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This supplement contains the proofs of Propositions 1 and 2 and Theorems 1 and 2.

S1 Proof of Proposition 1

For part 1, note that E(e) = 0 because E(x) = 0 and € = x — Pgx.
All we need to show is that the LCM condition holds if and only if E(e |
B™x) = 0. For the “only if” part, suppose the LCM condition holds.
The LCM condition guarantees that E(x | B*x) = Pgx. Also note that
E(Pgx | B"'x) = Ppx because Pgx is a function of B*x. Thus E(e |
B™x) = E(x | B"x) —Pgx = 0. For the “if” part, suppose F(e | B"x) = 0.
Then 0 = E{(x — Ppx) | B'x} = F(x | B'x) — Pgx. It follows that
E(x | B"x) = Pgx, which is a linear function of B"x.

From the definition of { = {€", (e ® €)"}" and the result of part 1, the
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statement in part 2 is equivalent to the following: under the LCM condition,
the CCV condition holds if and only if E(e ® e | B'x) = E(e ® €). By the
property of the kronecker product, F(e @ e | B'x) = F(e ® ) is equivalent
to E(ee” | B'x) = FE(ee"). It remains to show that under the LCM
condition, the CCV condition holds if and only if F(ee™ | B'x) = E(ee™).

For the “only if” part, suppose var(x | B™x) is constant. Then
var(x | B'x) = FE{var(x | B"x)} = var(x) — var{ F(x | B"x)}
= I,—-Pp=Qs. (S1.1)
Here the first equality is true because var(x | B"x) is constant. The second
equality follows from the EV-VE formula. The third equality is true because
var(x) = I, var{E(x | B"x)} = var(Pgpx), and Pp is idempotent. The
last equality is from the definition of Qg. Under the LCM condition, we

have e = x—Ppx = x— E(x | B"x). The definition of conditional variance

leads to
E(ee™ | B'x) = E[{x— E(x|B"x)}{x— E(x|B"x)}" | B"'X]
= var(x | B'x). (51.2)

On the other hand, note that e = x—Ppx = (I, — Pp)x = Qpx. It follows

that

E<€€T) = ngar(x)QB = QBQB = QB- (813)
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(S1.1)), (S1.2)), and (S1.3)) together imply that E(ee™ | B™x) = E(ee™). For

the “if” part, suppose E(ee™ | B'x) = E(ee"). Under the LCM condition,

both (S1.2) and (S1.3) are true. Together they imply var(x | B'x) = Qg

is a constant matrix. [l

S2 Proof of Proposition 2

The proof is similar to Theorem 1 of [Shao and Zhang (2014)), and is thus

omitted. O

S3 Proof of Theorem 1

For part 1, define §,,(s) =n~"' X7 €; exp(is’B™x;) and ¢, (s) = n'/2¢, (s).
From the proof of Theorem 4 in |Shao and Zhang| (2014)), we have ni,, =
|, (s)||2. It remains to show that ||, (s)[|2 % [¢(s)|? as n — oco. First

we have
exp(isTﬁij) = cos(sTﬁij) + isin(sTﬁij). (S3.4)

Let 6, = ST]/_)\)TXJ-, 0, = s"B"x;, and 03 = s"(B — B)"x;. Because B-B-=

Op(n~1?), we have 65 = O,(n~/?). Note that cos = Y>> {j(24)!} 6%
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and sin@ = 37 {j(2j + 1)1} 710" for any 6 € R. Tt follows that
cosfs = 1+ 0,(n""?) and sinfs = 05 + 0,(n"1/?). (S3.5)

Note that 6, = 6, + 05. By the angle sum identities, we have cosf; =
cos 65 cos O3 — sin Ay sin A3 and sin f; = sin 0y cos 03 + cos O sin 3. Together
with and , we obtain
exp(if;) = cosBy — Ossinfy + i(sin Oy + O3 cos by) + 0, (n~1/?)
= exp(ify) + O3(—sin by + i cosby) + o,(n"?).

Plug in 6, = STEij, 0 = s"B"x;, 05 = ST(]§ — B)"x;, and we get
exp(isTﬁij) = exp(is"B"x;) + {icos(s"B"x;) —sin(s"B"x;) }
s"(B — B)™x; + o,(n"'/?),

where the second term above is of order O,(n~'/2). On the other hand,
¢ = (I, —Pg)x; = (I, = Pe)x; + (P — Pg)x; = ¢; + (PB — Pg)x;,
where (Pg —Pg)x; = O,(n"1/?). Together with the definition of ¢, (s), we
have
¢,(s) = n /2 zn:Ej exp(isTﬁij)
= ¢g><s§:+1 () + () + 0,(1), (83.6)
where ¢)(s) = n 1237, & exp(is™Bx;), ¢\ (s) = n/*(Pe—Pg) 3]

n j=1

x; exp(is*B"x;), and ¢\¥(s) = n~'/2 > i1 €j{icos(s"B™x;) —sin(s"B"x;)}
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sT(]§ —B)"x;. Because Pz —Pp =n"" > i1 ba(x4,Y5) + 0,(n7172), ¢\¥(s)

becomes

¢ (s) =n"PE {xexp(is"B"x)} > £o(x;,Y;) + 0,(1). (S3.7)

=1

Because B — B = nt 527 £1(x;,Y;) + 0,(nY2), ¢ (s) becomes
¢ (s) = n Y2 E[eficos(s"B™x) — sin(s"B"x {Zfl x;, Y] }
+ o,(1). (S3.8)

Recall that g(s) = E{xexp(is"B"x)} and h(s) = Ele{icos(s"B"x) —
sin(s™B™x) }x"]. (53.6), (S3.7), and (S3.8) together lead to

=12 Zeg x;,Y;,8) + 0,(1), (S3.9)
where £5(x;,Y;,s) = €; exp(is"B"x;) —€(x;, Y;)g(s) +h(s)€:(x;,Y;)s. Un-
der Hy, we have E(e | B'x) = 0. Thus E{eexp(is"B"x)} = E{E(e |
B™x)exp(is™B™x)} = 0. Also F{£;(x,Y)} =0 for k = 1,2. Take expecta-

tion on both sides of (S3.9)),

E{¢,(s)} =0 as n — oo. (S3.10)

For cov¢"(s,s0) = cov {(ﬁn(s),m}, COV¢n(S’SO) =k {¢n(s)¢n(SO)T}

as n — 00. Because (x;,Y;)1L(x, Y)) for j # k and E{€3(x,Y,s)} =0,

{2223 Xj, £3 Xk,yk,So } = {Zﬁg XJ, £3 X],Y',So)} .

=1 k=1
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Thus as n — oo, we have

cov¢n(s,so) = n1E{Zﬁg(xj,lfj,s)ﬁg(xj,}/},so)}
j=1

- E {eg(x, Y, s)m} (93.11)

Note that exp(isfB™x) = exp(—is{B"x), g(so) = g(—so), and h(sy) =
h(—sg). We have £3(x,Y,sq) = eexp(—isiB™x) — £a(x,Y)g(—so) + h(—sp)
£1(x,Y)sq. Plug them into (S3.11)), together with the definition of cov g, (s, s0),

we have

cov g (s,80) = cov¢(s, Sp) as n — 00. (S3.12)

From ([S3.10)) and (S3.12)), we know the two complex-valued Gaussian pro-

cesses @,,(s) and ¢(s) have the same mean function and the same covariance
function as n — co. From the proof of Theorem 5 and Corollary 2 in|Széekely
et al. (2007), we know ¢, (s)|> % [¢(s)|? as n goes to infinity.

Now we turn to part 2. First note that &, 2 m(e | B™x) as n goes
to infinity. Under H; : E(e | B*x) # E(g) almost surely, m(e | B*x) > 0

according to Proposition 1. Thus n@, - co under Hj. O
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S4 Proof of Theorem 2

From Theorem 1, we have ni, - |p(s)|2. Recall that B® is an estimator
of B based on {(Xg-t),Yj) :j=1,...,n}. Let ¢Y(s) = n'/2¢W(s), where
e0(s) = n ' X, & exp is"(BO)x ). Then nl! = [}¢{(s)?. Fol-
lowing the proof of Theorem 1, where B and B are replaced by B and B®
respectively, we have | (s)|? KN |¢*(s)|? as long as E(x* | EA}TX*) = 0.
If we have the additional condition that COV¢*(S,SQ) = COV¢(S,SO), then
|¢*(s)|? = | p(s)|? and we get the desired result. It remains to show that
(i) E(x* | B"x*) = 0 as n — oo, and (ii) COV g4 (s,80) = cov¢(s,so).

Because x* = Pgx + W*Qgx, we have EF(x*) = 0 = E(x). Note that
x*(x*)" = Pgxx"Pg + (W*)?Qaxx"Qg + W*Pzxx"Qg + W*Qpxx"Pg.
Because var(x) = I,, QgPg = 0, E{(W*)?} = 1 and W* 1 x, we have
var(x*) = E{x*(x*)"} = Pg + Qg = I, = var(x). Thus (ii) is true from
condition (C3).

Define ¢(B) = E(Qge* | Ppx*) and @D(EA}) = BE(Qge* | Pgx*), where
B can be any consistent estimator of B. We thus have ¢(B) — ¢(B) =
V/'(k)(B — B) where & is between B and B. According to condition (C4),
(k) is bounded and for any C' > 0 we have Pr(|B—B|max < Cn=/2) — 1,

where | A |max = max{| a;; |} for any matrix A. Besides, we write E(Qge” |
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Pgx*)

= E(Qge" | Px*, |B — Bluax < Cn V2)Pr(|B — Blpmax < Cn~1/?)

+ B(Qge” | Pgx",|B — Blmax > Cn ?)Pr(|B — Blpax > Cn~?),
together with the fact that

Sup E(Qﬁﬁ'* | PEX*> — E(QBE* | PBX*) N 07
||]§—B||max§Cn—1/2

and

Pr(|B = Blmax > Cn~ /%) = 0,

thus we have F(Qpe” | Ppx’, |B — Blua < Cn/%) — 0 and Pr(|B —
Blmax > Cn~Y/2) — 0. Combing the above results, we have E(Qge* |

Pgx*) — 0 and (i) is true. This completes the proof of Theorem 2. O
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