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MULTIVARIATE HYSTERETIC

AUTOREGRESSIVE MODELS
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University of Chicago

Abstract: This paper proposes a multivariate hysteretic autoregressive model with

multiple threshold variables for modeling nonlinear time series. The proposed model

encompasses the two-regime multivariate threshold autoregressive model and the

hysteretic autoregressive model as special cases. A special feature of the proposed

model is that it employs multiple threshold variables, each with a single thresh-

old value. The resulting model is more flexible, yet parsimonious, than several

multivariate nonlinear time series models available in the literature. The paper

also studies some basic properties of the proposed model, uses a conditional least

squares estimation, and proposes a modeling procedure. Finally, we demonstrate

applications of the proposed model using simulated and real examples.

Key words and phrases: Hysteresis, least squares estimation, Markov chain, nonlin-

ear model, threshold variable.

1. Introduction

The need to analyze multivariate nonlinear time series increases with the

availability of big data. Yet research on such time series is relatively scarce com-

pared with that on its scalar counterpart. This lack of research can be attributed

to multiple reasons, including the complexity of the dynamic dependence in mul-

tiple series and high demand in terms of computation. It is then highly desirable

to consider a widely applicable, yet relatively simple multivariate nonlinear time

series model. This study marks some progress in this direction, focusing on para-

metric models.

For multiple nonlinear time series, multivariate threshold autoregressive (MT

AR) models and Markov-switching models (MSMs) are perhaps the most com-

monly used parametric models in the literature; see, for instance, Tsay and Chen

(2019) and the references therein. These two classes of models are mixtures of

linear models, but they differ in terms of their mixing mechanisms. A MTAR

model uses a threshold variable to govern the mixture. As such, the switching
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between linear models is deterministic once the threshold variable is observed;

see Tong (1978) and Tong (1990). On the other hand, the switching between the

linear models of an MSM is stochastic, driven by the transition probability ma-

trix of an underlying Markov chain; see Hamilton (1989), among others. There

are advantages and disadvantages for each type of model. For instance, threshold

models are easier to estimate once the threshold variable is given, but an MSM

may enjoy good interpretations in economic applications. This study examines

threshold models.

A criticism of threshold autoregressive (TAR) models is that the threshold

often marks a discontinuity in their conditional expectation. To address this

weakness, Li et al. (2015) propose a hysteretic autoregressive (HAR) model that

explores using hysteresis to govern the switching between linear models. Here,

we extend the HAR model in two directions. First, we consider multivariate time

series, and second, we employ multiple threshold variables. In TAR modeling,

the choice of a proper threshold variable is always challenging. Tsay (1989) uses

the p-value of a threshold nonlinearity test to select the delay d of a self-exciting

TAR (SETAR) model. Xia, Li and Tong (2007) propose nonparametric methods

for selecting the threshold variable, and Wu and Chen (2007) combine Markov

switching with generalized linear models to estimate the threshold variable, which

is a linear combination of several variables. These works all assume a priori

that there is a single threshold variable. However, the use of multiple threshold

variables has been found to be useful in empirical studies, such as that of Tiao

and Tsay (1994). Thus, our goal is to investigate the use of multiple threshold

variables. In addition, to keep the model relatively simple, we consider only a

single threshold for each threshold variable.

The main difficulty when using multiple threshold variables is that they of-

ten result in many regimes, which means the resulting TAR models may contain

many parameters. This is particularly so for multivariate time series. For exam-

ple, consider a k-dimensional MTAR model of order p. An increase of one regime

would add k(kp+ 1) + k(k + 1)/2 parameters in the mean equation and residual

covariance matrix. For a moderate k = 5 with p = 2, introducing an additional

threshold would add 70 parameters. Here, we show that the proposed multivariate

hysteretic autoregressive (MHAR) model overcomes this over-parameterization

problem because it has only two regimes, regardless of the number of threshold

variables used. This is achieved by adopting the idea of hysteresis, while reducing

the number of thresholds for each threshold variable to one. The HAR model

of Li et al. (2015) uses a single threshold variable with lower and upper thresh-

olds. Consequently, our generalization of the HAR model employs a simplifying
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switching mechanism.

The remainder of the paper is organized as follows. We introduce the pro-

posed model and study its properties in Section 2. Section 3 focuses on estimation

and the limiting properties of the conditional least squares estimates. Section 4

considers a modeling procedure, and Section 5 contains simulation studies and

an empirical application. Section 6 concludes the paper.

2. The Proposed Model

Let yt = (y1t, . . . , ykt)
′ be a k-dimensional time series of interest and xt =

(x1t, . . . , xmt)
′ be m-dimensional observable threshold variables. For simplicity,

we assume that both yt and xt are continuous random vectors and both k and m

are finite. In addition, the threshold vector xt is stationary. For each threshold

variable xit, let di be a positive integer denoting the delay and ri be the threshold.

That is, xi,t−di is the observed value used in model switching. Details are given

below. Let d = (d1, . . . , dm)′ be the vector of delays. For a given time index t,

denote the threshold vector as xt(d) = (x1,t−d1 , . . . , xm,t−dm)′, and partition the

m-dimensional Euclidean space <m as follows: Let Ω1t = {xt(d)|xi,t−di ≤ ri, 1 ≤
i ≤ m}, Ω2t = {xt(d)|xi,t−di > ri, 1 ≤ i ≤ m}, and Ω3t = <m − Ω1t − Ω2t =

{xt(d)|(xi,t−di > ri) ∩ (xj,t−dj ≤ rj), 1 ≤ i, j ≤ m}. Thus, Ω1t is the region

in which all threshold variables are less than their thresholds, Ω2t denotes the

region in which all threshold variables exceed their thresholds, and Ω3t is the

complement of Ω1t ∪ Ω2t. The proposed MHAR model with regime indicator Rt
is given by

yt =

{
φ0 +

∑p1
i=1φiyt−i + Σ

1/2
1 εt, Rt = 1,

ψ0 +
∑p2

i=1ψiyt−i + Σ
1/2
2 εt, Rt = 0,

Rt =


1, xt(d) ∈ Ω1t,

0, xt(d) ∈ Ω2t,

Rt−1, otherwise,

(2.1)

where p1 and p2 are non-negative integers, Σ1 and Σ2 are k× k positive-definite

matrices, {εt} is a sequence of independent and identically distributed (i.i.d.)

random vectors with mean zero and cov(εt) = Ik, the k × k identity matrix, φ0

and ψ0 are k-dimensional constant vectors, and φi and ψj are k × k real-valued

matrices. In model (2.1), εt is independent of yt−j and xt−j , for j > 0. If xt is

a subset of yt, then model (2.1) is a self-exciting MHAR model. Clearly, model

(2.1) reduces to the conventional two-regime MTAR model if m = 1, that is, there

is a single threshold variable. If k = 1, m = 2 with x1t = x2t = y1t, d1 = d2, but

r1 < r2, then model (2.1) reduces to the HAR model of Li et al. (2015). Thus,

the proposed model encompasses both conventional two-regime MTAR and HAR
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models as special cases. It also shares a similar switching mechanism to that

of the HAR model. On the other hand, model (2.1) is not a straightforward

generalization of HAR models, because the latter uses a single threshold variable

with two thresholds, whereas the former uses multiple threshold variables, each

with a single threshold. From a hysteresis point of view, Ω1t and Ω2t of model

(2.1) represent the two well-defined regimes (one or zero), whereas Ω3t signifies

a transition period. Under the proposed model, the transition between regimes

one and zero occurs only when all the signals switch. In other words, under

the proposed MHAR model, switching is a unanimous decision of the threshold

variables.

The use of multiple threshold variables can be justified in many ways. Con-

sider, for instance, that yt consists of the quarterly gross domestic product (GDP)

and unemployment rates of an economy. It is then understandable that the dy-

namic structure of yt would depend on the status of the economy, which is often

determined jointly by multiple economic indicators, such as the growth rate of

GDP, inflation rate, and change in productivity.

Some remarks on the proposed MHAR model are in order. First, under the

proposed model, the threshold vector xt may contain a threshold variable twice

with the same delay, for example, x1t = x2t and d1 = d2, but it cannot do so

more than twice. This is due to the inherent nature of the HAR model, which

cannot have more than two different thresholds. Second, for the MHAR model to

be useful in practice, the number of threshold variables (i.e., the dimension m of

xt) cannot be too large, because the model uses a unanimous decision in model

switching, which becomes increasingly difficult to achieve as m increases.

2.1. Ergodicity of the proposed model

Similarly to the HAR model, the regime indicator Rt of model (2.1) follows

the model

Rt = I(Ω1t) + I(Ω3t)Rt−1

= I(Ω1t) +

∞∑
j=0

j∏
i=0

I(Ω3,t−i)I(Ω1,t−j−1),

almost surely, where I(A) is the indicator for the set A. Thus, for a well-defined

nondegenerated MHAR model, the regime indicator Rt depends on all past values

of the threshold variables.

Let p = max{p1, p2} and φi = 0 if i > p1, and ψi = 0 if i > p2. Assume

Σ1 = Σ2. Define Yt = (y′t, . . . ,y
′
t−p+1, Rt)

′, and et = [(Σ1/2εt)
′, 0, . . . , 0]′, and
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let M0t = [m′0t, 0, . . . , 0, I(Ω1t)]
′ be (kp+ 1)-dimensional random vectors, where

m0t = φ0I(Dt) +ψ0I(Dc
t ), with Dt = Ω1t∪{Ω3t∩ (Rt−1 = 1)} and Dc

t being the

complement of Dt. Furthermore, let Φ be the kp× kp comparison matrix of the

matrix polynomial of Regime 1 of model (2.1), that is,

Φ =


φ1 φ2 · · · φp−1 φp
I 0 · · · 0 0
...

...
...

...

0 0 · · · I 0

 , (2.2)

where 0 denotes the k × k zero matrix. Similarly, let Ψ be the kp × kp com-

panion matrix of the polynomial matrix of regime 0 of model (2.1). Define

Mt = ΦI(Dt) + ΨI(Dc
t ) and

M1t =

[
Mt 01

0′1 I(Ω3t)

]
,

where 01 is the kp-dimensional vector of zeros. It can be verified that Yt =

M0t +M1tYt−1 + et. Therefore, in this case, Yt is a Markov chain, and one can

apply the results of Chan and Tong (1985) to derive a sufficient condition for its

geometric ergodicity. Let aij be the (i, j)th element of the real-valued matrix A.

Theorem 1. Consider model (2.1). Suppose that εt has a continuous density

function that is positive everywhere in <k and E(‖εt‖) < ∞. If there exists a

kp× kp matrix C = [cij ] satisfying cij ≥ max{|Φij |, |Ψij |} for all (i, j), such that

all eigenvalues of C are less than one in modulus, then Yt is geometrically ergodic

and, hence, yt is geometrically ergodic.

This theorem is given in Example 4 of Chan and Tong (1985). The case of

Σ1 6= Σ2 can also be obtained using the results of the aforementioned reference

under the same condition as Theorem 1.

3. Estimation

We apply the conditional least squares method to estimate the proposed

MHAR model. For ease of notation, we assume p1 = p2 and rewrite model (2.1)

as

yt =

{
φ′zt + e1t, Rt = 1,

ψ′zt + e2t, Rt = 0,
(3.1)

where zt = (1,y′t−1, . . . ,y
′
t−p)

′, φ′ = [φ0,φ1, . . . ,φp], ψ
′ = [ψ0,ψ1, . . . ,ψp], and

eit = Σ
1/2
i εt, for i = 1, 2. For simplicity, we consider only the case that the
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dimensions k and m are finite and fixed, and assume that for each threshold

variable xit, there exists a bounded interval [ai, bi] such that ai < ri < bi and

0 < P (xit ∈ [ai, bi]) < 1, for i = 1, . . . ,m. Let d = (d1, . . . , dm)′ be the m-

dimensional vector of delays and r = (r1, . . . , rm)′ be the vector of thresholds.

Let dmax = max{di|i = 1, . . . ,m}. We further assume that dmax is a known

positive integer so that the delay vector d ∈ {1, . . . , dmax}m, which is a finite set.

Let ω = (θ′, r′,d′)′ be the parameter vector of model (3.1), except Σ1 and

Σ2, where θ = (vec(φ)′, vec(ψ)′)′ is the collection of coefficient parameters, and

let Θ be a compact subset of R2k(kp+1). Denote the true parameters by ωo =

(θ′o, r
′
o,d
′
o)
′. We assume that θo is an interior point of Θ, and that ai < rio < bi

and dio ∈ {1, . . . , dmax}, for i = 1, . . . ,m.

Let n0 = max{p, dmax}. Given the data {yt,xt|t = 1, . . . , T}, we assume,

for simplicity, that Rn0
is known, and consider the sum of the squared errors

LT (ω) =
∑T

t=n0+1 et(ω)′et(ω), where

et(ω) = (yt − φ′zt)Rt(r,d) + (yt −ψ′zt)[1−Rt(r,d)], (3.2)

where Rt(r,d) signifies that the regime indicator depends on r and d. The

conditional least squares estimate (CLSE) of ω is defined as

ω̂ = argmin
ω

LT (ω).

In practice, T is fixed and the ith threshold ri assumes only some ordered statistics

of {xi,t−di |t = n0 + 1, . . . , T}; as such, the parameter space for r and d contains

only a finite number of possible values. Therefore, ω̂ can be obtained using the

following steps:

1. For given r and d and under the assumption of knowing the initial value

Rn0
(r,d), obtain the estimate of θ as

θ̂(r,d) = argmin
θ

LT (θ, r,d).

Denote the resulting sum of the squared errors by LT (θ̂, r,d).

2. Because LT (θ̂, r,d) assumes only a finite number of possible values, apply a

grid search to obtain estimates of r and d. That is, (r̂, d̂) = arg minr,d LT (θ̂,

r,d).

3. Applying the plug-in method, one has ω̂ = [θ̂(r̂, d̂)′, r̂′, d̂′]′.

Denoting R̂t as the estimated regime indicator based on the CLSE, we define the
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residuals as ê1t = (yt − φ̂′zt)R̂t and ê2t = (yt − ψ̂′zt)(1− R̂t), and estimate the

covariance matrices Σi (i = 1, 2) using

Σ̂1 =
1

T1

T∑
t=n0+1

ê1tê
′
1t, Σ̂2 =

1

T2

T∑
t=n0+1

ê2tê
′
2t, (3.3)

where T1 =
∑T

t=n0+1 R̂t and T2 = T − n0 − T1.
Some remarks are in order. First, the assumption that Rn0

is known should

have negligible impact when the sample size T is sufficiently large. As a matter of

fact, because Rn0
is either one or zero, one can entertain both cases if needed, and

choose the final CLSE based on the resulting smaller sum of the squared errors.

Second, for given r and d, define Xt = [z′tRt(r,d), z′t{1 − Rt(r,d)}]′. Then,

taking the transpose of model (3.1), we see that the CLSE of the coefficient

matrices φ and ψ can be written as[
φ̂(r,d)

ψ̂(r,d)

]
=

(
T∑

t=n0+1

XtX
′
t

)−1( T∑
t=n0+1

Xtyt

)
. (3.4)

To study the asymptotic properties of the CLSE, we need some additional

assumptions. For simplicity, we focus on the case that xt = yt, so that m = k

(fixed). In other words, we study the asymptotic properties of a finite-dimensional

self-exciting MHAR model in this section.

Assumption 1. Assume that φ 6= ψ and that for each threshold variable yit,

there exists a bounded interval [ai, bi] such that 0 < P (yit ∈ [ai, bi]) < 1. In

addition, the innovation process εt has a bounded, continuous, and positive density

function on <k.

Theorem 2. Assume that the process yt of model (2.1) is strictly stationary

and ergodic with E(|yityjt|1+δ) < ∞, for some δ > 0 and for i, j = 1, . . . , k. In

addition, Assumption 1 holds. Then, ω̂ → ωo and Σ̂i → Σio, for i = 1, 2, almost

surely, as T →∞, where ωo and Σio denote the true parameter values.

This theorem is a generalization of Theorem 2 of Li et al. (2015) and can be

shown by the standard argument for strong consistency. With m = k fixed, the

choices of d are finite, so that d̂ obtained by a grid search will equal do when the

sample size T is sufficiently large. Therefore, we assume, for simplicity, that d is

given and focus on the other parameters. We recommend a simpler procedure to

select d in the next section.

Assumption 2. The process yt of model (2.1) is strictly stationary with E(|yityjt
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yutyvt|1+δ) < ∞, for some δ > 0 and for i, j, u, v = 1, . . . , k, and the process εt
satisfies E(|εitεjtεutεvt|) <∞, for i, j, u, v = 1, . . . , k.

For a given time index t, we say that yt(d) is in the hysteresis zone if

(y1,t−d1 , . . . , yk,t−dk)′ ∈ Ω3t = <k − Ω1t − Ω2t, where Ω1t consists of yi,t−di ≤ ri
for i = 1, . . . , k, and Ω2t consists of yi,t−di > ri for i = 1, . . . , k. Next, without

loss of generality, assume all delays satisfy di ≤ p.

Assumption 3. The vector autoregressive function of yt is discontinuous in the

hysteresis zone. Specifically, there exist p k-dimensional vectors, given below: For

j = p− 1, . . . , 0,

i. y∗j is a constant vector in <k if j 6= di, for all i.

ii. y∗j is a partially random vector if j = di, for some i. In this case, y∗i,j is a

random variable with its value in the hysteresis zone,

such that z′(φo − ψo) 6= 0, where z = [1, (y∗p−1)
′, . . . , (y∗0)′]′ and φo and ψo are

the true parameter values.

Consider the Markov chain process Yt = (y′t, . . . ,y
′
t−p+1, Rt)

′ of Section

2. Denote its n-step transition probability function by Pn(y, A), where y ∈
<kp × {0, 1}, A ∈ Bkp × U , Bkp is the class of Borel sets of <kp, and U =

{∅, {0}, {1}, {0, 1}}.

Assumption 4. The process Yt admits a unique invariant measure π(.) such

that there exist K > 0 and 0 ≤ ρ < 1, for any y ∈ <kp × {0, 1} and any n,

‖Pn(y, ·) − π(·)‖v ≤ K(1 + ‖y‖)ρn, where ‖ · ‖v and ‖ · ‖ are, respectively, the

total variation norm and the Euclidean norm.

Under Assumption 4, {Yt} is said to be V -uniformly ergodic with V (y) =

K(1 + ‖y‖), which is stronger than geometric ergodicity; see Meyn and Tweedie

(1993).

Theorem 3. Consider the self-exciting MHAR model yt in (2.1). If Assumptions

1 – 4 hold, then

i. T (r̂ − r) = Op(1),

ii. T 1/2 supT‖r−ro‖≤C ‖θ̂(r) − θ̂(ro)‖ = op(1) for any fixed 0 < C < ∞, where

θ = [vec(φ)′, vec(ψ)′]′ and θ̂(r) is given by Equation (3.4).

In addition,

T 1/2(θ̂ − θo)→D N [0, diag(Σ1 ⊗G−11 ,Σ2 ⊗G−12 )],
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where →D denotes convergence in distribution, G1 = E(XtX
′
tRt), and G2 =

E[XtX
′
t(1−Rt)], with Xt given in Equation (3.4).

Consider Equation (3.3). Let Ŝi = TiΣ̂i. The limiting properties of the

residual covariance matrices are given below.

Theorem 4. Consider the self-exciting MHAR model yt in (2.1). (a) If As-

sumptions 1–4 hold, then Var[vec(Σ̂i)] → 0 as T → ∞. (b) In addition, if the

innovations εt are multivariate Gaussian, then TiΣ̂i, conditioned on Σi, follows

asymptotically a Wishart distribution with degrees of freedom Ti − kp− 1.

Part (a) of Theorem 4 can be shown using the same method as that for

Corollary 3.2.1 of Lütkepohl (2005). Part (b) follows from the consistency results

of Theorems 2 and 3 and the properties of the multivariate Gaussian distribution.

Finally, similarly to Li et al. (2015), under Assumptions 1 − 4, one can derive

the limiting distribution of r̂ and the asymptotic independence between T (r̂−ro)
and T 1/2(θ̂ − θo). The details are rather complicated and, hence, omitted.

4. A Modeling Procedure

In this section, we propose a modeling procedure for the MHAR model by

leveraging the computationally efficient algorithm of Li and Tong (2016) and

the procedure for modeling the multivariate TAR model in Tsay (1998). Given

observations {yt|t = 1, . . . , T}, we assume that yt has no unit root; otherwise,

some co-integration procedure should be used to transform the series into unit-

root stationarity. See, for instance, the methods discussed in Tsay (2014), and

the references therein. The proposed modeling procedure is as follows:

1. Preliminaries: Use information criteria, such as the Akaike information cri-

terion (AIC), to select the order po of a VAR model for yt, and set the

maximum possible delay dmax.

2. Testing threshold nonlinearity and selecting threshold variables: Set m = 0

and the threshold variable xt to null.

• For i = 1, . . . , k, apply the multivariate threshold nonlinearity test of

Tsay (1998) to yt by fitting a VAR(po) model, with yit as the threshold

variable and delay di ∈ {1, . . . , dmax}. Compute the test statistic Fi
and its p-value for each delay di. Denote the largest test statistic and

the associated p-value by F (i) and α(i), respectively.

• If α(i) < αo, increase m by one and add yit to xt, where αo is a

prespecified type-I error, for example, αo = 0.05.
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If xt remains null, then yt follows a linear model and the modeling procedure

stops. Otherwise, yt is threshold nonlinear with threshold variable xt ⊂ yt.

3. Estimation of delays and initial thresholds: Given dmax and m > 0, denote

the space of the possible delays by Dm = {(i1, . . . , im)|ij = 1, . . . , dmax; j =

1, . . . ,m}.

3a. Preliminary threshold estimates: For i = 1, . . . ,m and d = 1, . . . , dmax,

fit a two-regime MTAR model of order po to yt, with threshold xit and

delay d. Denote the threshold estimate by r̄(i, d). Let H(m, dmax) =

{r̄(i, d)|d = 1, . . . , dmax; i = 1, . . . ,m} be the collection of threshold

estimates.

3b. Selection of delay vector: For each element d ∈ Dm, fit an MHAR model

of order po with threshold vector xt, delay d, and the corresponding

thresholds in H(m, dmax). Let AIC(d) be the resulting AIC of the fitted

model. Select d̂ = arg mind∈Dm
AIC(d), and denote the corresponding

threshold vector by r̃ = (r̃1, . . . , r̃m)′.

4. Estimation of thresholds: Given d̂ and the corresponding initial threshold

estimates of step 3b, refine the thresholds as follows:

4a. For i = 1, . . . ,m, the preliminary threshold r̃i assumes an ordered

statistic of {xit}, say, r̃i = xi,(to). Consider the neighborhood Ii =

{xi,(to−n∗), x(to−n∗+1), . . . , xi,(to+n∗)} of xi,(to) as candidates for ri, where

n∗ is a prespecified positive integer.

4b. Consider II =
∏m
i=1 Ii as possible candidates for the threshold vector

r, and perform a grid search by fitting MHAR models with order po,

delay d̂, and threshold vectors in II. Select r̂ as the element in II that

gives the minimum AIC of the fitted MHAR model.

4c. Iterate steps 4a and 4b until the estimated thresholds converge.

5. Final estimation and model checking: With d̂ of step 3 and r̂ of step 4,

estimate an MHAR model of order po. Perform model checking to verify

that the fitted model is adequate, and refine the model if needed.

Step 3a is carried out using the nested sub-sampling search (NeSS) algorithm of

Li and Tong (2016), which is an efficient way to search for the threshold for a two-

regime TAR model, especially when the sample size is large. See the comparison

in Liu, Chen and Tsay (2020). We apply multivariate Ljung−Box test statistics

to check the serial correlations of the standardized residuals in step 5.
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The proposed modeling procedure is easy to implement. In particular, the

VAR order po for yt and the NeSS algorithm for multivariate time series are avail-

able in the R packages MTS and NTS, respectively. The threshold nonlinearity

test of Tsay (1998) and the CLSE of the MHAR model are also easy to perform.

The proposed modeling procedure is based on the following considerations. It

starts by assuming a linear VAR model for yt, and performs multivariate thresh-

old nonlinearity tests to verify that yt indeed has threshold nonlinearity. The

procedure then considers ways to simplify the computation, while maintaining

its effectiveness. Like the conventional TAR models, the thresholds r assume

ordered statistics of the threshold variables. For a large sample size T and mul-

tiple threshold variables, it would be computationally expensive to search over

all possible combinations of ordered statistics. The NeSS algorithm of Li and

Tong (2016) is an efficient algorithm for a given threshold variable with a single

threshold. In the proposed procedure, we use this algorithm to obtain an initial

estimate of the threshold. It is possible that this initial estimate is biased because

the model is misspecified. Therefore, we consider a neighborhood around the ini-

tial estimate. In addition, we conduct a grid search among possible configurations

of the product space of the selected neighborhood of the initial thresholds. For m

threshold variables, the grid search searches over (2n∗ + 1)m possible thresholds.

Therefore, we keep n∗ relatively small, say n∗ = 10, for large m. If needed, one

can iterate this grid search procedure to refine the estimation of the thresholds.

5. Examples

We demonstrate the efficacy of the proposed modeling procedure using sim-

ulation studies, and show the applicability of the proposed MHAR model using

a real example.

5.1. Simulation

Example 1. Consider the simple MHAR model

yt =

{
φyt−1 + Σ

1/2
1 εt, if Rt = 1,

ψyt−1 + Σ
1/2
2 εt, if Rt = 0,

Rt =


1, xt(d) ∈ Ω1t,

0, xt(d) ∈ Ω2t,

Rt−1, otherwise,

(5.1)

where xt = yt, d = (1, 2), εt are i.i.d. as bivariate normal with mean 0 and

covariance matrix I, and the other parameters are given below:
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Figure 1. Time plots of the series in Example 1. Part (a) is the original time series, and
part (b) is the standardized residuals of a fitted MHAR model.

φ =

[
0.2 0.3

−0.6 1.1

]
, ψ =

[
−0.7 −0.2

0.2 0.6

]
,

Σ1 =

[
1 0.2

0.2 1

]
, Σ2 =

[
1.6 −0.2

−0.2 1

]
.

The thresholds used are (0, 0)′, so that we have Ω1t = {yt|(y1,t−1 ≤ 0)∩ (y2,t−2 ≤
0)} and Ω2t = {yt|(y1,t−1 > 0) ∩ (y2,t−2 > 0)}. In this particular case, the two

eigenvalues of φ are 0.8 and 0.5, whereas those of ψ are approximately −0.67

and 0.57. Part (a) of Figure 1 shows time plots of 1,000 observations generated

by model (5.1). We used R0 = 1 and y0 = ε0 in the simulation, but dropped the

first 50 observations to remove the impact of the initial values. As expected, the

time plots exhibit a stationary vector series.

Following the proposed modeling procedure, we selected a VAR(2) model

for yt using the Bayesian information criterion. Table 1 shows the results of

the multivariate threshold nonlinearity test, using marginal series as its thresh-

old variable and d ∈ {1, 2, 3, 4}. From the table, we see that (a) the threshold

nonlinearity tests confirm that yt is indeed nonlinear, and (b) both y1t and y2t
are selected as threshold variables, that is, xt = yt. With dmax = 4, step 3

of the proposed procedure selects d̂ = (1, 2)′, with an initial threshold estimate

r̃ ≈ (−0.045,−0.052)′. These results indicate that the proposed procedure is

effective in selecting the delays and obtaining the initial threshold estimates.
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Table 1. Multivariate Threshold Nonlinearity Tests of Example 1. The values in paren-
theses are p-values

Threshold Delay: d

Variable 1 2 3 4

y1t 136.04 (0) 42.41 (6.34× 10−6) 25.81 (0.004) 13.11 (0.22)

y2t 104.84 (0) 287.30 (0) 246.43 (0) 156.80 (0)

Next, we follow step 4 to estimate the thresholds. Using n∗ = 10, d̂ =

(1, 2)′, and the initial thresholds r̃, we refine the estimates of the thresholds.

The refinement stops after two iterations, and the final estimate of the threshold

is r̂ ≈ (−0.0179,−0.006)′, which is close to the true value (0, 0)′. If one uses

n∗ = 20, then step 4 requires only one iteration to select the final threshold

estimates.

Finally, using d̂ = (1, 2)′ and r̂ = (−0.0179,−0.006)′, we estimate the MHAR

model. It turns out that the lag-2 coefficients for each regime are not statistically

significant; thus, we use order 1 for each regime. The final estimates of the

coefficients and residual covariance matrices are

φ̂ =

[
0.194(0.036) 0.288(0.022)

−0.618(0.036) 1.107(0.022)

]
, ψ̂ =

[
−0.706(0.033) −0.154(0.030)

0.203(0.025) 0.614(0.023)

]
,

Σ̂1 =

[
1.05 0.15

0.15 1.04

]
, Σ̂2 =

[
1.61 −0.19

−0.19 0.94

]
,

where the values in parentheses denote asymptoic standard errors based on The-

orem 3. These estimates are close to their true values. Figure 1(b) shows time

plots of the standard residuals of the fitted model. The multivariate Ljung−Box

statistics of the standardized residuals give Q(10) = 42.86(0.10) and Q(20) =

72.37 (0.49), indicating that, as expected, one cannot reject the null hypothesis

that the standardized residuals have no serial correlations, where the values in

parentheses denote p-values. The p-values are based on χ2 distributions with de-

grees of freedom 32 and 72, respectively, after adjusting for parameter estimates.

This simple example demonstrates that the proposed modeling procedure works

well.

Based on the recommendation of a referee, we repeated the above analysis

for 3,000 iterations. That is, we generated 3,000 data sets, each with 1,000

observations, and examined the performance of the proposed modeling procedure.

Because the sample size is relatively large, the selected delay is d̂ = (1, 2)′ for

every iteration, confirming the strong consistency of the delay estimation. Using
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Table 2. Probabilities of Correct Selection of the Delay Vector d Based on 3,000 Iterations
and Sample Sizes 500 and 10,000.

d = (1, 1)′ d = (2, 1)′ d = (1, 2)′

Sample size 500 1,000 500 1,000 500 1,000

Probability 0.908 0.997 0.753 0.997 0.956 1.000

n∗ = 10, the average and median numbers of iterations of step 4 are 2.46 and

2, respectively. The associated sample standard deviation is 1.96. Therefore,

the proposed procedure can locate the estimates of the thresholds effectively.

The average of the estimated thresholds and their sample standard errors are

(−0.040,−0.008)′ and (0.148, 0.035)′, respectively, showing that the thresholds

can be estimated consistently. Finally, the average estimates of the parameters

and their sample standard deviations, in parentheses, over the 3,000 iterations

are given below:

φ̂ =

[
0.194(0.038) 0.303(0.026)

−0.593(0.044) 1.091(0.029)

]
, ψ̂ =

[
−0.696(0.035) −0.194(0.034)

0.198(0.028) 0.607(0.031)

]
,

Σ̂1 =

[
1.01(0.081) 0.19(0.054)

0.19(0.054) 1.01(0.081)

]
, Σ̂2 =

[
1.59(0.099) −0.19(0.060)

−0.19(0.060) 1.01(0.071)

]
.

As expected, these estimates confirm the asymptotic behavior of the CLSE.

Example 2. In this simulation, we use the same parameters as those of Example

1, except for the delay vector d. Our goal is to study the performance of the

proposed procedure in selecting the delay vector. The delay vectors considered

are (1, 1)′, (2, 1)′, and (1, 2)′, and the sample sizes used are 500 and 1,000. For each

d and sample size, we generate yt using the same procedure as that in Example

1. We repeat the process for 3,000 iterations, and tabulate the performance

of the multivariate threshold nonlinearity test and the percentages of correct

selection of delays. For all but two realizations with sample size 500, the threshold

nonlinearity test confirms that the simulated series is indeed nonlinear. Thus, the

proposed procedure can select the dimension of the threshold vector xt effectively.

Table 2 tabulates the probabilities of correct selection of the delay vector d. From

the table, we see that the proposed modeling procedure is effective in selecting

the delay vector d, especially when the sample size is 1,000.
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5.2. Real-Data Analysis

In this section, we analyze the weekly growth rates (first difference of log) of

U.S. conventional regular gasoline stocks and prices. The growth rates are given

as percentages. The data are downloaded from the U.S. Energy Information

Administration at www.eia.gov. The conventional motor gasoline stocks are

from March 3, 1995, to August 28, 2020, and are in thousand barrels. The

regular gasoline prices are from March 6, 1995, to August 31, 2020, and are in

dollars per gallon. Here, the stocks serve as the supply, and we are interested

in finding the relationship between the supply and the price of weekly regular

gasoline. Let yt be the weekly growth rates of the series, that is, yt = (st, pt)
′,

with st being the growth rate of the gasoline supply. Figure 2(a) shows time

plots of the two growth rates. The volatility of the first series seems to increase

in recent years. For simplicity, we do not consider conditional heteroscedasticity

in our analysis, but the CLSEs remain consistent.

Following the proposed modeling procedure, we identify a VAR model for yt.

The AIC selects po = 12. We then perform multivariate threshold nonlinearity

tests with dmax = 4. The tests confirm that both components of yt can serve as

threshold variables. For instance, the threshold test of VAR(12) with y1t being

the threshold variable and delay 2 is 105.4, with p-value 7.9 × 10−6. The test

of VAR(12) with y2t as the threshold variable and delay 1 is 140.6, with p-value

1.5× 10−10. Therefore, in this instance, xt = yt and m = 2.

Next, we apply step 3 of the proposed procedure to select the delay, using

order po = 12 and dmax = 4. It selects d̂ = (2, 1)′, with an initial estimate of

the threshold vector r̃ = (−2.224, 1.252)′. We then apply step 4 with n∗ = 20

to refine the estimation of the thresholds. The step iterates three times for

the threshold estimates to converge, resulting in an estimated threshold vector

r̂ = (−2.345, 1.037)′. Finally, using d̂ and r̂, we estimate the MHAR model of

order p = 12. The AIC of the fitted model is 3,767.202. Model checking indicates

that the residuals have no significant serial correlations, but there exist a couple of

outlying values in the standardized residuals. See Figure 2(b). The multivariate

Ljung−Box statistics of the standardized residuals give Q(24) = 64.97 (0.052)

and Q(36) = 111.24 (0.14), where the values in parentheses denote p-values. For

the fitted model, the sample sizes for Rt = 1 and Rt = 0 are 513 and 805,

respectively.

For comparison, the linear VAR(12) model gives AIC = 3,961.64. A two-

regime MTAR(12) model with y1t as the threshold variable and delay 2 gives an

estimated threshold −2.792 and AIC = 3,877.44. The sample sizes for the two

www.eia.gov
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Figure 2. Time plots of the series of weekly growth rates of conventional motor gasoline
stocks and regular gasoline prices. Part (a) is the growth rate series and part (b) is the
standardized residuals of a fitted MHAR model.

regimes are 158 and 1,160, respectively. A two-regime MTAR(12) model with y2t
as the threshold variable and delay 1 gives an estimated threshold 1.252 and AIC

= 3,864.25. The sample sizes of the two regimes are 996 and 322, respectively.

Therefore, based on the AIC, the proposed MHAR model fares better than the

linear VAR(12) and the two-regime MTAR(12) models.

Finally, keeping only coefficient estimates with t-ratios greater than 1.645,

the fitted model for regime R̂t = 1 can be written as

st ≈ −0.13st−1 − 0.18pt−2 + 0.08st−4 − 0.12st−11 − 0.10st−12 + 0.12pt−12 + e11,t,

pt ≈ −0.06st−1 + 0.62pt−1 + 0.18pt−2 − 0.09pt−4 − 0.09pt−6 + 0.04pt−8 + e12,t,

whereas that for the regime R̂t = 0 is

st ≈ −0.21− 0.16st−1 − 0.10pt−1 + 0.11st−2 + 0.07pt−2 + 0.11st−3 − 0.09pt−8

−0.11st−9 − 0.14st−10 − 0.09pt−10 − 0.13st−11 − 0.11st−12 + e21,t,

pt ≈ 0.20− 0.11st−1 + 0.42pt−1 − 0.07st−2 − 0.09st−3 + 0.11pt−3 + 0.10pt−8

−0.13pt−9 + 0.06st−10 + e22,t.

From the fitted model, we see several differences between the two regimes. First,

in the regime R̂t = 0, the two constant terms are significant, but with different

signs, indicating that the gasoline stock (or supply) continues to drop, but the
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gasoline price keeps increasing. This feature does not show up in regime R̂t = 1.

Second, as expected, there is a feedback relationship between the two growth rate

series in both regimes, but the dependence of the price growth rate on the supply

is relatively weak in the regime R̂t = 1. See the only significant coefficient −0.06

at st−1. This negative sign is expected because the price and supply of gasoline

are negatively related. Third, the gasoline supply seems to depend not only on

its own past lag at t− 12, but also on higher-order lags of the gasoline price; see

lag t− 12 in regime R̂t = 1 and lag t− 10 in regime R̂t = 0. Fourth, the gasoline

price seems to be sticky, because the coefficients of its own lag-1 are relatively

large in both regimes. This is reasonable and agrees with the common sense that

the gasoline price decreases slowly.

6. Conclusion

We have proposed a multivariate hysteretic autoregressive model for time

series analysis. We briefly studied the properties of the proposed model, and

used the conditional least squares method for the estimation. We also proposed

a modeling procedure and demonstrated its efficacy using simulation studies and

a real example. The results show that the proposed model and modeling proce-

dure are useful in some applications of multivariate time series analysis. Finally,

this study is concerned with a dynamic model to which Professor T. L. Lai has

made fundamental contributions. Indeed, the proposed model can be extended to

include exogenous variables using the results of Lai and Wei (1982). The details

are similar to those of Tsay (1998) and, hence, are omitted.
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