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Abstract: Sufficient dimension-reduction (SDR) methods characterize the relation-

ship between a response Y and the covariates x using a few linear combinations of

the covariates. Extensive SDR techniques have been developed, among which, the

inverse regression-based methods are perhaps the most appealing in practice, be-

cause they do not involve multi-dimensional smoothing and are easy to implement.

However, these methods require two distributional assumptions on the covariates.

In particular, the first-order methods, such as the sliced inverse regression, require

the linear conditional mean (LCM) assumption, while the second-order methods,

such as the sliced average variance estimation, also require the constant conditional

variance (CCV) assumption. We check the validity of the LCM and CCV conditions

using mean independence tests, which are facilitated by the martingale difference

divergence. We propose a consistent bootstrap procedure to decide the critical val-

ues of the test. Monte Carlo simulations and an application to a horse mussels data

set demonstrate the finite-sample performance of the proposed method.

Key words and phrases: Constant variance, dimension reduction, inverse regression,

linear mean, mean independence.

1. Introduction

Sufficient dimension reduction (SDR) (Li (1991); Cook (1998)) has received

considerable attention in the past two decades. As a useful tool to reduce dimen-

sionality, SDR can be combined with many other multivariate analysis methods

to build regression models. SDR methods have also been widely used for ex-

ploratory data analysis and data visualization. Let Y be the response variable,

and let x be the p-dimensional predictor. When the goal is an inference about

the conditional distribution of Y given x, SDR aims to find β ∈ Rp×d with d < p,

such that

Y⊥⊥x | βTx, (1.1)
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where “⊥⊥” means statistical independence. Under (1.1), the conditional distri-

bution of Y given x is the same as that of Y given βTx. The column space of β is

referred to as the dimension reduction space. If the intersection of all dimension

reduction spaces exists and satisfies (1.1), this minimum subspace of Rp is called

the central space (Cook (1998); Chiaromonte and Cook (2002)). When the goal

is an inference about the conditional mean E(Y | x), SDR considers

Y⊥⊥E(Y | x) | αTx. (1.2)

The column space of α is referred to as the mean dimension reduction space. The

smallest mean dimension reduction space that satisfies (1.2) is called the central

mean space (Cook and Li (2002)).

Many inverse regression-based methods exist in the literature to estimate

the central space and the central mean space. Estimators of the central space in-

clude, among others, the sliced inverse regression (SIR) (Li (1991)), sliced average

variance estimation (SAVE) (Cook and Weisberg (1991)), directional regression

(Li and Wang (2007)), and cumulative slicing estimation (Zhu, Zhu and Feng

(2010)). The ordinary least squares (OLS), principal Hessian directions (PHD)

(Li (1992)), and contour regression (Li, Zha and Chiaromonte (2005)) methods

are perhaps the most popular for estimating the central mean space. The afore-

mentioned methods fall into two categories. In the first category, the SIR and

OLS involve linear functions of x, such as E(xY ) and E(x | Y ), and are called

first-order methods. In the second category, the SAVE, PHD, directional, and

contour regression methods involve quadratic functions of x, such as E(Y xxT)

and E(xxT|Y ), and are called second-order methods. Unlike other nonparametric

and semiparametric methods, the inverse regression-based SDR methods do not

involve multi-dimensional smoothing, regardless of p. This feature, together with

the fact that they are easy to implement, makes these methods very appealing in

practice.

Two assumptions about the distribution of x are required for the inverse

regression-based SDR methods to properly recover the central space or the central

mean space. To ease subsequent presentation, we use B ∈ Rp×d to denote the

basis of the central space or that of the central mean space. The first-order

methods require that

E(x | BTx) is a linear function of BTx, (1.3)

which is referred to as the linear conditional mean (LCM) condition. In addition



TESTING THE LINEAR CONDITIONAL MEAN 2181

to the LCM, the second-order methods require that

var(x | BTx) is a constant matrix, (1.4)

which is known as the constant conditional variance (CCV) condition. When

(1.3) holds for all possible B ∈ Rp×d, x must have an elliptically contoured

distribution. When both (1.3) and (1.4) hold for all possible B ∈ Rp×d, x has to

be multivariate normal.

The LCM and CCV conditions have motivated many important develop-

ments in the SDR literature. To achieve these conditions, Cook and Nachtsheim

(1994) proposed elliptically contoured reweighting, and Cook (1998) suggested

marginal predictor transformations. To relax these conditions, Xia et al. (2002)

proposed a minimum average variance estimation based on semiparametric mod-

els, Fukumizu, Bach and Jordan (2009) developed a contrast function by using

operators on reproducing kernel Hilbert spaces to estimate the subspaces, and Li

and Dong (2009) and Dong and Li (2010) introduced the concept of a central so-

lution space and modeled E(x | BTx) parametrically. More recently, Ma and Zhu

(2012) proposed a semiparametric approach where E(x | BTx) and var(x | BTx)

are estimated using nonparametric smoothing. These methods avoid the common

assumptions of a linear mean and a constant variance on the covariates, but are

computationally expensive compared with the classical SIR and SAVE.

We provide a novel treatment of the LCM and CCV conditions. Based on a

root-n-consistent estimator of B, we formally test the validity of the LCM and

CCV conditions using hypothesis testing. It turns out that (1.3) and (1.4) are

equivalent to statements about mean independence. Thus, testing the validity of

the two conditions becomes equivalent to testing for mean independence. There is

an extensive body of literature on consistently testing the correct specification of a

particular regression model, which involves testing for mean independence. Most

of these approaches can be divided into two classes: local smoothing approaches

(Zheng (1996); Li (1999); Koul and Ni (2004); Guo, Wang and Zhu (2016)), and

global smoothing approaches (Stute (1997); Li, Hsiao and Zinn (2003); Escan-

ciano (2006)). The local approach requires nonparametric smoothing and, thus,

its finite-sample performance depends heavily on the choice of the bandwidth. In

general, the global approach turns the mean independence into an infinite number

of unconditional constraints.

To formally measure the departure of the mean independence between two

random variables U and V , Shao and Zhang (2014) extended the distance cor-

relation proposed by Székely, Rizzo and Bakirov (2007) and Székely and Rizzo
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(2009), introducing a novel metric called the martingale difference divergence

(MDD). They found that the MDD of V given U is always nonnegative, and is

equal to zero if and only if the conditional mean of V given U is independent of

U . We observe that testing the LCM and CCV conditions is equivalent to testing

for mean independence. Therefore, our test procedure is facilitated by the MDD

originally proposed in Shao and Zhang (2014).

The rest of this paper is organized as follows. In Section 2, we explain the

rationale of our test for the LCM and CCV conditions. Then, we investigate

the sample-level properties of our proposal in Section 3. An extension to the

high-dimensional case is discussed in Section 4. Numerical studies are conducted

in Section 5 with Monte Carlo simulations and an application to a horse mussels

data set. All technical proofs are collected in the online Supplementary Material.

2. The Principle of Testing LCM and CCV

To simplify the discussion in this section, without loss of generality, we as-

sume that E(x) = 0 and var(x) = Ip, where Ip is the identity matrix. This is

a valid assumption, owing to the invariance property (Cook (1998)) of the cen-

tral space and the central mean space. Let “⊗” be the Kronecker product, and

denote PB = B (BTB)−1BT as the projection matrix onto the column space of

B ∈ Rp×d. We have the following key observation.

Proposition 1. Suppose E(x) = 0 and var(x) = Ip. Then,

1. The LCM condition (1.3) holds if and only if E(ε | BTx) = E(ε) almost

surely, where ε
def
= x−PBx.

2. Suppose the LCM condition is true. Then, the CCV condition (1.4) holds if

and only if E(ε⊗ ε | BTx) = E(ε⊗ ε), almost surely.

3. The LCM condition (1.3) and the CCV condition (1.4) hold simultaneously

if and only if E(ζ | BTx) = E(ζ) almost surely, where ζ
def
= {εT, (ε⊗ ε)T}T.

Consider two random vectors u ∈ Rq and v ∈ Rt. Proposition 1 suggests that

the LCM and CCV conditions have the same form as E(v | u) = E(v), almost

surely. This motivates us to consider testing E(v | u) = E(v) almost surely, for

any u ∈ Rq and v ∈ Rt, which can then be used to facilitate the tests for the

LCM and CCV conditions.

Note that E(v | u) = E(v) means that the conditional mean of v given u

is independent of u. We refer to this property as the mean independence, which

measures the relationship between two random vectors v and u, and lies between
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independence and uncorrelatedness. Specifically, v⊥⊥u implies E(v | u) = E(v),

almost surely, which implies cov(v,u) = 0. Therefore, to measure the mean

independence, we can use the MDD (Shao and Zhang (2014)). Although Shao

and Zhang (2014) only consider the case of a scalar response v ∈ R, the definition

of the MDD can be generalized to the case with a vector response v ∈ Rt.

Let |c|q
def
= (cTc)1/2 be the Euclidean norm of c ∈ Rq. For u ∈ Rq and v ∈ Rt,

denote (ṽ, ũ) as an independent copy of (v,u). From part (1) of Theorem 1 in

Shao and Zhang (2014), the square of the MDD is equivalent to m(v | u), which

is defined as

m(v | u)
def
= −E [{v − E(v)}T{ṽ − E(ṽ)}|u− ũ|q] . (2.1)

The next result is similar to Theorem 1 of Shao and Zhang (2014).

Proposition 2. If E(|u|2q + |v|2t ) <∞, then m(v | u) ≥ 0, and the equality holds

if and only if E(v | u) = E(v), almost surely.

Proposition 1 and Proposition 2 together provide the basic principle for test-

ing the LCM and CCV conditions in this study. For first-order methods such as

the OLS and SIR, only the LCM condition is required. Motivated by part 1 of

Proposition 1, we consider the following hypotheses:

H0 : E(ε | BTx) = E(ε) a.s. for some B ∈ Rp×d vs.

H1 : E(ε | BTx) 6= E(ε) a.s. for all B ∈ Rp×d. (2.2)

where “a.s.” means almost surely. The hypotheses in (2.2) test the mean inde-

pendence between ε and BTx, and are referred to as the LCM hypotheses. To

test the hypotheses in (2.2), Proposition 2 suggests that we consider the following

pivotal quantity:

m(ε | BTx)
def
= −E [{ε− E(ε)}T{ε̃− E(ε̃)}|BT(x− x̃)|d] , (2.3)

where x̃ is an independent copy of x, ε = x−PBx, and ε̃
def
= x̃−PBx̃.

For second-order methods, such as the SAVE, PHD, and directional regres-

sion, both conditions are required. Motivated by part 3 of Proposition 1, we

consider the following hypotheses:

H0 : E(ζ | BTx) = E(ζ) a.s. for some B ∈ Rp×d vs.

H1 : E(ζ | BTx) 6= E(ζ) a.s. for all B ∈ Rp×d. (2.4)

The hypotheses in (2.4) test the conditional mean independence between the re-
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sponse ζ and the predictor BTx, and are referred to here as the joint hypotheses.

To test the hypotheses in (2.4), Proposition 2 suggests that we consider

m(ζ | BTx)
def
= −E

[
{ζ − E(ζ)}T{ζ̃ − E(ζ̃)}|BT(x− x̃)|d

]
, (2.5)

where ζ̃
def
= {ε̃T, (ε̃⊗ ε̃)T}T is an independent copy of ζ = {εT, (ε⊗ ε)T}T.

3. The Sample-Level Properties

We focus on testing the LCM hypotheses in (2.2) in this section. The prop-

erties of the sample-level test for the joint hypotheses in (2.4) are similar, and are

thus omitted for ease of presentation. Let {(xj , Yj) : j = 1, . . . , n} be an indepen-

dent and identically distributed (i.i.d.) sample of (x, Y ). Our main idea is to test

(2.2) using the sample estimator of m(ε | BTx). Let B̂ be a sample estimator

of B that depends on xj and Yj , for j = 1, . . . , n. Let PB̂

def
= B̂

(
B̂TB̂

)−1
B̂T,

QB̂

def
= Ip −PB̂, ε̂j

def
= QB̂xj , and

ε
def
= n−1

n∑
j=1

ε̂j .

The sample estimator of m(ε | BTx) becomes

ω̂n
def
= −n−2

n∑
j=1

n∑
k=1

{
(ε̂j − ε)T(ε̂k − ε)|B̂T(xj − xk)|d

}
. (3.1)

We follow Ma and Zhu (2013) to ensure the identifiability of B. Specifically,

for an arbitrary basis matrix Bt ∈ Rp×d of the central (mean) space, we write

Bt
def
= (BT

u,B
T

l )T, where Bu is a d× d upper submatrix, Bl is a (p− d)× d lower

submatrix, and the subscript “t” stands for total. We assume, without loss of

generality, that Bu is invertible. If Bu is not invertible, we can always rotate the

order of x to ensure that it is invertible, because the rank of Bt is d. As long

as Bu is invertible, the column spaces of Bt and BtB
−1
u are identical. We define

B
def
= BtB

−1
u , where the upper d × d submatrix of B is an identity matrix. This

uniquely defines the true parameter. At the sample level, we apply a certain SDR

method to estimate B. The resultant estimate is denoted as B̂t, which is of the

form B̂t
def
= (B̂T

u, B̂
T

l )T, where B̂u is a d×d upper submatrix, and B̂l is a (p−d)×d
lower submatrix. We then define B̂

def
= B̂tB̂

−1
u as the sample estimator of B.

Some notation is needed before we state the main theorem. Let i = (−1)1/2

be the imaginary unit. Let cp
def
= π(1+p)/2/Γ{(1 + p)/2}, where Γ(·) is the gamma
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function. For a complex-valued function γ: Rq → Cp, we define its norm as

||γ(s)||2 def
=

∫
Rq

|γ(s)|2p(cq|s|1+q
q )−1ds, where |γ(s)|2p

def
=

p∑
j=1

νj(s)νj(s),

where νj(s) ∈ C is the jth element of γ(s) ∈ Cp, and νj(s) is the conjugate of

νj(s), for j = 1, . . . , p. Similar notation is introduced in Shao and Zhang (2014).

Let “
d→” stand for “convergence in distribution,” and let “

p→” stand for “converge

in probability.” The following technical condition about B̂ is needed for the main

result.

(C1). Suppose

B̂−B = n−1
n∑

j=1

`1(xj , Yj) + op(n
−1/2), and

PB̂ −PB = n−1
n∑

j=1

`2(xj , Yj) + op(n
−1/2).

Assume E{`k(x, Y )} = 0 and the elements of var{vec(`k(x, Y ))} are boun-

ded, for k = 1, 2, where vec(M) is the vector formed by concatenating the

columns of matrix M.

Theorem 1. Suppose E(x) = 0, var(x) = Ip, and condition (C1) holds. Let

φ : Rd → Cp be a complex-valued zero-mean Gaussian process with covariance

function

covφ(s, s0)
def
= E

[{
ε exp(isTBTx)− `2(x, Y )g(s) + h(s)`1(x, Y )s

}
{
ε exp(−isT

0B
Tx)− `2(x, Y )g(−s0)− h(−s0)`1(x, Y )s0

}
T
]
,
(3.2)

where g(s)
def
= E {x exp(isTBTx)} and h(s)

def
= E [ε{i cos(sTBTx)− sin(sTBTx)}xT].

1. Under H0 : E(ε | BTx) = E(ε) a.s., we have nω̂n
d→ ||φ(s)||2 as n goes to

infinity.

2. Under H1 : E(ε | BTx) 6= E(ε) a.s., we have nω̂n
p→∞ as n goes to infinity.

Theorem 1 is similar to Theorem 5 of Székely, Rizzo and Bakirov (2007)

and Theorem 4 of Shao and Zhang (2014). We reject H0 in (2.2) when ω̂n is

sufficiently large. The exact form of ||φ(s)||2 is very complicated and difficult to

use in practice. To approximate the asymptotic distribution of ω̂n, we propose

the following bootstrap procedure.
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S0. Based on an i.i.d. sample {(xj , Yj) : j = 1, . . . , n}, use a chosen SDR method

to estimate B ∈ Rp×d as B̂. Compute PB̂ = B̂
(
B̂TB̂

)−1
B̂T, QB̂ = Ip−PB̂,

and ε̂j = QB̂xj , for j = 1, . . . , n. Calculate the test statistic ω̂n in (3.1).

S1. In the (t)th iteration, let {W (t)
j : j = 1, . . . , n} be i.i.d. Bernoulli random

variables, such that Pr(W
(t)
j = 1) = Pr(W

(t)
j = −1) = 0.5. Set x

(t)
j

def
=

PB̂xj +W
(t)
j ε̂j , for j = 1, . . . , n.

S2. Based on {(x(t)
j , Yj) : j = 1, . . . , n}, use the same SDR method as in step S0

to estimate B. Denote the corresponding estimator as B̂(t).

S3. Compute PB̂(t)

def
= B̂(t)

{
(B̂(t))TB̂(t)

}−1
(B̂(t))T and ε̂

(t)
j

def
= x

(t)
j −PB̂(t)x

(t)
j , for

j = 1, . . . , n. Let

ε(t)
def
= n−1

n∑
j=1

ε̂
(t)
j ,

and calculate

ω̂(t)
n

def
= −n−2

n∑
j=1

n∑
k=1

{
(ε̂

(t)
j − ε

(t))T(ε̂
(t)
k − ε

(t)) | (B̂(t))T(x
(t)
j − x

(t)
k ) |d

}
.

S4. Repeat S1–S3 T times. Calculate the p-value, defined as

T−1
T∑
t=1

1(ω̂n < ω̂(t)
n ),

where 1(·) denotes the indicator function. For a given significance level α,

reject H0 : E(ε | BTx) = E(ε) if the p-value is less than α.

The validity of the bootstrap procedure is guaranteed by the next theorem.

Define x∗
def
= PB̂x+W ∗QB̂x, where W ∗ is a Bernoulli random variable, such that

Pr(W ∗ = 1) = Pr(W ∗ = −1) = 0.5. It follows that {(x(t)
j , Yj) : j = 1, . . . , n} is

an i.i.d. sample of (x∗, Y ). The following technical conditions are needed before

we state the main result.

(C2). Suppose

B̂(t) − B̂ = n−1
n∑

j=1

`1(x
(t)
j , Yj) + op(n

−1/2) and

PB̂(t) −PB̂ = n−1
n∑

j=1

`2(x
(t)
j , Yj) + op(n

−1/2).
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Assume E{`k(x∗, Y )} = 0 and the elements of var{vec(`k(x∗, Y ))} are

bounded, for k = 1, 2.

(C3). Let φ∗ : Rd → Cp be a complex-valued zero-mean Gaussian process with

covariance function

covφ∗(s, s0)

def
= E

[{
ε exp(isTBTx∗)− `2(x∗, Y )g∗(s) + h∗(s)`1(x

∗, Y )s
}

{
ε exp(−isT

0B
Tx∗)− `2(x∗, Y )g∗(−s0)− h∗(−s0)`1(x∗, Y )s0

}
T
]
,

where g∗(s)
def
= E {x∗ exp(isTBTx∗)} and h∗(s)

def
= E[ε{i cos(sTBTx∗) −

sin(sTBTx∗)}(x∗)T]. Suppose covφ∗(s, s0) is equal to covφ(s, s0) defined

in (3.2), as long as E(x∗) = E(x) and var(x∗) = var(x).

(C4) Assume that ψ(B)
def
= E(QBε

∗ | PBx
∗) is Lipschitz continuous.

Theorem 2. Suppose E(x) = 0, var(x) = Ip, and conditions (C1)–(C4) hold.

Then, ω̂
(t)
n has the same asymptotic null distribution as ω̂n. Specifically, nω̂

(t)
n

d→
||φ(s)||2 as n goes to infinity.

4. An Extension

If the predictor dimension p is very large, we assume, under the principle of

sparsity, that Y⊥⊥x | βT

A1
xA1

when the central space is considered, and Y⊥⊥E(Y |
x) | αT

A2
xA2

when the central mean space is considered, where

A1
def
= {k | F (y | x) relies functionally on Xk for y ∈ R, k = 1, . . . , p},

A2
def
= {k | E(y | x) relies functionally on Xk for y ∈ R, k = 1, . . . , p},

and F (y | x) and E(y | x) are the respective conditional distribution and condi-

tional mean functions of Y , given x. To ease subsequent presentation, we use A
to denote either A1 or A2, and BA to denote either βA1

or αA2
.

When p is moderately large, we can first apply sparse SDR methods, such

as those of Li (2007), Bondell and Li (2009), and Chen, Zou and Cook, (2010),

to simultaneously select the variables (i.e., estimate the active index set A) and

reduce the dimension (i.e., estimate the basis matrix BA).

When p is extremely large, we recommend using a model-free screening ap-

proach, such as the SIRS of Zhu et al. (2011), DC-SIS of Li, Zhong and Zhu

(2012), or MDC-SIS of Shao and Zhang (2014), to exclude as many inactive pre-

dictors as possible before using SDR methods to further reduce the predictor
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dimension. Once the number of active predictors is reduced to a moderate scale,

we implement sparse SDR methods to obtain consistent estimators of A and BA.

The proposed test procedure is based on xÂ and B̂A, and remains valid as long

as the estimate of BA is consistent.

We advocate a two-stage test procedure in the high-dimensional case. We

randomly split the full sample D into two equal halves, D1 and D2. First, we

implement DC-SIS (Li, Zhong and Zhu (2012)) on data set D1, and retain the

top-ranked covariates as the active ones. Next, we implement the sparse SDR

method of Li (2007) on data set D2 to estimate A and BA. We conduct our

test procedure based on xÂ and B̂A. We adopt a data-splitting strategy to avoid

inflating type-I error rates in our test procedure. When some inactive covariates

are retained in the screening stage, directly implementing our testing procedure

without random splitting leads to inflated type-I error rates (Fan, Guo and Hao

(2012)).

5. Numerical Studies

Example 1. We conduct simulations to demonstrate the performance of our pro-

posed test. We fix the sample size at n = 200. We evaluate the predictor dimen-

sion p = 8 for the low-dimensional case, and p = 1,000 for the high-dimensional

case. We consider two models.

(I): In the first model, the central space is spanned by (1, 0, 0, . . . , 0)T and Y =

X1 + δ. Thus, d = 1. The predictors x = (X1, . . . , Xp) are generated as

follows: X1, X3, . . . , Xp are drawn independently from a standard normal

distribution, and X2 = X1 + c1(X
2
1 − 1) + |c2X1 + 1|ε.

(II): In the second model, the central space is spanned by (1, 0, 0, . . . , 0)T and

(0, 1, 0, . . . , 0)T, and Y = 5X1/{0.5 + (X2 + 1.5)2} + δ. Thus, d = 2. The

predictors x = (X1, . . . , Xp) are generated as follows: X1, X2, X4, . . . , Xp

are drawn independently from a standard normal distribution, and X3 =

X1 +X2 + c1(X
2
1 − 1) + |c2X2 + 1|ε.

In both models, we generate ε and δ independently from a standard normal

distribution.

We first evaluate the performance of testing the LCM condition. We fix

c2 = 0 and evaluate c1 = 0, 0.1, . . . , 0.5. To illustrate the performance of our

proposed method, we evaluate two test statistics: (a) based on the observed data

set (xi, Yi)
n
i=1, we estimate B using the SIR method to obtain B̂sir, and then

construct the test statistics by replacing B̂ with B̂sir in (3.1); (b) we suppose
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the true B matrix is known as a prior, and then construct the test statistics by

replacing B̂ with B in (3.1), which acts as a benchmark.

When evaluating the performance of the joint test (i.e., simultaneously test-

ing the LCM and CCV conditions), we consider c1 = c2 = 0, 0.1, . . . , 0.5. We

also evaluate two test statistics: (a) test statistics based on B̂save, where B̂save is

obtained using the SAVE method; (b) test statistics based on the true B matrix

by assuming that it is known as a prior.

To put our test procedure into practice, we can choose estimates of B that do

not rely on the linear mean or constant variance conditions, such as those of Xia

et al. (2002), Xia (2007), Fukumizu, Bach and Jordan (2009), Li and Dong (2009),

Dong and Li (2010), and Ma and Zhu (2012), among others. However, these

estimates are usually computationally expensive compared with the classical SIR

and SAVE methods. Therefore, we simply suggest estimating B using a method

that can be easily computed. Here, we implement SIR or SAVE to obtain B̂,

and then use our proposed test based on this B̂ to check whether the LCM

condition or the joint conditions hold. If the null hypothesis is not rejected, then

we are confident that B̂ is valid. If the null hypothesis is rejected, we can choose

other methods that avoid the LCM condition or the joint conditions in order to

re-estimate B. However, in doing so, we may lose power because E(ε | B̂Tx)

may be very close to E(ε) for a lousy estimate B̂ obtained under the alternative

hypothesis.

We decide whether to reject the null hypothesis using the bootstrap proce-

dures with T = 500. We repeat each experiment 500 times and study the size

and the power of the our tests separately.

We first evaluate the size of the test. Note that the LCM condition holds

if and only if c1 = 0, and the joint condition holds if and only if c1 = c2 = 0.

We thus fix c1 = c2 = 0 to study the size of all tests. We investigate different

significance levels, with α = 0.01, 0.02, 0.05. The empirical sizes based on 500

repetitions are summarized in Table 1, which indicates that tests based on B̂

behave similarly to those based on the true B matrix, and the empirical sizes are

close to the nominal level α.

We then study the power performance of the test procedures. We fix c2 = 0

and evaluate c1 = 0.1, 0.2, . . . , 0.5 when testing the LCM condition, and c1 =

c2 = 0.1, 0.2, . . . , 0.5 when testing the joint condition LCM+CCV. We fix the

significance level α = 0.05; the results are summarized in Table 2.

Table 2 indicates that our proposed method performs satisfactorily. In gen-

eral, the power values of the tests gradually increase to one when c1 goes up from

0.1 to 0.5. In the low-dimensional case p = 8, the power values of the LCM test
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Table 1. The empirical sizes of the test procedures when c1 = c2 = 0.

p Test Method
d = 1 d = 2
α α

0.01 0.02 0.05 0.01 0.02 0.05

p = 8

LCM
B̂sir 0.02 0.03 0.04 0.01 0.02 0.05
B 0.01 0.03 0.05 0.01 0.01 0.04

LCM+CCV
B̂save 0.01 0.03 0.05 0.01 0.02 0.04
B 0.01 0.02 0.05 0.01 0.02 0.04

p = 1,000

LCM
B̂sir 0.01 0.02 0.05 0.01 0.02 0.05
B 0.01 0.02 0.05 0.01 0.02 0.06

LCM+CCV
B̂save 0.01 0.01 0.04 0.01 0.02 0.04
B 0.01 0.02 0.05 0.01 0.02 0.04

Table 2. The empirical power of the test procedures with α = 0.05.

p Test d = 1 d = 2

8

LCM

c1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂sir 0.13 0.54 0.87 0.99 1.00 0.10 0.49 0.87 0.98 1.00

B 0.17 0.65 0.95 1.00 1.00 0.14 0.49 0.88 0.99 1.00

LCM+CCV

c1 = c2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂save 0.12 0.49 0.85 0.98 1.00 0.07 0.28 0.59 0.78 0.88

B 0.15 0.51 0.87 0.99 1.00 0.10 0.40 0.80 0.98 1.00

1,000

LCM

c1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂sir 0.09 0.46 0.85 0.97 1.00 0.12 0.45 0.86 0.97 1.00

B 0.16 0.59 0.94 1.00 1.00 0.14 0.49 0.87 0.98 1.00

LCM+CCV

c1 = c2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

B̂save 0.09 0.43 0.80 0.97 1.00 0.06 0.25 0.48 0.69 0.80

B 0.12 0.45 0.89 0.99 1.00 0.09 0.36 0.78 0.97 1.00

and the joint test LCM+CCV both exceed 0.85 when the signal intensity param-

eter c1 increases to 0.3 in Model (I), where the structure dimension d = 1, and

finally reaches one when c1 = 0.5. The results for Model (II), where d = 2, are

quite similar, though a little inferior to those for Model (I). This is reasonable

because it is a more complicated problem in SDR when the structure dimen-

sion increases. The results are similar in the ultrahigh-dimensional case when

p = 1,000.

Example 2. We apply our proposed method to a horse mussels data set, pro-

vided by Mike Camden, Wellington Polytechnic, Wellington, New Zealand. The

response variable Y is the mussels’ muscle mass M, the edible portion of the

mussel, which is measured in grams. The covariates x include the shell length

L in millimeters, shell width W in millimeters, and shell mass S in grams. The
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Figure 1. Scatter plot matrices for covariate vectors x and x∗.

sample size is 82.

We first visually evaluate whether the LCM condition holds. The scatter

plot matrix of the shell length L, shell width W, and shell mass S is presented

in Figure 1 (A). From Figure 1, the curvature between L and S, together with

that between W and S raises doubts about the LCM condition required by the

SIR method. Thus, Cook (1998) used power transformations of the covariates

to make the LCM condition hold approximately. By applying the maximum

likelihood estimates, the shell width W is transformed to W 0.36, the shell mass

S is transformed to S0.11, and the shell length L is not transformed. The scatter

plot matrix after the transformations is shown in Figure 1 (B). It seems that the

LCM condition holds after the transformation.

Now, we apply our proposed method to test whether the LCM condition

holds. Recall that x = (L,W, S)T is the covariate vector before the transforma-

tion. We set x∗ = (L,W 0.36, S0.11)T as the covariate vector after the transfor-

mation. Then, we need to test the LCM condition for data sets (xi, Yi)
82
i=1 and

(x∗i , Yi)
82
i=1. Given the structure dimension d = 1, our proposed method can be

applied directly . Specifically, we first apply the SIR method to the original data

set (xi, Yi)
82
i=1 to estimate B, where B̂ denotes the corresponding estimator. We

then carry out the test procedure based on xi and B̂, obtaining the p-value 0.000.

Then, we test the LCM condition on the transformed data set (x∗i , Yi)
82
i=1. We

estimate B using the SIR method to obtain B̂∗, and then conduct the test based
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on x∗i and B̂∗. The p-value of the test is 0.908.

From the above tests, we can confidently reject the null hypothesis that the

LCM condition holds for dataset (xi, Yi)
82
i=1, but accept that it holds for the data

set (x∗i , Yi)
82
i=1. That is, the LCM condition is violated on the original data set,

but holds after the power transformation proposed by Cook (1998). Such results

are in accordance with those shown in Figure 1, thus proving the validity of our

proposed method.

To determine whether the power transformation helps to obtain more accu-

rate estimators, we conduct a simple bootstrap procedure, as follows. For the

original data (xi, Yi)
82
i=1, we estimate B using the SIR method to obtain B̂, which

we treat as the true B. Then, we bootstrap from the original data 500 times,

obtaining B̂(t) using the SIR, where t = 1, . . . , 500. To assess the distance be-

tween B̂ and B̂(t), we adopt the trace correlation proposed in Ferré (1998) to

obtain r(d)(t), for t = 1, . . . , 500. Based on 500 repetitions, the average r(d)(t)

is 0.74, and the standard deviation is 0.21. Similarly, for the transformed data

(x∗i , Yi)
82
i=1, we get r(d)∗(t), for t = 1, . . . , 500, with an average of 0.95 and a stan-

dard deviation of 0.06. According to Ferré (1998), a trace correlation r(d) ∈ [0, 1]

and a larger value indicates that the two subspaces are closer together. Thus, the

power transformation results in more accurate estimators when the LCM fails.

Supplementary Material

The online supplementary material contains the proofs of Propositions 1 and

2 and Theorems 1 and 2.
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Ferré, L. (1998). Determining the dimension in sliced inverse regression and related methods.

Journal of the American Statistical Association 93, 132–140.

Fukumizu, K., Bach, F. R. and Jordan, M. I. (2009). Kernel dimension reduction in regression.

The Annals of Statistics 37, 1871–1905.

Guo, X., Wang, T. and Zhu, L. (2016). Model checking for parametric single-index models:

A dimension reduction model-adaptive approach. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 78, 1013–1035.

Koul, H. L. and Ni, P. (2004). Minimum distance regression model checking. Journal of Statistical

Planning and Inference 119, 109–141.

Li, L. (2007). Sparse sufficient dimension reduction. Biometrika 94, 603–613.

Li, B. and Dong, Y. (2009). Dimension reduction for nonelliptically distributed predictors. The

Annals of Statistics 37, 1272–1298.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the

American Statistical Association 102, 997–1008.

Li, K. C. (1991). Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association 86, 316–327.

Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction:

Another application of Stein’s lemma. Journal of the American Statistical Association 87,

1025–1039.

Li, Q. (1999). Consistent model specification tests for time series econometric models. Journal

of Econometrics 92, 101–147.

Li, Q., Hsiao, C. and Zinn, J. (2003). Consistent specification tests for semiparametric/non-

parametric models based on series estimation methods. Journal of Econometrics 112, 295–

325.

Li, B., Zha, H. and Chiaromonte, F. (2005). Contour regression: A general approach to dimen-

sion reduction. The Annals of Statistics 33, 1580–1616.

Li, R., Zhong, W. and Zhu, L. (2012). Feature screening via distance correlation learning. Journal

of the American Statistical Association 107, 1129–1139.

Ma, Y. and Zhu, L. P. (2012). A semiparametric approach to dimension reduction. Journal of

the American Statistical Association 107, 168–179.



2194 ZHOU, DONG AND ZHU

Ma, Y. and Zhu, L. (2013). Efficient estimation in sufficient dimension reduction. Annals of

statistics 41, 250–258.

Shao, X. and Zhang, J. (2014). Martingale difference correlation and its use in high-dimensional

variable screening. Journal of the American Statistical Association 109, 1302–1318.

Stute, W. (1997). Nonparametric model checks for regression. The Annals of Statistics 25,

613–641.
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