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NEGATIVE MOMENT BOUNDS FOR STOCHASTIC

REGRESSION MODELS WITH DETERMINISTIC TRENDS

AND THEIR APPLICATIONS TO PREDICTION PROBLEMS
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Abstract: We establish negative moment bounds for the minimum eigenvalue of

the normalized Fisher information matrix in a stochastic regression model with a

deterministic time trend. This result enables us to develop an asymptotic expression

for the mean squared prediction error (MSPE) of the least squares predictor of the

aforementioned model. Our asymptotic expression not only helps better understand

how the MSPE is affected by the deterministic and random components, but also

inspires an intriguing proof of the formula for the sum of the elements in the inverse

of the Cauchy/Hilbert matrix from a prediction perspective.
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1. Introduction

The stochastic regression model is a widely used statistical model, owing to its

broad applications in engineering, economics, medicine, and many other scientific

fields. In their seminal paper, Lai and Wei (1982) laid the theoretical foundations

for parameter estimation in such a model. In particular, they proposed a set of

weakest possible conditions under which the linear least squares estimate achieves

strong consistency. Lai and Wei’s paper inspired a great deal of exciting work,

bringing insights into prediction, model selection, nonlinear estimation, stochastic

approximation, and adaptive control; see, for example, Chen and Guo (1986), Lai

and Wei (1986), Wei (1987), Wei (1992), Lai (1994), Lai and Lee (1997), Chen,

Hu and Ying (1999), and Gerencsér, Hjalmarsson and Mårtensson (2009).

One of the most important purposes of statistical modeling is to predict fu-

ture values. The performance of a prediction method is usually evaluated using

two measures: the accumulated prediction error (APE), and the mean squared

prediction error (MSPE). Model selection based on these two types of errors has

also attracted much attention from researchers and practitioners. Wei (1987)
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provided asymptotic expressions for the APEs of the least squares predictors in

stochastic regression models. Model selection based on the APE has been ex-

plored by Rissanen (1986), Wax (1988), Hannan, McDougall and Poskitt (1989),

Hemerly and Davis (1989), Wei (1992), Speed and Yu (1993), West (1996), Lai

and Lee (1997), Ing (2004), Ing (2007), Ing, Lin and Yu (2009), and Ing and

Yang (2014). Asymptotic expressions for the MSPEs of least squares predictors

have been derived in a variety of time series models; see, for example, Fuller and

Hasza (1981), Kunitomo and Yamamoto (1985), Gerencsér (1992), Ing (2003),

Ing, Lin and Yu (2009), Chan and Ing (2011), and Chan, Huang and Ing (2013).

Furthermore, numerous model selection methods have been proposed based on

minimizing the MSPE; see Shibata (1980), Bhansali (1996), Lee and Karagrigo-

riou (2001), Ing and Wei (2005), Ing, Sin and Yu (2012), and Hsu, Ing and Tong

(2019).

Because many time series data exhibit polynomial or other deterministic time

trends, parameter estimation and hypothesis testing in time series models with

drifts have been considered by several authors; see, for example, Chan (1989),

Hamilton (1994), and Stock (1994). On the other hand, most existing studies on

the MSPE have focused on the case in which the underlying time series model has

a constant mean. Although Ing (2003) derived an asymptotic expression for the

MSPE of the least squares predictor in an autoregressive (AR) model around a

polynomial trend, it seems difficult to apply his result to more general time series

models. In addition, his derivation is heavily reliant on a negative moment bound

for the minimum eigenvalue of the normalized Fisher information matrix of a

nonconstant mean, a rigorous proof of which is not provided. This study fills this

gap by investigating the MSPEs of the least squares predictors in autoregressive

exogenous (ARX) models (an important class of stochastic regression models),

with deterministic trends satisfying general conditions. We first establish negative

moment bounds for the minimum eigenvalue of the normalized Fisher information

matrix, R̂n, associated with this model in a rigorous manner. With the help of

these bounds, we provide an asymptotic expression for the MSPE of the least

squares predictor. This expression is the sum of two terms that count for the

variation from estimating the time trend and the ARX components, respectively.

This result helps us to understand how the MSPE is affected by the model’s

deterministic and random elements.

Our asymptotic expression shows that the MSPE from estimating the poly-

nomial time trend is related to the sum of the elements in the inverse of the

Hilbert matrix, which, in turn, is a special case of the symmetric Cauchy matrix.

The formula for the sum of the elements in the inverse of the latter matrix was
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given by Schechter (1959) using Lagrange’s interpolation method. The connec-

tion between the MSPE and the Cauchy/Hilbert matrix raises the question of

whether there is an alternative proof of the formula from a prediction perspective.

By establishing an intriguing link between the MSPE and the APE, we show that

the answer to this question is affirmative.

The rest of the paper is organized as follows. In Section 2, we establish

negative moment bounds for the minimum eigenvalue of a matrix associated with

R̂n. In Section 3.1, we give asymptotic expressions for the MSPEs of the least

squares predictors in ARX models with general time trends. We illustrate the

results using polynomial and periodic time trends. In Section 3.2, we provide a

statistical proof of the formula for the sum of the elements in the inverse of the

Cauchy matrix. Section 4 concludes the paper. All proofs of the theorems in

Sections 2 and 3.1 and other technical details are relegated to the Appendix.

2. Negative Moment Bounds

Let k and m be positive integers. We start by considering a km-dimensional

time series,

Yt =

∞∑
j=0

Cjεt,j , (2.1)

where εt,j = (δ>t−jk, . . . , δ
>
t−(j+1)k+1)>, {δt} is a sequence of m-dimensional in-

dependent random vectors satisfying E(δt) = 0 and E(δtδ
>
t ) = Σ > 0, Cj are

km× km coefficient matrices, C0 is invertible, and

∞∑
j=0

‖Cj‖2F <∞. (2.2)

Here, ‖A‖F denotes the Frobenius norm of matrix A. Many time series regression

models have explanatory vectors satisfying (2.1). Here, we give two examples.

Example 1. Let zt =
∑∞

j=0Djδt−j be an m-dimensional stationary time series,

where
∑∞

j=0 ‖Dj‖2F <∞, D0 is invertible, and {δt} is defined as in model (2.1).

Then,


zt
...

zt−k+1

=

∞∑
j=0

 Djk · · · D(j+1)k−1
...

...

D(j−1)k+1 · · · Djk


 δt−jk

...

δt−(j+1)k+1

 , (2.3)

where Dl = 0, if l < 0. Hence, (2.1) holds with Yt = (z>t , · · · , z>t−k+1)>,
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Cj =

 Djk · · · D(j+1)k−1
...

...

D(j−1)k+1 · · · Djk

 ,

and εt,j = (δ>t−jk, . . . , δ
>
t−(j+1)k+1)>. One may use the following vector AR model

for predictions:

zt+1 =

k∑
j=1

Θjzt+1−j + εt+1, (2.4)

where Θj are m×m coefficient matrices and εt+1 is the model error, which can be

serially correlated if (2.4) is misspecified. It is clear that the explanatory vector

of model (2.4) is given on the left-hand side of (2.3).

Example 2. Consider an ARX model,

vt =

k0∑
j=1

ajvt−j +

d∑
l=1

kl∑
j=1

θj(l)zt−j(l) + εt, (2.5)

where d, k0, . . . , kd are positive integers, aj and θj(l) are unknown coefficients,

1− a1z − · · · − ak0zk0 6= 0, |z| ≤ 1, (2.6)

(zt−1(l), . . . , zt−kl+1(l))>, for l = 1, . . . , d, are exogenous variables admitting the

MA(∞) representation

zt(l) =

∞∑
j=0

bj(l)εt−j(l), (2.7)

with b0(l) = 1 and
∑∞

j=0 b
2
j (l) < ∞, and δt = (εt, εt(1), . . . , εt(d))>, for t =

1, . . . , n, are independent noise satisfying E(δt) = 0 and (σij)1≤i,j≤d+1 = E(δtδ
>
t )

> 0. By (2.6) and (2.7), there exist ηj , for j ≥ 0, with η0 = (1, 0, . . . , 0)> and∑∞
j=1 ‖ηj‖2 <∞, such that

vt =

∞∑
j=0

η>j δt−j , (2.8)

where ‖ · ‖ denotes the Euclidean norm. Let k̄ = max{k0, . . . , kd}. Then,

Yt = (vt, zt(1), . . . , zt(d), . . . , vt−k̄+1, zt−k̄+1(1), . . . , zt−k̄+1(d))> (2.9)

can be viewed as an explanatory vector of model (2.5) containing possibly redun-

dant components. It follows from (2.7) and (2.8) that
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Yt =

∞∑
j=0

Cjεt,j ,

where εt,j = (δ>
t−jk̄, . . . , δ

>
t−(j+1)k̄+1

)> and

Cj =

Cj,11 · · · Cj,1k̄
...

...

Cj,k̄1 · · · Cj,k̄k̄

 ,

in which

Cj,tl =



ηjk̄−t+l,1 ηjk̄−t+l,2 · · · · · · ηjk̄−t+l,d+1

0 bjk̄−t+l(1) 0 · · · 0
... 0 bjk̄−t+l(2) 0

...
...

...
. . . 0

0 0 · · · 0 bjk̄−t+l(d)


is a (d + 1) × (d + 1) matrix with (ηjk̄−t+l,1, . . . , ηjk̄−t+l,d+1)> = ηjk̄−t+l, and

ηh,l1 = bh(l2) = 0 if h < 0. Because
∑∞

j=0 ‖Cj‖2F <∞ and C0 is invertible, owing

to C0,tt = Id+1 (the (d + 1)-dimensional identity matrix) and C0,tl = 0 if t > l,

we conclude that Yt in (2.9) fulfills (2.1), with k = k̄ and m = d+ 1.

Assuming that (2.1) holds and there exist δ,M, α > 0 such that for any

0 < w − u ≤ δ,
sup

−∞<t<∞
sup
‖ν‖=1

P (u < ν>δt ≤ w) ≤M(w − u)α, (2.10)

Findley and Wei (2002) showed that for any q ≥ 1,

E

(
λ−qmin

(
n−1

n∑
t=1

YtY
>
t

))
= O(1), (2.11)

where n is the sample size and λmin(A) denotes the minimum eigenvalue of matrix

A. With the help of (2.11), they presented the first mathematically complete

derivation of an analogous property of the AIC used to determine how well vector

autoregressions fit weakly stationary series. Using (2.11) and an argument in

Findley and Wei (2002), one can also obtain an asymptotic expression for the

MSPE of the least squares predictors in model (2.4) (or (2.5)) in terms of the

sample size, variance of the model error, and number of the estimated parameters.

When a deterministic trend (containing p variables with p ≥ 1) is taken into
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account, a natural generalization of (2.11) is

E

(
λ−qmin

(
n−1

n∑
t=1

ωtω
>
t

))
= O(1), (2.12)

where ωt = (x
(n)>

t ,Y >t )>, and x
(n)
t ∈ Rp, possibly depending on n, denotes the

normalized time trend variables satisfying

sup
1≤t≤n

‖x(n)
t ‖ < M1, (2.13)

for some positive constant M1. One would expect that (2.12) holds under the

additional assumption,

lim inf
n→∞

λmin

(
n−1

n∑
t=1

x
(n)
t x

(n)>

t

)
> 0, (2.14)

which is commonly made on the fixed-design matrix. The proof of (2.12), how-

ever, is far from trivial. The main reason is that the proof of (2.11) is built on

the property that for any a ∈ Rkm with ‖a‖ = 1, the conditional distribution of

(a>Yt)
2 given information up to time t − l is sufficiently smooth at the origin,

as long as l is sufficiently large. This property is ensured by (2.10), but is no

longer valid when Yt is replaced with ωt. With the appearance of x
(n)
t , it is easy

to find a unit vector a ∈ Rkm+p such that a>ωt = 0. In Lemma 2, we provide

a characterization of (2.14). This characterization is not only of independent

interest, but also inspires a proof strategy that bypasses the above difficulty. The

main result of this section is given in the following theorem.

Theorem 1. Assume (2.1), (2.2), (2.10), (2.13), (2.14), and

sup
−∞<t<∞

max
1≤i≤m

E|δt,i|2γ <∞, (2.15)

where γ > 1 and (δt,1, . . . , δt,m)> = δt. Then, for 0 < q < γ, (2.12) follows.

3. Applications

3.1. MSPE

In this section, we focus on the ARX model around a deterministic time

trend,

yt =

p∑
j=1

βjst,j +

k0∑
j=1

ajyt−j +

d∑
l=1

kl∑
j=1

θj(l)zt−j(l) + εt, (3.1)
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where p, d, and k0, . . . , kd are positive integers, βj , aj , and θj(l) are unknown

coefficients, with aj satisfying (2.6), zt−1(l) = (zt−1(l), . . . , zt−kl(l))
>, 1 ≤ l ≤ d,

are exogenous variables admitting the MA(∞) representations described in (2.7),

st = (st,1, . . . , st,p)
> are deterministic variables, and δt = (εt, εt(1), . . . , εt(d))>

are as defined in Example 2. Let Pt = (s>t ,y
>
t−1, z

>
t−1(1), . . . ,z>t−1(d))>, where

yt = (yt, . . . , yt−k0+1)>. Having observed y1, . . . , yn and P1, . . . ,Pn+1, we are

interested in predicting yn+1 using the least squares predictor,

ŷn+1 = P>n+1

(
n∑
t=1

PtP
>
t

)−1 n∑
t=1

Ptyt, (3.2)

provided the inverse of
∑n

t=1PtP
>
t exists.

To analyze the MSPE, E(yn+1 − ŷn+1)2, of ŷn+1, we impose the following

conditions on the deterministic terms st: there exists a p× p matrix D such that

for any t,

st−1 = Dst, (3.3)

and

Ip −
k0∑
j=1

ajD
j is invertible. (3.4)

By (3.3) and (3.4), it can be shown that

yt = β∗
>
st + vt, (3.5)

where vt is defined in (2.8), and β∗
>

= β>(Ip −
∑k0

j=1 ajD
j)−1, with β = (β1,

. . . , βp)
>. Many commonly used deterministic trends fulfill (3.3) and (3.4). For

example, in the case of the polynomial trend

st = (1, t, . . . , tp−1)>, p ≥ 1, (3.6)

we have D = (Dij)1≤i,j≤p, where Dij = 0 if 1 ≤ i < j ≤ p, and Ci−1
i−j (−1)i−j if

1 ≤ j ≤ i ≤ p, where Ci−1
i−j = (i − 1)!/[(i − j)!(j − 1)!]. Because Dj , for j ≥ 1,

are lower triangular matrices with diagonal entries 1, (3.4) holds when (2.6) is

assumed. For the periodic trend

st = (1, sin ν1t, cos ν1t . . . , sin νht, cos νht)
>, (3.7)

where h ≥ 1 and 0 < ν1 < · · · < νh < π, we have D = Diag(1,ν1, . . . ,νh), where
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νj =

(
cos νj − sin νj
sin νj cos νj

)
.

In addition, (3.4) follows from (2.6). By (3.3) and (3.5), the trend in yt−1 can be

removed using a linear transformation of Pt,

yt−1 −Gst = vt−1 = (vt−1, . . . , vt−k0)
>, (3.8)

where G> = (D>β∗ · · ·Dk>0 β∗). Suppose there exists a p× p nonrandom matrix

Qn, such that (2.13) and (2.14) hold, with x
(n)
t = Qnst. Then, this assumption

and (3.8) together suggest a linear transformation, Fn, of Pt that depends on G

and Qn and satisfies

FnPt = (x
(n)>

t ,v>t−1, z
>
t−1(1), . . . ,z>t−1(d))>,

in which each component has the same order of magnitude, and the deterministic

and random components are completely separated. Define G
(n)
t = FnPt and

R̂n = n−1
∑n

t=1G
(n)
t G

(n)>

t . Because (v>t−1, z
>
t−1(1), . . . ,z>t−1(d))> is a subvector

of Yt−1 defined in (2.9), it follows from Theorem 1 that for 0 < q < γ,

E
(
λ−qmin(R̂n)

)
= O(1), (3.9)

provided (2.10) holds with m = d+ 1 and

sup
−∞<t<∞

E|εt|2γ + sup
−∞<t<∞

max
1≤l≤d

E|εt(l)|2γ <∞, (3.10)

for some γ > 1. Equation (3.9) plays an indispensable role in dealing with

E(yn+1 − ŷn+1)2 because it is not possible to rigorously analyze

n(E(yn+1 − ŷn+1)2 − σ11) = E

(
G

(n)>

n+1 R̂
−1
n n−1/2

n∑
t=1

G
(n)
t εt

)2

, (3.11)

without recourse to the moment bounds associated with R̂−1
n or λ−1

min(R̂n). Recall

σ11 = E(ε2
t ) defined after (2.7). The main result of this study is stated in the

next theorem.

Theorem 2. Assume (3.1), (3.3), (3.4), (2.10), with m = d+1, and (3.10), with

γ > 4. Furthermore assume there exists a p×p nonrandom matrix Qn, such that

(2.13) and (2.14) hold, with x
(n)
t = Qnst. Then,
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n
[
E(yn+1 − ŷn+1)2− σ11

]
+o(1)=x

(n)>

n+1

(
n−1

n∑
t=1

x
(n)
t x

(n)>

t

)−1

x
(n)
n+1σ11+σ11

d∑
j=0

kj .

(3.12)

Ignoring the o(1) term, the centered MSPE, E(yn+1 − ŷn+1)2 − σ11, multi-

plied by the sample size, can be expressed as the sum of two terms. The second

term, accounting for the variation from estimating the ARX part of the model, is

linearly proportional to the number of estimated parameters. On the other hand,

the first term (from the error arising from estimating the deterministic trend) ex-

hibits asymptotic behavior that varies appreciably, depending on the time trend’s

feature. The following examples provide more illustrations of Theorem 2.

Example 3. Consider the polynomial trend (3.6). Set Qn = Diag(1, n−1, . . . ,

n−p+1). Then, n−1
∑n

t=1 x
(n)
t x

(n)>

t →Hp = (1/(i+j−1))1≤i,j≤p, the p-dimensional

Hilbert matrix, and x
(n)
n+1 → 1p, the p-dimensional vector of ones. Because H−1

p

exists (see Choi (1983)), Theorem 2 implies

lim
n→∞

n
[
E(yn+1 − ŷn+1)2 − σ11

]
= σ11

(
1>pH

−1
p 1p +

d∑
j=0

kj

)
. (3.13)

Example 4. For the periodic trend (3.7), set Qn = I2h+1. Then,

lim
n→∞

n−1
n∑
t=1

x
(n)
t x

(n)>

t = Diag

(
1,

1

2
, . . . ,

1

2

)
,

and x
(n)
n+1 = (1, sin ν1(n+1), cos ν1(n+1) . . . , sin νh(n+1), cos νh(n+1))>. There-

fore, x
(n)>

n+1 (n−1
∑n

t=1 x
(n)
t x

(n)>

t )−1x
(n)
n+1 → 2h+ 1, and hence by Theorem 2,

lim
n→∞

n
[
E(yn+1 − ŷn+1)2 − σ11

]
= σ11

(
2h+ 1 +

d∑
j=0

kj

)
. (3.14)

Example 4 reveals that the effect of the periodic trend aligns with that of the

ARX component. That is, it is linearly proportional to the number of parameters.

On the other hand, Example 3 shows that this is not the case for the polynomial

trend, because 1>pH
−1
p 1p/p is not a constant. We explore this issue further in the

next section. When d = 0 (no exogenous variables in the model), (3.13) was given

in Ing (2003) under the stringent condition that E|εt|q < ∞, for any q > 0. His

derivation depends on Lemma B.1, which claims that (3.9) holds for any q > 0,

provided the time trend satisfies (3.6). However, a rigorous proof of this result
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seems to be missing.

Before closing this section, note that we investigated the relevance of our

asymptotic results in finite samples using a limited simulation study, concentrat-

ing on several AR(2) models with polynomial or periodic trends. Our simulations

show that the empirical MSPEs, obtained based on 10,000 replications, are rel-

atively close to their limiting values, given on the right-hand sides of (3.13) and

(3.14), even for n = 100. Further details are available upon request.

3.2. Statistical predictions and Cauchy matrices

To better understand the effect of the polynomial time trend on the corre-

sponding MSPE, we calculate the value of 1>pH
−1
p 1p in (3.13). In fact, Hp is a

special case of the symmetric Cauchy matrix Cp = ((li + lj − 1)−1)1≤i,j≤p, where

l1 . . . lp are distinct real numbers, with li + lj 6= 1, for all 1 ≤ i, j ≤ p. In this

section, we assume min1≤i≤p li > 1/2 to ensure that Cp is positive definite; see

Fiedler (2010). Obviously, when li = i, for i = 1, . . . , p, Cp = Hp. By using

Lagrange’s interpolation formula, Schechter (1959) showed that

1>p C
−1
p 1p =

(
p∑
j=1

2lj

)
− p. (3.15)

Equation (3.15) leads immediately to

1>pH
−1
p 1p = p2, (3.16)

showing that estimating the polynomial trend yields a prediction error quadrat-

ically proportional to the number of parameters associated with the trend. This

is in contrast to the prediction error contributed by estimating the ARX part,

which is linearly proportional to the number of parameters. In view of the connec-

tion between 1>pH
−1
p 1p and the statistical prediction, it is intriguing to explore

whether there exists a statistical proof of (3.16), or even (3.15). In the rest of

this section, we show that the answer to this question is affirmative. Our proof

of (3.15) ((3.16)) relies on a novel link between the MSPE and the APE.

To begin with, let us focus on the following regression model:

yt =

p∑
j=1

βjt
lj−1 + εt, t = 1, . . . , n, (3.17)

where li > 1/2, for i = 1, . . . , p, and εt are independent standard normal random

variables. The least squares predictor, ŷn+1, of yn+1 is given by x>n+1β̂n, where
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β̂t =

(
t∑

j=1

xjx
>
j

)−1 t∑
j=1

xjyj ,

with xt = (tl1−1, . . . , tlp−1)>. Define Dn = Diag(nl1−1/2, . . . , nlp−1/2). Then, by

the positive definiteness of Cp, it can be shown that

lim
n→∞

n{E(yn+1 − ŷn+1)2 − 1} = lim
n→∞

n{E(yn+1 − ŷn+1 − εn+1)2}

= lim
n→∞

nx>n+1D
−1
n

(
D−1
n

n∑
t=1

xtx
>
t D
−1
n

)−1

D−1
n xn+1 = 1>p C

−1
p 1p,

(3.18)

which establishes a connection between the left-hand side of (3.15) and the

MSPE. The key idea is to further associate the MSPE in (3.18) with the APE,∑n
t=M+1(yt − ŷt − εt)2. More specifically, it follows from

x>n

(
n∑
t=1

xnx
>
n

)−1

xn → 0, lim inf
n→∞

λmin

(
D−1
n

n∑
t=1

xnx
>
nD
−1
n

)
> 0,

Theorem 3 of Wei (1987), and the positive definiteness of Cp that

lim
n→∞

∑n
t=M+1(yt − ŷt − εt)2

log det
∑n

t=1 xnx
>
n

= lim
n→∞

∑n
t=M+1(yt − ŷt − εt)2

[(
∑p

j=1 2lj)− p] log n
= 1 a.s., (3.19)

where M is the smallest integer t such that β̂t is uniquely defined. By Minkowski’s

inequality, it can be shown that {
∑n

t=M+1(yt − ŷt − εt)
2/ log n} is uniformly

integrable, which, together with (3.19), implies

lim
n→∞

1

log n

n∑
t=M+1

E(yt − ŷt − εt)2 =

(
p∑
j=1

2lj

)
− p. (3.20)

Denote E(yt − ŷt − εt)2 by νt. Then, (3.18) and (3.20) ensure

lim
n→∞

nνn = 1>p C
−1
p 1p and lim

n→∞

1

log n

n∑
t=M+1

νt =

(
p∑
j=1

2lj

)
− p, (3.21)

respectively. Moreover, it follows from the first identity of (3.21) that

1

log n

n∑
t=M+1

νt =
1

log n

{
n∑

t=M+1

t−1(tνt − 1>p C
−1
p 1p) + 1>p C

−1
p 1p

n∑
t=M+1

t−1

}
= 1>p C

−1
p 1p + o(1),
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which, together with the second identity of (3.21), yields (3.15).

4. Conclusion

In this paper, we provide a rigorous analysis of the MSPE of the least squares

predictor in ARX models with deterministic time trends satisfying some general

conditions. Owing to the difficulty in proving moment bounds for λ−qmin(R̂n), q ≥
1, the asymptotic expression, (3.12), has not been reported elsewhere, to the

best of our knowledge. In the polynomial time trend, (3.12) inspires an intrigu-

ing proof of the formula for 1>p C
−1
p 1p from a prediction perspective. However,

there are still several issues that require further investigation. For example, both

the polynomial and the periodic time trends, (3.6) and (3.7), respectively, are

precluded by (3.4) if 1 − a1z − · · · − ak0zk0 has roots on the unit circle. This

leads to the question of how to modify (3.13) and (3.14) in the presence of unit

roots. The techniques developed in Chan (1989) may help answer this question.

Furthermore, because the models imposed on the exogenous variables zt(l)s are

very general, the multistep prediction based on a finite number of lags of zt(l)

may suffer from model misspecification. Therefore, an extension of (3.12) to the

case of multistep prediction or model misspecification is another exciting topic

for future research.
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Appendix

A. Appendix

A.1. Proof of Theorem 1

To prove Theorem 1, we need some technical lemmas to characterize (2.14).

Lemma 1. Assume (2.13). Then, (2.14) holds if and only if there exists a subset,

Gn, of Xn = {1, . . . , n}, with lim infn→∞ ](Gn)/n > 0 and lim infn→∞mint∈Gn
‖x(n)

t ‖ > 0 such that

lim inf
n→∞

λmin

(
](Gn)−1

∑
t∈Gn

x
(n)
t x

(n)>

t

)
> 0. (A.1)
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Proof. The proof of the “ if ” part of Lemma 1 is easy and hence omitted. To

prove the “ only if ” part, we note that (2.14) yields that for all large n,

λmin

(
n−1

n∑
t=1

x
(n)
t x

(n)>

t

)
> s, (A.2)

where s is some positive constant, and hence

n−1
n∑
t=1

x2
t,1 > s, (A.3)

where xt,i denotes the ith component of x
(n)
t . Therefore, Gn := {t : 1 ≤ t ≤

n, ‖x(n)
t ‖2 > s/2} is non-empty for all large n. By (2.13) and (A.3), one has for

all large n, ns ≤
∑n

t=1 x
2
t,1 ≤ ](Gn)M2

1 + ns/2, yielding

](Gn) ≥ s n

2M2
1

. (A.4)

Now, the desired conclusion follows from (A.4), (A.2), and λmin( ](Gn)−1
∑

t∈Gn
x

(n)
t x

(n)>

t ) ≥ λmin(n−1
∑

t∈Gn x
(n)
t x

(n)>

t ) ≥ λmin(n−1
∑n

t=1 x
(n)
t x

(n)>

t ) − n−1∑n
t=1,t/∈Gn ‖x

(n)
t ‖2.

Lemma 2. Assume (2.13). Then, (2.14) holds if and only if there exist disjoint

subsets, D1, . . . Dqn, ofXn, where ](Di) = p, i = 1, . . . , qn, and lim infn→∞ qn/n >

0, such that

lim inf
n→∞

min
1≤i≤qn

λmin

(∑
t∈Di

x
(n)
t x

(n)>

t

)
> 0. (A.5)

Proof. The proof of the “ if ” part of Lemma 2 is easy and hence omitted. To

prove the “only if ” part, by Lemma 1 and (2.13), we can set ‖x(n)
t ‖ = 1 for all t.

We also assume without loss of generality that the s in (A.2) is less than 1. Define

D0(n) = ∅, and for i ≥ 1, let Di(n) be any p-element subset of Xn −
⋃i−1
l=0 Dl(n)

satisfying

λmin

( ∑
t∈Di(n)

x
(n)
t x

(n)>

t

)
>

sp

2ppp−1
, (A.6)

and Di(n) = ∅ if no such subset is found. Also define qn = 0 if D1(n) = ∅, and

max{i ≥ 1 : Di(n) 6= ∅} otherwise. For notational simplicity, in what follows we

suppress the dependence of x
(n)
t and Di(n) on n, and write xt and Di instead of

x
(n)
t and Di(n), respectively. Denote Xn−

⋃qn
l=0Dl by Zn = {s1, . . . , skn}, where
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kn = n− pqn. If kn < p, then

qn >
n

p
− 1. (A.7)

For kn ≥ p, choose distinct elements, c1, . . . , cp, in Zn sequentially as follows. Let

c1 be any element of Zn. For 2 ≤ j ≤ p, set cj = argmaxsi∈Zn ‖(Ip −Mj−1)xsi‖,
where Mj−1 is the orthogonal projection matrix onto C(xc1 , . . . ,xcj−1

), the col-

umn space of (xc1 , . . . ,xcj−1
). Note that this sequential procedure of choosing ci

is similar in spirit to the orthogonal greedy algorithm in Ing and Lai (2011). Let

M0 be the p× p matrix of zeros. Then,

‖(Ip −Mj−1)xcj‖ is non-increasing in j, (A.8)

and
p∏
j=1

‖(Ip −Mj−1)xcj‖2 ≤ λmin

(
p∑
j=1

xcjx
>
cj

)
λp−1

max

(
p∑
j=1

xcjx
>
cj

)

≤ λmin

(
p∑
j=1

xcjx
>
cj

)
pp−1 ≤

(
s

2

)p
,

(A.9)

where λmax(A) denotes the maximum eigenvalue of A and the last inequality is

ensured by

max
D⊂Zn,](D)=p

λmin

(∑
t∈D

xtx
>
t

)
≤ sp

2ppp−1
.

Equations (A.8) and (A.9) imply there exists 1 < j∗ ≤ p such that for all j∗ ≤
j ≤ p and all large n, ‖(Ip −Mj−1)xcj‖2 ≤ s/2, and hence for all 1 ≤ i ≤ kn and

all large n,

‖(Ip −Mj∗−1)xsi‖2 ≤
s

2
. (A.10)

Let v be any unit vector perpendicular to C(Mj∗−1). Then, (A.10) yields

v>

(
n−1

kn∑
i=1

xsix
>
si

)
v ≤ n−1

kn∑
i=1

[x>si(Ip −Mj∗−1)v]2 ≤ s

2
, (A.11)

and hence λmin(n−1
∑kn

i=1 xsix
>
si) ≤ s/2. This, together with (A.2) and

λmin

(
n−1

n∑
i=1

xix
>
i

)
= λmin

(
n−1

qn∑
i=0

∑
l∈Di

xlx
>
l + n−1

kn∑
j=1

xsjx
>
sj

)

≤ qnp

n
+ λmin

(
n−1

kn∑
j=1

xsjx
>
sj

)
,

(A.12)
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gives

qn ≥
sn

2p
, (A.13)

for all large n. Consequently, the desired conclusion follows from (A.7) and

(A.13).

With the help of Lemma 2, we are now in a position to prove Theorem 1.

Proof of Theorem 1. Consider

ω∗t =

(
Ip 0′

0 C−1
0

)(
x

(n)
t

Yt

)
≡

(
x

(n)
t

Y ∗t

)
,

where Y ∗t = εt,0 +
∑∞

j=1C
∗
j εt,j , C

∗
j = C0Cj , and the dependence of ω∗t on n is

suppressed in this proof. It follows from (2.2) that

∞∑
j=1

‖C∗j ‖2F <∞. (A.14)

In the rest of the proof, we shall show that

E

(
λ−qmin

(
n−1

n∑
t=1

ω∗tω
∗>
t

))
= O(1), (A.15)

which leads immediately to the desired result (2.12). By Lemma 2, one has for

all large n,

min
1≤i≤qn

λmin

(∑
t∈Di

x
(n)
t x

(n)>

t

)
> ρ1, (A.16)

where ρ1 is some positive constant, Dis are disjoint subsets of Xn with ](Di) = p,

for all 1 ≤ i ≤ qn, and qn satisfies lim infn→∞ qn/n > 0. Let di denote the largest

integer in Di and {d(i)} be the decreasing rearrangement of {di}. Set c1 = d(1)

and for i ≥ 2, define ci = max{d(l), 1 ≤ l ≤ qn : ci−1 − d(l) ≥ k}, and 0 if no

such d(l) exists. Let sn = max{i ≥ 1 : ci ≥ 1}. Then, it is easy to see that

lim infn→∞ sn/n > 0. Let D
′

i denote the set Dj , 1 ≤ j ≤ qn, containing ci, L be

an integer satisfying

L >
2 + (q−1 + γ∗

−1

)ι

α(q−1 − γ∗−1)
, (A.17)

and gn = bsn/Lc, where q < γ∗ < γ, ι = p + km, α is defined in (2.10),

and bac is the largest integer ≤ a. Then, by the convexity of x−q, x > 0, and
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lim infn→∞ gn/n > 0, we obtain for all large n,

the left-hand side of (A.15) ≤ E

(
λ−qmin

(
n−1

sn∑
i=1

∑
t∈D′i

Bt

))

≤ Cg−1
n

gn−1∑
j=0

E

(
λ−qmin

(
L∑
i=1

∑
t∈D′i+jL

Bt

))
,

(A.18)

where Bt = ω∗tω
∗>
t and C here and hereafter represents a generic positive con-

stant which is independent of n, but may vary from place to place. In view of

(A.18), (A.15) follows if we can show that for all large n,

E

(
λ−qmin

(
L∑
i=1

∑
t∈D′i+jL

Bt

))
≤ C, j = 0, . . . , gn − 1. (A.19)

In the following, we only prove (A.19) for the case of j = 0 because the proofs of

other cases can be obtained similarly.

Let k∗ = max{k∗1, k∗2}, where k∗1 and k∗2 are positive constants to be specified

later. Then, the left-hand sides of (A.19) (with j = 0) is bounded by

k∗ +

∫ ∞
k∗

P
(
G(µ)

⋂
V (µ)

)
dµ+

∫ ∞
k∗

P (V c(µ)) dµ

:= k∗ +

∫ ∞
k∗

I(µ)dµ+

∫ ∞
k∗

II(µ)dµ,

(A.20)

where

G(µ) =

 inf
‖ν‖=1
ν∈Rι

L∑
i=1

∑
t∈D′i

(ν ′ω∗t )
2 < µ−1/q

 ,

and

V (µ) =

{
max

t∈
⋃L
i=1D

′
i

‖ω∗t ‖2 ≤ sµ1/γ∗

}
,

in which s is small enough such that

2M1p
√
s+ ps ≤ ρ1

4
, (A.21)

where M1 is defined in (2.13). By (2.15), (A.14), and Lemma 2 of Wei (1987), it

can be shown that ∫ ∞
k∗

II(µ)dµ ≤ C
∫ ∞
k∗

µ−γ/γ
∗
dµ = O(1). (A.22)
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To deal with the first integration in (A.20), note that

G(µ)
⋂
V (µ) ⊂

L⋂
i=1

|

 inf
‖ν‖=1
ν∈Rι

∑
t∈D′i

(ν ′ω∗t )
2 < µ−1/q,

∑
t∈D′i

‖ω∗t ‖2 ≤ psµ1/γ∗

⋂V (µ)

:= Q(µ)
⋂
V (µ).

By an argument similar to that used on page 137 of Ing and Wei (2003), it can be

shown that there exist a positive integer m∗ ≤ C1µ
ι(q−1+γ∗

−1
)/2 and unit vectors,

l1, . . . , l
∗
m, in Rι such that

Q(µ) ⊂
m∗⋃
j=1

{
‖lj‖∑

t∈D′
i
Bt ≤ (2

√
psι+ 1)µ−1/2q, i = 1, . . . , L

}
:=

m∗⋃
j=1

Πj,L(µ),

where C1 is some positive constant independent of n and µ and ‖x‖2A = x>Ax

for non-negative definite matrix A. Since |l>j ω∗ci | ≤ ‖lj‖
∑
t∈D′

i
Bt ,

I(µ) ≤
m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

P
(
|l>j ω∗ci | ≤ (2

√
psι+ 1)µ−1/2q, i = 1, . . . , L

)

+

m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

P (V (µ),Πj,L(µ))

:=

m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

IIIj(µ) +

m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

IVj(µ),

(A.23)

where lj,2 is the vector consisting of lj ’s last km elements. Denote lj,2 by

(l>j,2(1), . . . , l>j,2(k))>, where each of lj,2(i) is m-dimensional. Then, for ‖lj,2‖ ≥
µ−1/(2γ∗) and µ ≥ k∗1 = {2

√
k(2
√
psι+ 1)/δ}2/(q−1−γ∗−1

), it holds that

IIIj(µ) = E

{
L∏
i=2

I{|l>j ω∗ci |≤(2
√
psι+1)µ−1/2q}P (A1(µ)| δc1−j , j ≥ k)

}

≤M{2
√
k(2
√
psι+ 1)µ−(q−1−γ∗−1

)/2}αE

(
L∏
i=2

I{|l>j ω∗ci |≤(2
√
psι+1)µ−1/2q}

)

where A1(µ) = {−(2
√
psι + 1)µ−1/2q − r∗1 ≤

∑k
h=1 l

>
j,2(h)δc1+1−h ≤ (2

√
psι +

1)µ−1/2q−r∗1}, with r∗1 = l>j,1x
(n)
c1 + l>j,2

∑∞
j=1C

∗
j εc1,j and (l>j,1, l

>
j,2)> = lj , and the
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first inequality follows from ‖lj,2(h)‖ ≥ k−1/2µ−1/(2γ∗) for some 1 ≤ h ≤ k, (2.10),

and the independence among {δt}. Repeat the same argument L− 1 times, one

gets,

IIIj(µ) ≤ML{2
√
k(2
√
psι+ 1)}vLµ−(q−1−γ∗−1

)αL/2,

provided ‖lj,2‖ ≥ µ−1/(2γ∗) and µ ≥ k∗1. As a result, by (A.17),∫ ∞
k∗

m∗∑
j=1

‖lj,2‖≥µ−1/(2γ∗)

IIIj(µ)dµ ≤ C
∫ ∞
k∗

µ−[(q−1−γ∗−1
)αL/2−ι(q−1+γ∗

−1
)/2] = O(1).

(A.24)

For ‖lj,2‖ < µ−1/(2γ∗) and µ ≥ k∗2 = max{2γ∗ , {5(2
√
psι + 1)2/ρ1}q}, (A.16)

and (A.21) ensure that on the set V (µ),

min
1≤i≤L

‖lj‖∑
t∈D′

i
Bt ≥

(
min

1≤i≤L
‖lj,1‖2∑

t∈D′
i
x

(n)
t x

(n)>
t

− 2M1p
√
s− ps

)1/2

≥
(
ρ1

2
− 2M1p

√
s− ps

)1/2

≥
(
ρ1

4

)1/2

>

(
ρ1

5

)1/2

≥ (2
√
psι+ 1)µ−1/2q,

for all large n. Hence, for all large n,∫ ∞
k∗

m∗∑
j=1

‖lj,2‖<µ−1/(2γ∗)

IVj(µ)dµ = 0.
(A.25)

Consequently, (A.19) (with j = 0) follows from (A.20), (A.22), (A.23), (A.24),

and (A.25). Thus, the proof is complete.

A.2. Proof of Theorem 2

Proof of Theorem 2. We can assume without loss of generality that R̂−1
n exists

because (3.9) implies P (R̂−1
n exists) = 1 for all large n. Denote (v>t (k0), z>t (k1),

. . . , z>t (kd))
> by Qt = (Qt(1), . . . , Qt(

∑d
l=0 kl))

> and E(QtQ
>
t ) by F = (Fi,j

)1≤i,j≤
∑d
l=0 kl

. Then, it follows from (2.6), (2.7), and the first moment bound

theorem of Findley and Wei (1993) that for any 1 ≤ i, j ≤
∑d

l=0 kl,

E

(
n−1

n∑
t=1

Qt(i)Qt(j)− Fi,j

)2

≤ C

√∑n−1
l=0 γ

2
l (i)

n

√∑n−1
l=0 γ

2
l (j)

n
= o(1), (A.26)
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where γl(i) is the autocovariance function of {Qt(i)} at lag l. In addition, it is

easy to see that for any 1 ≤ i ≤
∑d

l=0 kl,

E

∥∥∥∥n−1
n∑
t=1

x
(n)
t Qt−1(i)

∥∥∥∥2

→ 0,

which, together with (A.26), yields

R̂n −

(
n−1

∑n−1
t=1 x

(n)
t x

(n)>

t 0p×
∑d
l=0 kl

0(
∑d
l=0 kl)×p F

)
= op(1). (A.27)

In view of (A.27), the desired conclusion follows if

Tn :=

(
G

(n)>

n+1 R̂
−1
n n−1/2

n∑
t=1

G
(n)
t εt

)2

is uniformly integrable , (A.28)

and

E

x(n)>

t

(
n−1

n−1∑
t=1

x
(n)
t x

(n)>

t

)−1

n−1/2
n∑
t=1

x
(n)
t εt +Q>nF

−1n−1/2
n∑
t=1

Qt−1εt

2

= x
(n)>

n+1

(
n−1

n∑
t=1

x
(n)
t x

(n)>

t

)−1

x
(n)
n+1σ11 + σ11

d∑
j=0

kj + o(1).

(A.29)

Since γ > 4, there exists θ > 0 small enough such that 4 < 2γ(1 + θ)/(γ −
2(1 + θ)) < γ. Let 2γ(1 + θ)/(γ − 2(1 + θ)) ≤ q∗ < γ. Then, by Theorem 1 and

(3.10),

E{λ−q
∗

min(R̂n)} = O(1). (A.30)

By (A.30), Lemma 2 of Wei (1987), 4q∗(1 + θ)/(q∗− 2(1 + θ)) ≤ 2γ, and Hölder’s

inequality,

E(T 1+θ
n ) ≤

(
E‖G(n)

n+1‖
4q∗(1+θ)/(q∗−2(1+θ))

)(q∗−2(1+θ))/2q∗

(
E‖n−1/2

n∑
t=1

G
(n)
t εt‖4q

∗(1+θ)/(q∗−2(1+θ))

)(q∗−2(1+θ))/2q∗

×
(
Eλ−q

∗

min(R̂n)
)2(1+θ)/q∗

= O(1),

leading to (A.28).
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To prove (A.29), define Q̃n = E(Qn|Fn−gn), where gn →∞, gn = o(n), and

Ft is the σ-field generated by (δt, δt−1, . . .). Then,

E

(
Q>nF

−1n−1/2
n∑
t=1

Qt−1εt

)2

= E

(
Q∗

>

n F
−1n−1/2

n−gn∑
t=1

Qt−1εt

)2

+ E

Q̃>nF−1n−1/2
n∑

t=n−gn+1

Qt−1εt

2

+ E

Q∗>n F−1n−1/2
n∑

t=n−gn+1

Qt−1εt

2

+ E

(
Q̃>nF

−1n−1/2
n−gn∑
t=1

Qt−1εt

)2

:= (I) + (II) + (III) + (IV),

(A.31)

where Q∗n = Qn − Q̃n. By Lemma 2 of Wei (1987) and the Cauchy-Schwarz

inequality,

(II) + (III) + (IV) = o(1). (A.32)

Straightforward calculations give

lim
n→∞

(I) = σ11

d∑
j=0

kj , (A.33)

and

E

x(n)>

t

(
n−1

n−1∑
t=1

x
(n)
t x

(n)>

t

)−1

n−1/2
n∑
t=1

x
(n)
t εt

2

= x
(n)>

n+1

(
n−1

n∑
t=1

x
(n)
t x

(n)>

t

)−1

x
(n)
n+1σ11 (A.34)

An argument similar to that used to prove (A.32) yields

E

n−1

{
x

(n)>

t

(
n−1

n−1∑
t=1

x
(n)
t x

(n)>

t

)−1 n∑
t=1

x
(n)
t εt

}(
Q>nF

−1
n∑
t=1

Qt−1εt

) = o(1).

(A.35)

Consequently, (A.29) follows from (A.31)–(A.35). Thus the proof is complete.
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