extended to the exponential family under

certain regularity conditions by Sarkar (1991). Goldenshluger and Zeevi (2009)

considered the finite-horizon nonBayesian problem of choosing the n pulls se-

quentially to minimize E
(
y1 + · · · + yn

)
, assuming Π2 to be degenerate at zero

and Π1 to be normal with mean xt + θ conditional on xt. Analogously to (1.1),
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they define the regret in this simple case as

Rn(θ) = Eθ

(
n∑
t=1

φ∗t yt −
n∑
t=1

φtyt

)

= Eθ

(
n∑
t=1

I{φ∗t 6=φt}|xt + θ|

)
,

(1.5)

where φ∗t = I{xt+θ>0} is the oracle policy that assumes θ to be known, and show

that the minimax regret infφ supθ Rn(θ) can be bounded or can grow to∞ with n

at various rates that depend on the behavior of ν([−θ−δ,−θ+δ]) as δ → 0. They

also point out the paucity of studies on contextual bandit theory “in contrast to

the voluminous literature on traditional multi-armed bandit problems.”

Wang, Kulkarni and Poor (2005) were the first to generalize the parametric

“one-armed” contextual bandit problem to the case k = 2, for which they proved

two possibilities when the univariate covariate can only assume finitely many

values: the “implicitly revealing” parameter configuration with regret O(1), and

other configurations for which the regret is of order log n. The case of more general

covariates x ∈ Rp in nonlinear regression models led Kim and Lai (2019) to de-

velop the following general theory of parametric contextual bandits as a complete

parallel to the classical context-free case. Assume the covariate vectors xt are

independent and identically distributed with common distribution H. Let suppH

denote the support of H, fθ(y|x) denote the density function, depending on a

parameter θ ∈ Θ of the reward Y (with respect to some dominating measure ν on

the real line) when the covariate vector has value x, µ(θ,x) =
∫
yfθ(y|x)dν(y),

and

j∗(x) = argmax
16j6k

µ(θj ,x), θ∗(x) = θj∗(x), (1.6)

where θj is the parameter associated with arm j. Letting Ft−1 denote the σ-field

generated by {xt} ∪ {(xs, ys) : s 6 t − 1} and θ = (θ1, . . . , θk), the problem of

choosing an adaptive allocation rule φ = (φ1, . . . , φn) to maximize Eθ
(∑n

t=1 yt
)

is equivalent to minimizing the regret

Rn(θ, B)

= n

∫
B
µ(θ∗(x),x)dH(x)−

n∑
t=1

k∑
j=1

Eθ
{
Eθ
[
ytI{φt=j,xt∈B}|Ft−1

]}
=

k∑
j=1

∫
B

(
µ(θ∗(x),x)− µ(θj ,x)

)
Eθτn(j,x)dH(x)

(1.7)
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for Borel subsets B of suppH, for which Eθτn(j, B) :=
∑n

t=1 Pθ{φt = j,xt ∈ B}
defines a measure that is absolutely continuous with respect to the common

distribution H of the i.i.d. covariate vectors xt. Hence, the term Eθτn(j,x) in

(1.7)is the Radon–Nikodym derivative of the measure Eθτn(j, ·) with respect to

H.

By simply including the covariate set B in the definition (1.7) of the regret,

Kim and Lai (2019) extended the asymptotic lower bound (1.2) for the regret

to contextual bandits under mild regularity conditions, as follows. An adaptive

allocation rule φ is called “uniformly good” over B ⊂ suppH if

Rn(θ, B) = o(na) for every a > 0 and θ ∈ Θk. (1.8)

Moreover, an analogue of I(θj , θ
∗) in (1.2) for the contextual setting is

I(θ, λ;x) = Eθ
{

log
fθ(y|x)

fλ(y|x)

}
,

Ix(θ, θ′) = inf
λ:µ(λ,x)=µ(θ′,x)

I(θ, λ;x).
(1.9)

Note that I(θ, λ;x) is a natural extension of the Kullback–Leibler information

number to conditional densities. The quantity Ix(θ, θ′) corresponds to I(θ, λ;x)

with the least informative λ over the surface µ(λ,x) = µ(θ′,x).

Theorem 1.

(i) If j∗ is constant over B, then

Rn(θ, B) > (1 + o(1))
∑

j:pj(θ)=0

(log n)

∫
B

µ(θ∗(x),x)− µ(θj ,x)

Ix(θj , θ∗(x))
dH(x),

(1.10)

where
∑

j over an empty set is interpreted as O(1) and pj(θ) = Pθ{j∗(X) =

j}, in which X ∈ Rp has distribution H.

(ii) If j∗ is nonconstant over B (i.e., B contains leading arm transitions), then

Rn(θ, B) > C(θ)(log n)2. (1.11)

(iii) The adaptive allocation rule, which will be summarized in the last paragraph

of Section 2.2, attains the preceding asymptotic lower bounds.
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2. Theory of Nonparametric Contextual Bandits

In Section 2.1, we generalize the definition of regret (1.7) for contextual

bandits to the nonparametric setting and derive the analog of (1.10) and (1.11)

for the asymptotic lower bound of the regret. Section 2.2 develops an adaptive

allocation rule φopt, the regret of which has the same “minimax rate” (defined

there) as that of the lower bound in Section 2.1. After providing an overview

of statistical and computational tools for its implementation, Section 2.3 studies

its performance and gives further discussion and recent literature on applications

of nonparametric contextual bandits to personalized medicine and recommender

systems.

2.1. Lower bound of the regret over a covariate set

For the classical (context-free) multi-armed bandit problem, Lai and Yakowitz

(1995) define the regret as
∑k

j=1(µ
∗ − µj)Eτn(j) as a natural extension of (1.1)

to the nonparametric setting, where µj is the expected reward from arm j and

µ∗ = max16j6k µj . Combining this with (1.7) for parametric contextual bandits

leads to the definition of the regret

Rn,φ(B) =

k∑
j=1

∫
B

(µ∗(x)− µj(x))Eτn(j,x)dH(x) (2.1)

of an adaptive allocation rule φ over Borel subsets B of suppH, where Eτn(j,x)

is the Radon–Nikodym derivative of the measure Eτn(j, ·) with respect to H.

Moreover, analogously to (1.8), we call φ “uniformly good” over B if Rn,φ(B) =

o(na), for every a > 0. We show that the nonparametric family P generating the

data contains a least favorable parametric subfamily, and that the regret of the

adaptive allocation rule φopt, defined in the next subsection, attains the minimax

risk rate for this parametric subfamily under certain regularity conditions on

P. Details and the background literature for this approach are given in the

Supplementary Material S1.

2.2. ε-greedy randomization and arm elimination

The UCB rule in Section 1.1, introduced by Lai (1987) to approximate the

index policy of Gittins and Whittle in classical (context-free) parametric multi-

armed bandits, basically samples from an inferior arm until the sample size

reaches a threshold defined by (1.3), involving the Kullback–Leibler informa-

tion number. For contextual bandits, an arm that is inferior at x may be best at

another x′. Hence, the index policy that samples at stage t from the arm with
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the largest UCB (which modifies the sample mean reward by incorporating its

sampling variability at xt) can be improved by deferral to future time t′ when

it becomes the leading arm (based on the sample mean reward up to time t′).

This is shown for contextual parametric bandits by Kim and Lai (2019, Sec. III),

who propose using the ε-greedy randomization algorithm in reinforcement learn-

ing (Sutton and Barto (1998)), which we generalize to nonparametric contextual

bandits as follows. Let Kt denote the set of arms to be sampled from, and

Jt =
{
j ∈ Kt :

∣∣∣µ̂j,t−1(xt)− µ̂∗t−1(xt)∣∣∣ 6 δt

}
, (2.2)

where µ̂j,s(·) is the regression estimate (described in the next paragraph) of µj(·)
based on observations up to time s, µ̂∗s(·) = maxj∈Ks

µ̂j,s(·), and δt is used to lump

treatments with effect sizes close to that of the apparent leader into a single set

Jt. At time t, choose arms randomly with probabilities πj,t = ε/|Kt \ Jt| for

j ∈ Kt \ Jt and πj,t = (1 − ε)/|Jt| for j ∈ Jt, where |A| denotes the cardinality

of a finite set A. The set Kt is related to the arm elimination scheme described

later.

Ibragimov and Has’minskii (1981) and Begum et al. (1983) introduced the

theory of information bounds and minimax risk into nonparametric or semipara-

metric cases (which is parametric for the parameters of interest and contains

infinite-dimensional nonparametric nuisance parameters). This is also closely re-

lated to the least favorable parametric subfamily of the nonparametric family

P introduced by Stein (1956) and Bickel (1982). Fan (1993) shows that a local

polynomial regression has the minimax risk rate for univariate regressors; see

also Hastie and Loader (1993) and Fan and Gijbels (1996) for subsequent de-

velopments, including Ruppert and Wand (1994), who extended the local linear

regression to multivariate regressors.

Arm Elimination. Choose ni ∼ ai, for some integer a > 1. For ni−1 < t 6 ni,

eliminate the surviving arm j if

µ̂j,t−1(xt) < µ̂∗t−1(xt) and ∆j,t−1 > g

(
nj,t−1
ni

)
, (2.3)

where nj,s = Ts(j), g is given in (1.3), and ∆j,t−1 is the square of Welch’s Stu-

dentized t-statistic based on {(x`, y`) : 1 6 ` 6 t− 1}; that is,

∆j,t−1 =

t−1∑
`=1

I{φ`=j}

(
µ̂j,`−1(x`)− µ̃j,`−1(x`)

)2
+(

y` − µ̂j,`−1(x`)
)2

+
(
y` − µ̃j,`−1(x`)

)2 , (2.4)
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where at = max(a, 0) and µ̃j,s(·) = maxj′∈Ks
µ̂j′(·) if j ∈ Ks \ Js, which corre-

sponds to the local linear regression estimate of µj(·) under the null hypothesis

Hj,s, under which µ̃j,s(·) = µ̂j,s(·) if j ∈ Js. This adaptive allocation procedure

is denoted by φopt.

Note that (2.4) is the nonparametric analog of the GLR statistic for testing

the null hypothesis Hj,` that µj(x`) is not significantly below maxi∈K`
µi(x`) if

j ∈ J` for ` 6 t−1, in parametric models described in Section 1.3, for which Kim

and Lai (2019, Section III) replace (2.2) with

Jt =
{
j ∈ Kt :

∣∣∣µ(θ̂j,t−1,xt)− µ(θ̂∗t−1(xt),xt)
∣∣∣ 6 δt

}
and (2.4) with

∆j,t−1 =

t−1∑
`=1

I{φt=j} log

(
fθ̂j,`−1

(y`|x`)
fθ̃j,`−1

(y`|x`)

)
, (2.5)

letting θ̂j,`−1 (respectively, θ̃j,`−1) be the MLE (respectively, constrained MLE

under the constraint µ(θj ,x`) > maxj′∈K`\{j} µ(θ̂j′,`−1,x`), for 1 6 ` 6 t − 1)

and using the same notation as in (1.6) and (1.9).

2.3. Asymptotic efficiency, simulation study, and discussion

The adaptive allocation procedure in the preceding subsection, using (a)

the nonparametric local linear regression estimate µ̂j,s(·) of µj(·) in (2.1), (b)

ε-greedy randomization to sample from the set Kt of surviving arms, and (c) the

arm elimination rule defined by (2.3) and (2.4), has regret that attains the rate

of the minimax risk under certain regularity conditions on P. These conditions

are given in the Supplementary Material S1, which also gives the proof of the

following theorem.

Theorem 2. Under the regularity conditions and the choice of bandwidth for

(µ̂j,s(·) − µ̃j,s(·))+ given in S1, φopt attains the asymptotic minimax rate (as

n→∞) of the risk functions for adaptive allocation rules.

The background of minimax risk in asymptotic statistical decision theory is

given in S1 which also reports a simulation study of the performance of φopt.

The importance of nonparametric contextual bandit methodology to precision

medicine and drug development is discussed in the recent works of Sklar, Shih

and Lavori (2020) and Lai, Sklar and Weissmueller (2020). Earlier, Lai, Choi

and Tsang (2019) described its important role in recommender systems, online

experimentation and precision health.
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3. High-Dimensional Covariates and Concluding Remarks

The Supplementary Material S2 gives an overview of machine learning for

recommender systems and personalization technologies in the current big-data

and multi-cloud era, after extending the nonparametric contextual bandit theory

in Section 2 (dealing with the case of fixed p and large n) to high-dimensional

covariates for which p = pn may exceed n. In this context, it also reviews the

works of Birgé and Massart (1993), Shen and Wong (1994), Yang and Barron

(1999), and Yang and Tokdar (2015) on the information-theoretic approach to

minimax rates of convergence, which provides a powerful method for tackling

high-dimensional covariates.

In conclusion, multi-armed bandits with “side information” or covariates,

also called contextual multi-armed bandits, arise in many fields, in which the

development of personalized strategies or recommender systems has its statis-

tical underpinnings in the theory of contextual multi-armed bandits. We have

developed a comprehensive theory and derived new results on nonparametric con-

textual bandits. These results are also generalized to high-dimensional covariates,

which are of particular interest in the current big-data and multi-cloud era.

Supplementary Material

The online Supplementary Material contains a simulation study of the per-

formance of φopt in the setting of k = 6 arms, the proof of Theorem 2 and related

background literature (S1), information-theoretic minimax rates and machine

learning for applications in the era of big data (S2), and additional references.
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