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Supplementary Material

This online Supplementary Material contains proofs of all theoretical results in the main text, as well as

additional empirical studies. Results from Section 2 in the main text are justified and further discussed in

Section S1. In Section S2, we prove the results from Section 3.1. Section S3 presents the proof for Theorem

5. Additional numerical studies are provided in Section S4. Section S5 reports real-data examples to further

demonstrate the prediction performance of the DA-Huber methods. Finally, in Section S6, we discuss a general

class of robust loss functions, to which the obtained results for Huber loss apply.

S1 Proofs of Results in Section 2

S1.1 Preliminaries

We first introduce some useful notions of the distribution of a random variable. Let

X be a non-degenerate real-valued random variable with finite variance. For t ≥ 0,

we define the tail probability of |X|, the second moments of truncated and censored
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versions of X by

G(t) = P(|X| > t), P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψt(X)}2, (S1.1)

respectively, where ψt(x) = (|x| ∧ t) sign(x) for x ∈ R. Moreover, for t > 0, we define

p(t) = t−2P (t) and q(t) = t−2Q(t). (S1.2)

By definition, it is straightforward that Q(t) = P (t) + t2G(t) and q(t) = p(t) + G(t).

The following result provides some useful connections among these functions. See (2.3)

and (2.4) in Hahn, Kuelbs, and Weiner (1990). We reproduce them here for the sake

of readability.

Lemma S1.1. Let functions G,Q, p and q be given in (S1.1) and (S1.2).

(i) For any t > 0, we have

Q(t) = 2

∫ t

0

yG(y) dy, q′(t) = −2t−1p(t), (S1.3)

and

q(t) = P(X 6= 0)− 2

∫ t

0

y−1p(y)dy. (S1.4)

In addition, function Q : [0,∞) → R is non-decreasing with limt→∞Q(t) =

E(X2).

(ii) Function q : (0,∞)→ R is non-increasing and positive everywhere with q(0+) :=

lims↓0 q(s) = P(X 6= 0). Moreover,

q(s) = P(X 6= 0) for all 0 ≤ s ≤ ∆ := inf{y > 0 : G(y) < P(X 6= 0)}, (S1.5)
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q(s) decreases strictly and continuously on (∆,∞), and limt→∞ q(t) = 0.

Proof of Lemma S1.1. Notice Q(t) = E{(|X| ∧ t)2} and it holds almost surely that

(|X| ∧ t)2 = 2

∫ t

0

I(|X| > t)y dy + 2

∫ |X|
0

I(|X| ≤ t)y dy

= 2

∫ t

0

I(|X| > t)y dy + 2

∫ t

0

I(|X| > y)I(|X| ≤ t)y dy

= 2

∫ t

0

I(|X| > y)y dy.

Taking expectations on both sides implies Q(t) = E{(|X|∧t)2} = 2
∫ t

0
P(|X| > y)y dy =

2
∫ t

0
yG(y)dy, as stated. Hence, Q′(t) = 2tG(t). In (S1.2), taking derivatives with

respect to t on both sides gives 2tq(t) + t2q′(t) = 2tG(t) = 2t{q(t)− p(t)}. The second

equation in (S1.3) therefore follows. To prove (S1.4), note that, for any 0 < s < t,

q(t) = q(s)− 2
∫ t
s
p(y)y−1dy. On event {|X| > 0}, it holds almost surely that

0 <
(|X| ∧ s)2

s2
≤ 1, and

(|X| ∧ s)2

s2
→ 1 as s→ 0.

By the dominated convergence theorem,

q(s) = E{s−2(|X| ∧ s)2} = E{s−2(|X| ∧ s)2I(|X| > 0)} → P(|X| > 0) as s→ 0.

Then, in q(t) = q(s) − 2
∫ t
s
p(y)y−1dy for all 0 < s < t, letting s tend to zero yields

(S1.4). The monotonicity of Q follows directly from (S1.3) and the limit of Q(t) derives

from the monotone convergence theorem. These complete the part (i) of Lemma S1.1.

We now show the remaining properties of function q in the part (ii). By the

definition of ∆ in (S1.5), we have P(0 < |X| ≤ y) = 0 and thus p(y) = 0 for all
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0 < y < ∆. This, together with (S1.4), implies q(s) = P(X 6= 0) > 0 for all 0 ≤ s ≤ ∆.

It is easy to see that p(y) > 0 for any y > ∆, and therefore q(·) is strictly decreasing

on (∆,∞). Finally, note that

0 <
(|X| ∧ s)2

s2
≤ 1, and

(|X| ∧ s)2

s2
→ 0 as s→∞

almost surely. The dominated convergence theorem leads to limt→∞ q(t) = 0.

S1.2 Proof of Proposition 1

To be self-contained, we first formally define the subGaussian estimator as follows. Let

X be a real-valued random variable with mean µ = E(X) and variance σ2 = var(X) >

0, and assume that X1, . . . , Xn are independent and identically distributed (i.i.d.) from

X. Given α ∈ (0, 1), we say µ̂ (which possibly depends on α) is a subGaussian estimator

of µ if it satisfies the bound

|µ̂− µ| ≤ C

√
log(1/δ)

n

with probability at least 1 − α, where C > 0 is an absolute constant. For the sparse

linear regression model Yi = Xᵀ
i β
∗+ εi under Condition 3.1 in the main paper, that is,

E(ε2
i |Xi) = σ2 and β∗ = (β∗1 , . . . , β

∗
d)

ᵀ ∈ Rd is sparse with ‖β∗‖0 :=
∑d

j=1 I(β∗j 6= 0) =

s� n, a subGaussian estimator β̂ admits, for α ∈ (0, 1),

||β̂ − β∗||2 . σ

√
s{log d+ log(1/α)}

n

with probability 1− α.
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Proof. Note that the truncated mean mτ can be written as mτ = (τ/n)
∑n

i=1 ψ1(Xi/τ),

where it can be easily verified that − log(1−u+u2) ≤ ψ1(u) ≤ log(1+u+u2) for all u ∈

R. For any y > 0, it follows that

P

[
n∑
i=1

{τψ1(Xi/τ)− µ} ≥ y

]
≤ exp{−(y + nµ)/τ}E

[
exp

{ n∑
i=1

ψ1(Xi/τ)

}]

= exp{−(y + nµ)/τ}
n∏
i=1

E exp{ψ1(Xi/τ)}

≤ exp{−(y + nµ)/τ}
n∏
i=1

E exp{log(1 +Xi/τ +X2
i /τ

2)}

≤ exp{−(y + nµ)/τ}
n∏
i=1

exp{µ/τ + E(X2
i )/τ 2}

≤ exp(−y/τ + nv2/τ 2)

= exp

{
nv2

(
1

τ
− y

2nv2

)2

− y2

4nv2

}
.

Similarly,

P

[
n∑
i=1

{τψ1(Xi/τ)− µ} ≤ −y

]
≤ exp

{
nv2

(
1

τ
− y

2nv2

)2

− y2

4nv2

}
.

In particular, taking τ = 2v2n/y gives

P
[∣∣∣∣ n∑

i=1

{τψ1(Xi/τ)− µ}
∣∣∣∣ ≥ y

]
≤ 2 exp

(
− y2

4nv2

)
.

This proves Part (i) by taking y = 2v(nz)1/2.

Part (ii) can be proved similarly. We therefore omit the details. The above proof

essentially follows a similar argument that used in the proof of Propositions 2.1-2.2 in

Catoni (2012).
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S1.3 Proof of Proposition 2

Proof of (i). Using the notation in Section S1.1, equation (2.4) can be written as

q(τ) = z/n. By Lemma S1.1, the function q satisfies maxt≥0 q(t) = limt→0 q(t) =

P(|X| > 0), limt→∞ q(t) = 0 and is strictly decreasing on (∆,∞). Provided z/n <

P(|X| > 0), equation (2.4) has a unique solution that lies in (∆,∞).

By definition, this unique solution τz satisfies

τ 2
z = E(X2 ∧ τ 2

z )
n

z
≤ E(X2)

n

z
. (S1.6)

On the other hand, note that E(X2 ∧ τ 2) ≥ τ 2P(|X| > τ) for any τ > 0. It follows

that P(|X| > τz) ≤ z/n, which implies τz ≥ qz/n. Substituting this into (S1.6) gives

τ 2
z ≥ E(X2 ∧ q2

z/n)(n/z).

Proof of (ii). Recall that q(τz) = z/n. Since z/n → 0 and q(t) strictly decreases to

zero as t → ∞, we have τz → ∞ and therefore E(X2 ∧ τ 2
z ) → E(X2) as n → ∞. The

stated results follow immediately.

S1.4 Proof of Proposition 3

Define

Gn(t) =
1

n

n∑
i=1

I(|Xi| > t), qn(t) =
1

n

n∑
i=1

X2
i ∧ t2

t2
, t > 0,

and ∆n = inf{y > 0 : Gn(y) < Gn(0)}, which are the sample versions of G(t), q(t) and

∆ given in (S1.1), (S1.2) and (S1.5), respectively. A sample version of Lemma S1.1

prevails, implying that qn(t) = Gn(0) for 0 ≤ t ≤ ∆n and qn(·) strictly decreases to zero
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on (∆n,∞). Therefore, equation (2.2) has a unique solution on (∆n,∞) if and only if

z/n < Gn(0).

S1.5 Proof of Theorem 1

Keep the notation used in the proof of Proposition 3. Recall that τ̂z is uniquely deter-

mined and positive on the event {z < Gn(0)}. Under the condition P(X = 0) = 0, it

follows that P{Gn(0) < 1} = 0 and therefore τ̂z is positive with probability one. We

divide the rest of the proof into four steps.

Step 1 (Preliminaries). Define the function

pn(t) =
1

n

n∑
i=1

X2
i I(|Xi| ≤ t)

t2
for t > 0.

Applying Lemma S1.1 to pn and qn, we see that q′n(t) = −2t−1pn(t). It follows that

qn(τz)− qn(τ̂z) = 2

∫ τ̂z

τz

pn(t)

t
dt = 2

∫ (τ̂z−τz)/τz

0

pn(τz + τzu)

1 + u
du

by change of variables u = (t − τz)/τz. By definition, qn(τ̂z) = z/n = q(τz). This,

together with the last display, delivers

qn(τz)− q(τz) = 2

∫ (τ̂z−τz)/τz

0

pn(τz + τzu)

1 + u
du.

For any r ∈ (0, 1), it holds on the event {(τ̂z − τz)/τz ≥ r} that

qn(τz)− q(τz) ≥ 2

∫ r

0

pn(τz + τzu)

1 + u
du

= 2

∫ r

0

pn(τz + τzu)− p(τz + τzu)

1 + u
du+ 2

∫ r

0

p(τz + τzu)

1 + u
du
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= 2

∫ r

0

pn(τz + τzu)− p(τz + τzu)

1 + u
du+ {q(τz)− q(τz + τzr)}

=: R1 +D1.

Similarly, on the event {(τ̂z − τz)/τz ≤ −r}, it holds

qn(τz)− q(τz)

≤− {q(τz − τzr)− q(τz)} − 2

∫ 0

−r

pn(τz + τzu)− p(τz + τzu)

1 + u
du

=:−D2 +R2.

Putting the above calculations together, we arrive at

P(|τ̂z/τz − 1| ≥ r) ≤ P{qn(τz)− q(τz) ≥ D1 +R1}+ P{qn(τz)− q(τz) ≤ −D2 +R2}.

(S1.7)

Set ζi = (X2
i ∧τ 2

z )/τ 2
z for i = 1, . . . , n such that qn(τz)−q(τz) = (1/n)

∑n
i=1{ζi−E(ζi)}.

Note that ζi’s are bounded random variables satisfying 0 ≤ ζi ≤ min{1, (|Xi| ∧ τz)/τz}

and E(ζ2
i ) ≤ E(X2

i ∧ τ 2
z )/τ 2

z = z/n. By Bernstein’s inequality, for any u > 0 it holds

P{qn(τz)− q(τz) ≥ u/n} ≤ exp{−u2/(2z + 2u/3)}. (S1.8)

On the other hand, applying Theorem 2.19 in de la Peña, Lai, and Shao (2009) with

Xi = ζi/n therein gives that, for any 0 < u < z,

P{qn(τz)− q(τz) ≤ −u/n} ≤ exp{−u2/(2z)}. (S1.9)

Step 2 (Controlling R1 and R2). Note that R1 and R2 can be written, respectively,
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as R1 = (2/n)
∑n

i=1{ξi − E(ξi)} and R2 = −(2/n)
∑n

i=1{ηi − E(ηi)}, where

ξi =

∫ r

0

X2
i I{|Xi| ≤ τz(1 + u)}

τ 2
z (1 + u)3

du and ηi =

∫ 0

−r

X2
i I{|Xi| ≤ τz(1 + u)}

τ 2
z (1 + u)3

du

are bounded, nonnegative random variables satisfying

ξi ≤
∫ r

0

du

1 + u
≤ r, ηi ≤

∫ 0

−r

du

1 + u
≤ r

1− r
.

In addition,

E(ξ2
i ) ≤

E[X2
i I{|Xi| ≤ τz(1 + r)}]

τ 2
z

{∫ r

0

du

(1 + u)2

}2

≤ q(τz + τzr)r
2 ≤ q(τz)r

2,

and

E(η2
i ) ≤

E{X2
i I(|Xi| ≤ τz)}

τ 2
z

{∫ 0

−r

du

(1 + u)2

}2

≤ q(τz)r
2

(1− r)2
.

Again it follows from Theorem 2.19 in de la Peña, Lai, and Shao (2009) that, for any

v > 0,

P(R1 ≤ −2rv/n) ≤ exp{−v2/(2z)} (S1.10)

and P{R2 ≥ 2rv/(1− r)n} ≤ exp{−v2/(2z)}. (S1.11)

Step 3 (Bounding D1 and D2). By Lemma S1.1 we have

D1 = q(τz)− q(τz + τzr) = 2

∫ τz(1+r)

τz

P (u)

u3
du ≥ 2P (τz)

∫ τz(1+r)

τz

du

u3
=

r2 + 2r

(1 + r)2

P (τz)

τ 2
z

.

(S1.12)

Similarly,

D2 = q(τz − τzr)− q(τz) = 2

∫ τz

τz(1−r)

P (u)

u3
du ≥ 2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

. (S1.13)



10

Step 4. Together, (S1.7) and (S1.10)-(S1.13) imply that, for any 0 < r < 1 and v > 0,

P(|τ̂z/τz − 1| ≥ r)

≤ P
{
qn(τz)− q(τz) ≥

r2 + 2r

(1 + r)2

P (τz)

τ 2
z

− 2rv

n

}
(S1.14)

+ P
{
qn(τz)− q(τz) ≤ −

2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

+
2rv

(1− r)n

}
+ 2 exp{−v2/(2z)}.

Note that

r2 + 2r

(1 + r)2

P (τz)

τ 2
z

− 2rv

n
=

{
P (τz)

Q(τz)

2 + r

(1 + r)2
z − 2v

}
r

n

and

2r − r2

(1− r)2

P (τz − τzr)
τ 2
z

− 2rv

(1− r)n
=

{
P (τz − τzr)
Q(τz)

2− r
1− r

z − 2v

}
r

(1− r)n
.

Taking v = (a1 ∧ a2)z/2 for a1 and a2 as in (2.6), the right-hand side of (S1.14) can

further be bounded by

P
{
qn(τz)− q(τz) ≥

a1rz

n

}
+ P

{
qn(τz)− q(τz) ≤ −

a2rz

n

}
+ 2 exp{−v2/(2z)}.

Combining this with (S1.8), (S1.9) and (S1.14) proves the stated result.

S1.6 Proof of Theorem 2

We start with making a finite approximation of the interval [1/2, 3/2] using a sequence

{ck}nk=1 of equidistant points ck = 1/2 + k/n. Then for any τ ∗z /2 ≤ τ ≤ 3τ ∗z /2 with

τ ∗z = v2

√
n/z, there exists some 1 ≤ k ≤ n such that |τ − τ ∗z,k| ≤ v2(nz)−1/2, where

τ ∗z,k := ckv2

√
n/z. It follows that

sup
τ∗z /2≤τ≤3τ∗z /2

|mτ − µ| ≤ max
1≤k≤n

|mτ∗z,k
− µ|+ v2√

nz
. (S1.15)
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For 1 ≤ k < n/2 so that 1/2 ≤ ck < 1, by Proposition 1-(ii) we have |mτ∗z,k
− µ| ≤

2(v2/ck)
√
z/n with probability at least 1− 2e−z/c

2
k ; for n/2 ≤ k ≤ n so that 1 ≤ ck ≤

3/2, from Proposition 1-(i) it follows that |mτ∗z,k
− µ| ≤ 2ckv2

√
z/n with probability at

least 1− 2e−z. Apply the union bound over 1 ≤ k ≤ n to see that

max
1≤k≤n

|mτ∗z,k
− µ| ≤ 4v2

√
z

n
(S1.16)

with probability at least 1− 2ne−z. Together, (S1.15) and (S1.16) prove (2.7).

Taking z = 2 log n in Proposition 2, Theorem 1 and Remark 1, we find that τ ∗z /2 ≤

τ̂z ≤ 3τ ∗z /2 with probability at least 1 − 4n−c for all sufficiently large n. The desired

result then follows from (2.7).

S1.7 Location and Scale Equivariant of Our Estimator

As noticed in Remark 2 in the main text, our proposed estimator in (2.11) is similar to

the estimator discussed by Bickel (1975). It is known that coupling an M -estimation

of location with an estimate of scale can lead to scale invariant (Huber and Ronchetti,

2009). In our setting, τ mimics a scale parameter and our proposed estimator is ex-

pected to also enjoy the desirable location and scale equivariance. As a matter of fact,

for real constants a 6= 0 and b, (2.11) is

n∑
i=1

sign(aXi + b− θ) min{|aXi + b− θ|, τ} = 0

1

n

n∑
i=1

min{(aXi + b− θ)2, τ 2}/τ 2 − z

n
= 0,
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which is equivalent to

n∑
i=1

sign(Xi − θ̃) min{|Xi − θ̃|, τ̃} = 0

1

n

n∑
i=1

min{(Xi − θ̃)2, τ̃ 2}/τ̃ 2 − z

n
= 0

by letting θ̃ = a−1(θ − b) and τ̃ = |a|−1τ . Recall an estimator Tn is location and scale

equivariant if Tn(aX1 +b, . . . , aXn+b) = aTn(X1, . . . , Xn)+b. Therefore, our estimator

for θ is indeed location and scale equivariant.

S1.8 The Influence Function of Our Estimator

Let ψ(u) = sign(u) min(|u|, 1) and χ(u) = min(u2, 1)/2 − z/(2n). As discussed in

Remark 2 in the main paper and Section S1.7 above, for fixed z, n and τn > 0, our

estimator defined in (2.11) can be rewritten as the solution to

n∑
i=1

ψ

(
Xi − θn
τn

)
= 0

n∑
i=1

χ

(
Xi − θn
τn

)
= 0

(S1.17)

which mimics equation (1.6) in Bickel (1975). The estimator in (2.11) can also be

viewed as a variant of that characterized by equations (6.28) and (6.29) in Huber and

Ronchetti (2009) for joint location and scale estimation.

For X ∼ F , denote Fn the corresponding empirical cumulative distribution function

based on n i.i.d. observations. Write estimators θn = θ(Fn) and τn = τ(Fn) in terms of

statistical functionals θ(F ) and τ(F ), which are defined by EF [ψ({X−θ(F )}/τ(F ))] = 0
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and (2.9) in the main paper, i.e. EF [χ({X − θ(F )}/τ(F ))] = 0. Following Hampel et

al. (1986) and Huber and Ronchetti (2009), the influence functions IC(x;F, θ) and

IC(x;F, τ) of our estimator (θn, τn) can be computed by inserting Ft = (1− t)F + tδx

for Xi ∼ F into the population version of (S1.17) and then taking derivative with

respect to t at t = 0. Specifically, it is easy to see that ψ(u) is odd and χ(u) is even.

Then, assume that F is symmetric for simplicity, we can derive from the results in

Huber and Ronchetti (2009) that

IC(x;F, θ) =
ψ(x/τ(F ))τ(F )

EF{ψ′(Xi/τ(F ))}
=

sign(x) min{|x|, τ(F )}
PF{Xi ≤ τ(F )}

and

IC(x;F, τ) =
χ(x/τ(F ))τ(F )

EF{χ′(Xi/τ(F ))Xi/τ(F )}
=

min{x2/τ(F ), τ(F )}/2− zτ(F )/(2n)

EF [X2
i /τ

2(F )I{|Xi| ≤ τ(F )}]
.

The gross error sensitive of our estimator GES(τ ;F ) = supx |IC(x;F, τ)| is bounded

for each fixed n. This reflects the relative influence of individual outlier toward our

estimator for finite sample. On the other hand,

GES(τ ;F ) ≥ τ(F ) sup
x

|min{x2, τ 2(F )}/2− zτ 2(F )/(2n)|
EF (X2

i )
& τ 3(F )

(
1

2
− z

2n

)
.

Results from Section 2.1 in the main paper suggest that τ(F ) �
√
n/z for the adaptive

Huber estimator for each z > 0. Hence, as n→∞, GES(τ ;F ) diverges uniformly. This

unboundedness of GES is due to the divergence of τ(F ) in n, which is designed for our

focus on the tail robustness against distributional outliers other than against a minority

of data points generated from different distribution that is not the generating process
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of interest. The later scenario is typically modeled by the Huber’s ε-contamination

model in the traditional robust statistics. In fact, for the fixed τ such as τ = 1.345σ, it

guarantees a bounded GES(τ ;F ) and a high finite sample breakdown point (Hampel

et al., 1986; Maronna et al., 2018).

For data from a heavy-tailed and/or highly-skewed distribution, it is intuitive that

the distribution is better represented when more observations are accumulated. There-

fore, the divergent τ(F ) will be desirable in our proposal (or (S1.17) above) to reduce

the bias, see Proposition 5 for example. This unboundedness also reflect a critical trade-

off in designing the robust M -estimators as observed by Loh (2017). In addition, for

the adversarially contaminated errors, different scaling of the robustification parameter

such as
√

log n (Dalalyan and Thompson, 2019) or nβ for some small β > 0 (Yohai and

Zamar 1997; (1.38) in Huber and Ronchetti 2009) might provide better results either

theoretically or empirically. We leave the study of Huber’s M -estimator along with its

data-driven tuning for the adversarial contamination as future work.

S2 Proofs of Results in Section 3.1

S2.1 Proof of Proposition 5

Define functions G(θ) = G(β0,β) = E{`τ (Y − Zᵀθ)} = E{`τ (Y − β0 −Xᵀβ)} and

h(α) = E{`τ (ε− α)}. By the definition and uniqueness of ατ , for any θ = (β0,β
ᵀ)ᵀ we
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have

G(θ) = E{`τ (ε− (β0 − β∗0)− 〈X,β − β∗〉)}

= E[E{`τ (εi − (β0 − β∗0)− 〈X,β − β∗〉)|X}]

≥ E{`τ (ε− ατ )} = G(θ̃∗τ ),

where θ̃∗τ := (β∗0 + ατ ,β
∗ᵀ)ᵀ ∈ Rd̄. This implies that G(β∗0 + ατ ,β

∗) = minθ∈Rd̄ G(θ).

Moreover, consider the Hessian matrix ∇2G(θ) = E{I(|Y − Zᵀθ| ≤ τ)ZZᵀ}, θ ∈ Rd̄.

By (3.4), ∇2G(θ̃∗τ ) = P(|ε − ατ | ≤ τ)E(ZZᵀ) is positive definite, such that θ̃∗τ is the

unique minimizer of the function θ 7→ G(θ). This enforces β∗0,τ = β∗0 +ατ and β∗τ = β∗.

Next we prove (3.5). By the optimality of ατ and the mean value theorem, we have

h′(ατ ) = dh(α)
dα
|α=ατ = 0 and

h′′(α̃τ )ατ = h′(ατ )− h′(0) = −h′(0) = E{`′τ (ε)}. (S2.1)

where α̃τ = λ0 + (1− λ)ατ for some 0 ≤ λ ≤ 1. Note that

h′′(α̃τ ) = 1− P(|ε− α̃τ | > τ). (S2.2)

By the convexity of h, h(α̃τ ) ≤ λh(0) + (1 − λ)h(ατ ) ≤ h(0) ≤ σ2/2. On the other

hand,

h(α) ≥ E(τ |ε− α| − τ 2/2)I(|ε− α| > τ) for all α ∈ R.

Together, the upper and lower bounds on h(α̃τ ) yield

τE|ε− α̃τ |I(|ε− α̃τ | > τ) ≤ τ 2

2
P(|ε− α̃τ | > τ) +

σ2

2
.
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Further, by Markov’s inequality,

P(|ε− α̃τ | > τ) ≤ τ−1E|ε− α̃τ |I(|ε− α̃τ | > τ) ≤ 1

2
P(|ε− α̃τ | > τ) +

σ2

2τ 2
,

implying P(|ε− α̃τ | > τ) ≤ τ−2σ2. Substituting this into (S2.2) to reach

h′′(α̃τ ) ≥ 1− τ−2σ2. (S2.3)

For the right-hand side of (S2.1), we have

|E{`′τ (ε)}| ≤ E(|ε| − τ)I(|ε| > τ) ≤ τ−1E(ε2 − τ 2)I(|ε| > τ) =
σ2

τ
− E{ψ2

τ (ε)}
τ

where ψτ (x) = `′τ (x). Combined with (S2.1) and (S2.3), this proves (3.5) as long as

τ > σ.

S2.2 Proof of Theorem 3

The proof is based on a similar argument to that used in the proof of Theorem 2.1

in Zhou et al. (2018). The main improvement comes from Proposition S2.1 below,

which provides a form of the restricted strong convexity (RSC) for the empirical loss

function. By exploiting the strong convexity of Huber loss and empirical process theory,

we establish the RSC property for sub-exponential design under the scaling n & d.

Write d̄ = d+ 1 throughout the proof. For some r > 0 to be determined, define the

local neighborhood

Θr =
{
θ ∈ Rd̄ : ‖θ − θ∗‖S ≤ r

}
, (S2.4)
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where ‖ · ‖S denotes the rescaled `2-norm ‖u‖S = ‖S1/2u‖2 for u ∈ Rd̄. If θ̂τ /∈ Θr,

there exists some η ∈ (0, 1) such that θ̃ = θ∗ + η(θ̂τ − θ∗) ∈ Θr; otherwise if θ̂ ∈ Θr,

we can simply take η = 1. By the optimality of θ̂τ , we have ∇Lτ (θ̂τ ) = 0. Applying

Lemma 2 in Sun, Zhou, and Fan (2019) to Lτ (θ) = (1/n)
∑n

i=1 `τ (Yi −Z
ᵀ
i θ) gives

〈
∇Lτ (θ̃)−∇Lτ (θ∗), θ̃ − θ∗

〉
≤ η
〈
∇Lτ (θ̂τ )−∇Lτ (θ∗), θ̂τ − θ∗

〉
= η
〈
−∇Lτ (θ∗), θ̂τ − θ∗

〉
≤ ‖S−1/2∇Lτ (θ∗)‖2 × ‖θ̃‖S. (S2.5)

In what follows, we bound the left-hand and right-hand sides of (S2.5) separately,

staring with the former. Proposition S2.1 below shows that Lτ is strictly convex on Θr

with high probability.

Proposition S2.1. Let m4 = supu∈Sd E〈S−1/2Z,u〉4 with S = E(ZZᵀ). Let τ, r > 0

satisfy

τ ≥ max(4σ, 8m
1/2
4 r) and n ≥ c0(τ/r)2(d+ z), (S2.6)

where c0 > 0 is an absolute constant. Then with probability at least 1− e−z,

〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉 ≥
1

4
‖θ − θ∗‖2

S uniformly over θ ∈ Θr. (S2.7)

Proof of Theorem 3. Since θ̃ ∈ Θr by construction, it holds under the scaling (S2.6)

that

〈
∇Lτ (θ̃)−∇Lτ (θ∗), θ̃ − θ∗

〉
≥ 1

4
‖θ̃ − θ∗‖2

S (S2.8)
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with probability at least 1− e−z.

Next we bound the quadratic form ‖S−1/2∇Lτ (θ∗)‖2, which is bounded by

∥∥∥∥ 1

n

n∑
i=1

{
ξizi − E(ξizi)

}
︸ ︷︷ ︸

:=γ

∥∥∥∥
2

+

∥∥∥∥ 1

n

n∑
i=1

E(ξizi)

∥∥∥∥
2

, (S2.9)

where ξi = `′τ (εi) and zi = S−1/2Zi. To bound ‖γ‖2 = supu∈Sd u
ᵀγ, by a standard

covering argument, we can find a (1/2)-net N1/2 of Sd with |N1/2| ≤ 5d̄ such that

‖γ‖2 ≤ 2 maxu∈N1/2
uᵀγ. For every u ∈ Sd, note that uᵀγ =

∑n
i=1(ξiu

ᵀzi − Eξiuᵀzi).

Under Condition 3.1, we have

E|uᵀzi|k = Ak0k

∫ ∞
0

tk−1P(|uᵀzi| ≥ A0t) dt ≤ Ak0k

∫ ∞
0

tk−1e−t dt = Ak0k!, k ≥ 1,

from which it follows that E(ξiu
ᵀzi)

2 = E{E(ξ2
i |zi)(uᵀzi)

2} ≤ σ2 and

E|ξiuᵀzi|k ≤
k!

2
2A2

0σ
2(A0τ)k−2 for all k = 3, 4, . . . .

By Bernstein’s inequality,

P
(
uᵀγ ≥ 2A0σ

√
x

n
+ A0τ

x

n

)
≤ e−x for any x > 0.

Taking the union bound over all vectors u ∈ N1/2, we obtain that with probability at

least 5d̄e−x, ‖γ‖2 ≤ 2 maxu∈N1/2
uᵀγ < 4A0σ

√
x/n + 2A0τx/n. Taking x = 2d̄ + z ≥

log(5d̄) + z, we arrive at

P
(
‖γ‖2 ≥ 4A0σ

√
2d̄+ z

n
+ 2A0τ

2d̄+ z

n

)
≤ e−z.
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For the deterministic part ‖E(ξizi)‖2 in (S2.9), it holds ‖E(ξizi)‖2 = supu∈Sd E(ξiu
ᵀzi) ≤

σ2τ−1. Putting the above calculations together yields that with probability greater than

1− e−z,

‖S−1/2∇Lτ (θ∗)‖2 < r0 := (1 + 4A0)σ

√
2d̄+ z

n
+ 2A0τ

2d̄+ z

n
. (S2.10)

Finally, in view of (S2.8) and (S2.10), we take r = τ/(8m
1/2
4 ). It then follows that

with probability greater than 1−2e−z, ‖θ̃−θ∗‖S ≤ 4‖S−1/2∇Lτ (θ∗)‖2 < 4r0 under the

assumed scaling (S2.6). Provided n & d+z so that 4r0 ≤ r, the intermediate estimator

θ̃ will lie in the interior of Θr, which enforces η = 1 and θ̃ = θ̂τ (otherwise θ̃ will lie

on the boundary). Putting together the pieces, we arrive at the desired result.

S2.3 Proof of Theorem 4

In view of the proof of Theorem 3, lying in the heart of the arguments is the restricted

strong convexity (S2.7) and the deviation bound (S2.10) for a random quadratic form.

In the following, we will establish similar results to (S2.7) and (S2.10) when τ is set as

a constant rather than a function of (n, d). Since the target parameter now is θ∗τ , we

slightly change the notation and set

θ̃ = θ∗τ + η(θ̂τ − θ∗τ ) and Θ̃r = {θ ∈ Rd̄ : ‖θ − θ∗τ‖S ≤ r}

to be the intermediate estimator and the parameter set, respectively.

We start with the deviation bound. Recalling θ∗τ = argminθ∈Rd̄
∑n

i=1 E`τ (Yi−Z
ᵀ
i θ),
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it follows from Proposition 5 that

0 = ∇ELτ (θ∗τ ) = E∇Lτ (θ∗τ ) = − 1

n

n∑
i=1

E{`′τ (εi − ατ )Zi},

where Lτ (θ) = (1/n)
∑n

i=1 `τ (Yi −Z
ᵀ
i θ). Recalling that zi = S−1/2Zi,

‖S−1/2∇Lτ (θ∗τ )‖2 =

∥∥∥∥ 1

n

n∑
i=1

`′τ (εi − ατ )zi
∥∥∥∥

2

. (S2.11)

Since E{`′τ (εi − ατ )} = 0 and by the optimality of ατ ,

var(`′τ (εi − ατ )) = E{`′τ (εi − ατ )}2

= E(εi − ατ )2I(|εi − ατ | ≤ τ) ≤ 2E`τ (εi − ατ ) ≤ 2E`τ (ε) ≤ σ2.

Following the same argument as in the proof of Theorem 3, it can be shown that with

probability at least 1− 5d̄e−x,∥∥∥∥ 1

n

n∑
i=1

`′τ (εi − ατ )zi
∥∥∥∥

2

< 4A0σ

√
x

n
+ 2A0τ

x

n
.

Taking x = 2d̄+ z in the last display, we obtain from (S2.11) that

‖S−1/2∇Lτ (θ∗τ )‖2 < r1 := 4A0σ

√
2d̄+ z

n
+ 2A0τ

2d̄+ z

n
(S2.12)

with probability at least 1− e−z.

The next proposition provides the restricted strong convexity around θ∗τ when τ is

treated as a constant.

Proposition S2.2. Let m4 = supu∈Sd E〈S−1/2Z,u〉4. Let τ, r > 0 satisfy

τ ≥ 8m
1/2
4 r and n ≥ c0ρ

−2
τ (τ/r)2(d+ z), (S2.13)
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where c0 > 0 is an absolute constant. Then with probability at least 1− e−z,

〈∇Lτ (θ)−∇Lτ (θ∗τ ),θ − θ∗τ 〉 ≥
ρτ
2
‖θ − θ∗τ‖2

S uniformly over θ ∈ Θ̃r. (S2.14)

According to (S2.12) and (S2.14), we take r = τ/(8m
1/2
4 ) so that with probability at

least 1− 2e−z, ‖θ̃ − θ∗τ‖S ≤ 2ρ−1
τ ‖S−1/2∇Lτ (θ∗τ )‖2 < 2ρ−1

τ r1 under the scaling (S2.13).

Provided n & d+ z so that 2ρ−1
τ r1 ≤ r = τ/(8m

1/2
4 ), the intermediate estimator θ̃ will

lie in the interior of Θ̃r, which enforces η = 1 and θ̃ = θ̂τ , as desired.

S2.4 Proof of Proposition S2.1

Since the Huber loss is convex and differentiable, we have

T (θ) := 〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉

=
1

n

n∑
i=1

{
`′τ (Yi −Z

ᵀ
i θ
∗)− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗)

≥ 1

n

n∑
i=1

{
`′τ (εi)− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗)IEi , (S2.15)

where IEi is the indicator function of the event

Ei :=
{
|εi| ≤ τ/2

}
∩
{
|〈Zi,θ − θ∗〉|
‖θ − θ∗‖S

≤ τ

2r

}
, (S2.16)
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on which |Yi − Zᵀ
i θ| ≤ τ for all θ ∈ Θr. Also, recall that `′′τ (u) = 1 for |u| ≤ τ . For

any R > 0, define functions

ϕR(u) =



u2 if |u| ≤ R
2
,

(u−R)2 if R
2
≤ u ≤ R,

(u+R)2 if −R ≤ u ≤ −R
2
,

0 if |u| > R,

and ψR(u) = I(|u| ≤ R).

In particular, ϕR is R-Lipschitz and satisfies

u2I(|u| ≤ R/2) ≤ ϕR(u) ≤ u2I(|u| ≤ R). (S2.17)

It then follows that

T (θ) ≥ g(θ) :=
1

n

n∑
i=1

ϕτ‖θ−θ∗‖S/(2r)(〈Zi,θ − θ∗〉)ψτ/2(εi). (S2.18)

To bound the right-hand side of (S2.18), consider the supremum of a random

process indexed by Θr:

∆r := sup
θ∈Θr

−g(θ) + Eg(θ)

‖θ − θ∗‖2
S

. (S2.19)

Write δ = θ − θ∗ for θ ∈ Θr. By (S2.17),

Eg(θ) ≥ E〈Zi, δ〉2 − E
{
〈Zi, δ〉2I

(
|〈Zi, δ〉| ≥

τ

4r
‖δ‖S

)}
− E

{
〈Zi, δ〉2I(|εi| > τ/2)

}
≥ ‖δ‖2

S −
4

τ 2

(
4r2

‖δ‖2
S

E〈Zi, δ〉4 + E〈Zi, δ〉2ε2
i

)
. (S2.20)
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Recall that E〈δ,Zi〉4 ≤ m4‖δ‖4
S for all u ∈ Rd̄ (d̄ = d+1). In conjunction with (S2.20),

this implies

Eg(θ) ≥ ‖δ‖2
S − ‖δ‖2

S

(
σ2 + 4m4r

2
) 4

τ 2
≥ 1

2
‖δ‖2

S for all θ ∈ Θr, (S2.21)

where the last inequality holds if τ ≥ max(4σ, 8m
1/2
4 r). By (S2.18), (S2.19) and (S2.21),

T (θ)

‖θ − θ∗‖2
S

≥ 1

2
−∆r for all θ ∈ Θr. (S2.22)

The following lemma provides an upper bound on the stochastic term ∆r.

Lemma S2.1. For any x > 0,

∆r ≤ 1.25
τ

r

√
d+ 1

n
+ (2m4)1/2

√
x

n
+
τ 2

r2

x

3n

with probability at least 1− e−x.

Substituting this into Lemma S2.1, we obtain that with probability at least 1−e−z,

T (θ)

‖θ − θ∗‖2
S

≥ 1

4
uniformly over θ ∈ Θr

for all sufficiently large n that scales as (τ/r)2(d+ z) up to an absolute constant. This

proves (S2.7).

S2.5 Proof of Proposition S2.2

Following the proof of Proposition S2.1, now we have

〈∇Lτ (θ)−∇Lτ (θ∗τ ),θ − θ∗τ 〉
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≥ 1

n

n∑
i=1

{
`′τ (Yi −Z

ᵀ
i θ
∗
τ )− `′τ (Yi −Z

ᵀ
i θ)
}
Zᵀ
i (θ − θ∗τ )IEτ,i ,

where

Eτ,i =
{
|εi − ατ | ≤ τ/2

}
∩
{
|〈Zi,θ − θ∗τ 〉|
‖θ − θ∗τ‖S

≤ τ

2r

}
On Eτ,i, |Yi−Zᵀ

i θ
∗
τ | = |εi +β∗0 −β∗0,τ | = |εi−ατ | ≤ τ and |Yi−Zᵀ

i θ| ≤ τ for all θ ∈ Θ̃r.

Moreover, let g(θ) be as in (S2.18) except with θ∗ replaced by θ∗τ . By assumption

ρτ := P(|ε− ατ | ≤ τ/2) > 0 and Markov’s inequality, we obtain that for every θ ∈ Θ̃r,

Eg(θ) ≥ ρτ
(
1− 16m4r

2τ−2
)
‖θ − θ∗τ‖2

S ≥
3

4
ρτ‖θ − θ∗τ‖2

S,

provided 0 < r ≤ τ/(8m
1/2
4 ). Keep all other statements the same, we then get the

desired result.

S2.6 Proof of Lemma S2.1

For g(θ) given in (S2.18), we write g(θ) = (1/n)
∑n

i=1 gi(θ). Observing that 0 ≤

ϕR(u) ≤ R2/4 and 0 ≤ ψR(u) ≤ 1 for all u ∈ R, we have 0 ≤ gi(θ) ≤ (τ/4r)2‖θ−θ∗‖2
S.

It then follows from Theorem 7.3 in Bousquet (2003), a variant of Talagrand’s inequality,

that for any x > 0,

∆r ≤ E∆r + (E∆r)
1/2 τ

2r

√
x

n
+ (2m4)1/2

√
x

n
+

τ 2x

48r2n

≤ 1.25E∆r + (2m4)1/2

√
x

n
+

τ 2x

3r2n
(S2.23)

with probability at least 1− e−x.
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It remains to bound the expectation E∆r. By the equality ϕcR(cu) = c2ϕR(u) for

c, R > 0 and u ∈ R, we have

Ei(δ) :=
1

‖δ‖2
S

ϕτ‖δ‖S/(2r)(〈Zi, δ〉)ψτ/2(εi) = ϕτ/(2r)(〈Zi, δ〉)ψτ/2(εi), δ = θ − θ∗.

Applying the symmetrization inequality for empirical processes yields

E∆r ≤ 2E
{

sup
θ∈Θr

1

n

n∑
i=1

eiEi(δ)

}
,

where e1, . . . , en are independent Rademacher random variables. Since ϕR isR-Lipschitz,

Ei(δ) is a (τ/2r)-Lipschitz function in 〈Zi, δ/‖δ‖S〉. By Talagrand’s contraction princi-

ple (see, e.g. Theorem 4.4, Theorem 4.12 and (4.20) in Ledoux and Talagrand (1991)),

E∆r ≤
τ

r
E
{

sup
θ∈Θr

1

n

n∑
i=1

ei〈Zi, δ/‖δ‖S〉
}
≤ τ

r
E
∥∥∥∥ 1

n

n∑
i=1

ei S
−1/2Zi

∥∥∥∥
2

≤ τ

r

√
d+ 1

n
.

This, together with (S2.23), proves the stated result.

S3 Proof of Theorem 5

This proof is based on an argument similar to that used in the proof of Theorem 3.

Note that Theorem 3 in Fan, Li, and Wang (2017) does not cover the sparse case where

q = 0. The main reason is that the sparsity property of β∗ is not inherited by β∗τ . In

this proof, we follow a different route to directly establish the convergence around θ∗

instead of θ∗τ . For simplicity, we write θ̂ = (β̂0, β̂
ᵀ)ᵀ = θ̂H(τ, λ) ∈ Rd̄ with d̄ = d + 1.

For some r > 0 to be specified, we use Θr and ‖ · ‖S to denote the local neighborhood
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and rescaled `2-norm as in (S2.4). As before, let θ̂η (0 < η ≤ 1) be an intermediate

estimator satisfying (i) θ̂η ∈ Θr, (ii) θ̂η lies on the boundary of Θr with η ∈ (0, 1) if

θ̂ /∈ Θr, and (iii) θ̂1 = θ̂. Moreover, θ̂ and θ̂η fulfill

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≤ η〈∇Lτ (θ̂)−∇Lτ (θ∗), θ̂ − θ∗〉. (S3.1)

Write δ̂ = (v̂0, v̂
ᵀ)ᵀ = θ̂ − θ∗ and denote by S ⊆ {1, . . . , d} the the support of β∗.

Define the `1-cone C ⊆ Rd̄ as

C =
{
θ ∈ Rd̄ : ‖vSc‖1 ≤ 3‖vS‖1 + |v0| for (v0,v

ᵀ)ᵀ = θ − θ∗
}
.

It can be shown that the optimal solution θ̂ to program (3.8) satisfies

θ̂ ∈ C on the event
{
λ ≥ 2‖∇Lτ (θ∗)‖∞

}
, (S3.2)

from which it follows

‖δ̂‖1 = |v̂0|+ ‖v̂S‖1 + ‖v̂Sc‖1 ≤ 2|v̂0|+ 4‖v̂S‖1 ≤ 4(s+ 1)1/2‖δ̂‖2. (S3.3)

By necessary conditions of the optima for convex problem (3.8),

〈∇Lτ (θ̂) + λẑ, θ̂ − θ∗〉 ≤ 0,

where ẑ = (0, ûᵀ)ᵀ with û ∈ ∂‖β̂‖1 satisfies 〈ẑ,θ∗ − θ̂〉 ≤ ‖β∗‖1 − ‖β̂‖1. Under the

scaling λ ≥ 2‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞, it holds

〈∇Lτ (θ̂)−∇Lτ (θ∗), θ̂ − θ∗〉

≤ λ
(
‖β∗‖1 − ‖β̂‖1

)
+
λ

2
‖θ̂ − θ∗‖1 + ‖S−1/2E∇Lτ (θ∗)‖2‖θ̂ − θ∗‖S
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≤ λ
(
‖v̂S‖1 − ‖v̂Sc‖1

)
+
λ

2
‖θ̂ − θ∗‖1 + ‖S−1/2E∇Lτ (θ∗)‖2‖θ̂ − θ∗‖S

≤ λ

2

(
3‖v̂S‖1 − ‖v̂Sc‖1

)
+
λ

2
|v̂0|+

σ2

τ
‖θ̂ − θ∗‖S,

where the last step uses the bound ‖S−1/2∇Lτ (θ∗)‖2 = supu∈Sd E{`′τ (ε)〈u,S−1/2Z〉} ≤

σ2τ−1. Together with (S3.1), this implies

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉

≤ 1

2
λη
(
3‖v̂S‖1 − ‖v̂Sc‖1

)
+

1

2
λη|v̂0|+

σ2

τ
‖θ̂η − θ∗‖S. (S3.4)

Moreover, we introduce δ̂η = θ̂η − θ∗ and note that δ̂η = ηδ̂. By (S3.2), we also have

θ̂η ∈ C under the assumed scaling.

To bound the left-hand side of (S3.4), the following proposition reveals that under

proper scaling, the Huber loss satisfies the restricted strong convexity condition over

Θr ∩C with high probability. It is a straightforward extension of Proposition S2.1. We

leave the proof to Section S3.2.

Proposition S3.1. Let m4 = supu∈Sd E〈S−1/2Z,u〉4. Let τ, r > 0 satisfy

τ ≥ max(4σ, 8m
1/2
4 r) and n ≥ c0λ

−1
S max

1≤j≤d
σjj(A0τ/r)

2s log d, (S3.5)

where c0 > 0 is an absolute constant. Then with probability at least 1− d−1,

〈∇Lτ (θ)−∇Lτ (θ∗),θ − θ∗〉 ≥
1

4
‖θ − θ∗‖2

S uniformly over θ ∈ Θr ∩ C. (S3.6)

Let Ωr be the event on which (S3.6) holds. Then P(Ωc
r) ≤ d−1 under the scaling

(S3.5) and it holds on Ωr ∩ {λ ≥ 2‖∇Lτ (θ∗)− E∇Lτ (θ∗)‖∞} that

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≥
1

4
‖δ̂η‖2

S.
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Substituting this lower bound into (S3.4) yields

1

4
‖δ̂η‖2

S ≤
1

2
λη
(
|v̂0|+ 3‖v̂S‖1

)
+
σ2

τ
‖δ̂η‖S

≤ 3

2
(s+ 1)1/2λ‖ηδ̂‖2 +

σ2

τ
‖δ̂η‖S

=
3

2
(s+ 1)1/2λ‖δ̂η‖2 +

σ2

τ
‖δ̂η‖S.

Canceling ‖δ̂η‖S on both sides delivers

‖δ̂η‖S ≤ 6λ
−1/2
S (s+ 1)1/2λ+ 4σ2τ−1 (S3.7)

and ‖δ̂η‖1 ≤ 24λ−1
S (s+ 1)λ+ 16λ

−1/2
S σ2(s+ 1)1/2τ−1

under the assumed scaling λ ≥ 2‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞ and (S3.5) .

It remains to tune the parameters τ, λ and r. The following result provides a

concentration inequality for ‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞.

Proposition S3.2. Assume Condition 3.1 holds and let τ = σ
√
n/t for some t > 0.

Then with probability at least 1− 2d−1,

‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞ ≤ 2A0 max
0≤j≤d

σ
1/2
jj σ

(√
2 log d̄

n
+

log d̄√
nt

)
. (S3.8)

Applying Proposition S3.2 with t = log d, we find that

‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞ ≤ c1A0 max
0≤j≤d

σ
1/2
jj σ

√
log d

n

with probability at least 1− 2d−1, where c1 > 0 is an absolute constant. We therefore

choose λ = c2A0 max0≤j≤d σ
1/2
jj σ

√
(log d)/n for some constant c2 ≥ 2c1, such that

λ ≥ 2‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞ with high probability.
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Putting the above calculations together and taking r = σ, we conclude that

‖θ̂η − θ∗‖S ≤ 6c2λ
−1/2
S A0 max

1≤j≤d
σ

1/2
jj σ

√
(s+ 1) log d

n
< σ

with probability at least 1−3d−1, assuming the scaling n & λ−1
S A2

0m4 max0≤j≤d σjj s log d.

By the construction of θ̂η, with the same probability we must have η = 1 and therefore

θ̂ = θ̂η. The stated result (3.9) then follows from (S3.7).

S3.1 Proof of (S3.2)

From the optimality of θ̂ we see that

Lτ (θ̂)− Lτ (θ∗) ≤ λ
(
‖β∗‖1 − ‖β̂‖1

)
.

By direct calculation, we have

‖β̂‖1 − ‖β∗‖1 ≥ ‖β∗S + v̂Sc‖1 − ‖β∗Sc‖1 − ‖v̂S‖1 −
(
‖β∗S‖1 + ‖β∗Sc‖1

)
≥ ‖v̂Sc‖1 − ‖v̂S‖1.

By the convexity of Lτ and the Cauchy-Schwarz inequality,

Lτ (θ̂)− Lτ (θ∗) ≥ 〈∇Lτ (θ∗), δ̂〉 ≥ −‖∇Lτ (θ∗)‖∞‖δ̂‖1

≥ −λ
2

(
|v̂0|+ ‖v̂Sc‖1 + ‖v̂S‖1

)
.

Putting the above calculations together delivers

0 ≤ λ

2

(
|v̂0|+ 3‖v̂S‖1 − ‖v̂Sc‖1

)
,

from which the conclusion follows.
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S3.2 Proof of Proposition S3.1

The proof is almost identical to that of Proposition S2.1. With slight abuse of notation,

define the supremum of a random process indexed by Θr ∩ C:

∆r := sup
θ∈Θr∩C

−g(θ) + Eg(θ)

‖θ − θ∗‖2
S

.

Provided τ ≥ max(4σ, 8m
1/2
4 r), it can be shown that

T (θ)

‖θ − θ∗‖2
S

≥ 1

2
−∆r for all θ ∈ Θr ∩ C. (S3.9)

The following lemma is a slight modification of Lemma S2.1.

Lemma S3.1. For any x > 0,

∆r ≤ 10
√

2λ
−1/2
S A0 max

0≤j≤d
σ

1/2
jj s̄

1/2 τ

r

{√
log(2d̄)

n
+

log(2d̄)

n

}
+ (2m4)1/2

√
x

n
+
τ 2

r2

x

3n

with probability at least 1− e−x, where d̄ = d+ 1 and s̄ = s+ 1.

Taking x = log d in Lemma S3.1, we obtain that with probability at least 1− d−1,

T (θ)

‖θ − θ∗‖2
S

≥ 1

4
uniformly over θ ∈ Θr ∩ C

as long as n & λ−1
S max1≤j≤d σjj(A0τ/r)

2s log d. This proves (S3.6).

S3.3 Proof of Proposition S3.2

To begin with, recall that ∇Lτ (θ∗) = (1/n)
∑n

i=1 ξiZi, where ξi = `′τ (εi) and Zi =

(Xi0, Xi1, . . . , Xid)
ᵀ with Xi0 ≡ 1. Hence,

‖∇Lτ (θ∗)−∇ELτ (θ∗)‖∞ = max
0≤j≤d

∣∣∣∣ 1n
n∑
i=1

ξiXij − E(ξiXij)

∣∣∣∣.
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Next we use the union bound and Bernstein’s inequality to bound the maximum. For

every 0 ≤ j ≤ d,

|E(ξiXij)| = |E{E(ξi|Xij)Xij}| ≤ E|Xij|σ2τ−1 ≤ σ
1/2
jj σ

2τ−1

and E(ξiXij)
2 = E{(ξ2

i |Xij)X
2
ij} ≤ σjjσ

2.

Moreover, for k = 3, 4, . . ., E|ξiXij|k ≤ σ2τ k−2Ak0σ
k/2
jj k! = k!

2
2A2

0σjjσ
2(A0σ

1/2
jj τ)k−2.

Then it follows from Bernstein’s inequality that, for any x > 0,

∣∣∣∣ 1n
n∑
i=1

(ξiXij − EξiXij)

∣∣∣∣ ≤ 2A0σ
1/2
jj σ

√
x

n
+ A0σ

1/2
jj τ

x

n

with probability at least 1− 2e−x. Putting together the pieces and taking x = 2 log d̄,

we arrive at the stated result.

S3.4 Proof of Lemma S3.1

Following the proof of Lemma S2.1, we only need to bound the expectation E∆r. By

Rademacher symmetrization and Talagrand’s contraction principle, it suffices to bound

E
{

sup
δ=θ−θ∗:θ∈Θr∩C

1

n

n∑
i=1

ei〈Zi, δ/‖δ‖S〉
}
≤ 4λ

−1/2
S (s+ 1)1/2E

∥∥∥∥ 1

n

n∑
i=1

eiZi

∥∥∥∥
∞
,

where Zi = (Xi0, Xi1, . . . , Xid)
ᵀ with Xi0 ≡ 1. For j = 1, . . . , d, define Sj =

∑n
i=1 eiXij

and note that E(eiXij) = 0 and E(eiXij)
2 = σjj. For k = 3, 4, . . .,

E|eiXij|k = Ak0σ
k/2
jj k

∫ ∞
0

tk−1P(|Xij| ≥ A0σ
1/2
jj t) dt ≤ k!Ak0σ

k/2
jj .
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The above moment inequalities, together with the symmetry of Rademacher random

variable, yield

EeλeiXij = 1 +
1

2
σjjλ

2 +
∞∑
k=3

λk

k!
E(eiXij)

k

≤ 1 +
1

2
σjjλ

2 +
∞∑
`=2

λ2`

(2`)!
(2`)!A2`

0 σ
`
jj

= 1 +
A2

0σjj
2

∞∑
k=2

λk(
√

2A0σ
1/2
jj )k−2

≤ 1 +
1

2

A2
0σjjλ

2

1−
√

2A0σ
1/2
jj λ

, for all 0 ≤ λ <
1

√
2A0σ

1/2
jj

.

Let v = A2
0 max0≤j≤d σjjn and c =

√
2A0 max0≤j≤d σ

1/2
jj . Following the proof of The-

orems 2.10 and 2.5 in Boucheron, Lugosi, and Massart (2013), it can be shown that

logEeλSj ≤ ψ(λ) := vλ2

2(1−cλ)
for any 0 ≤ j ≤ d and λ ∈ (0, 1/c), and hence

E max
0≤j≤d

|Sj| ≤ inf
λ∈(0,1/c)

{
log(2d̄) + ψ(λ)

λ

}
=
√

2v log(2d̄) + c log(2d̄).

Putting together the pieces, we conclude that

E∆r ≤ 8
√

2λ
−1/2
S A0 max

0≤j≤d
σ

1/2
jj (s+ 1)1/2 τ

r

{√
log(2d̄)

n
+

log(2d̄)

n

}
.

In conjunction with the concentration bound (S2.23), this proves the claimed result.

S4 Additional Simulation Studies

Additional results from the numerical studies in Sections 4.1 and 4.3 are displayed in

Figures S1 and S2.
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Figure S1: Estimation errors for the sample mean, CV-Huber, and DA-Huber estima-

tors under different settings based on 2000 simulations.

S5 Real Data Examples

In this section, using three real data sets, we demonstrate the desirable performance of

the proposed DA-Huber methods in terms of prediction accuracy.

Liu and Rubin (1995) reported a data collected from a clinical trial on endogenous

creatinine clearance of 34 male patients where 28 samples are free from missing data.

For the four recorded variables, it is known that the level of serum creatinine is closely

related to the endogenous creatinine clearance with the body weight and age properly
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Figure S2: Distributions of the `2-errors of the Lasso and DA-Huber estimators.

adjusted. Linear model (3.1) in the main paper is a natural preliminary fit to the data.

In addition, we observe that the empirical kurtosis of the level of serum creatinine is

19.66, which hints potential heavy-tailedness in the data. The second example is the

hedonic housing crime data (Harrison and Rubinfeld, 1978), which was originally used

to study the association between housing market and local air quality. Interestingly,

this data also provides some insights on how crime rates vary with respect to house-

economics features, such as the proportion of residential land zoned for lots greater than

25, 000 square feet, the proportion of non-retail business within a town, proportion of
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owner units built prior to 1940, proportion of adults without high school education,

median value of owner-occupied homes, average number of rooms in owner units, and

distance to five employment centers in Boston region. This data set contains 506

locations and the empirical kurtosis of the crime rate is 39.75. The last data set is the

well-known G-Econ data reported by Nordhaus et al. (2006), which was used to show

the dependence of gross cell product (GCP) on geographical variables measured on a

spatial scale of one degree. The original data contains 27, 445 terrestrial grid cells and

47 predictors, and varies abruptly across different latitude and longitude. For example,

the sizes of grid cell may change substantially from the equator to the poles. Similar

to Nordhaus et al. (2006), we focus on regions from 35 to 50 latitudes (parallel north)

that contain a large number of major economic centers, such as Tokyo, New York, Paris

and London. Excluding cells with empty inputs, 808 observations remain for studying

the relationship between the GCP (in USD) in 1990 and ten explanatory variables

as discussed in Nordhaus et al. (2006), including distance to coast, distance to major

navigable lakes, distance to major navigable rivers, distance to ice-free ocean, elevation,

standard deviation of elevations, elevation from shuttle radar topography mission data,

latitude, average precipitation, and average temperature. The empirical kurtosis of the

GCP is 256.58, suggesting strong heavy-tailedness.

From the simulation studies in Section 4 of the main text we see that both the

one-step and two-step DA-Huber estimators outperform the OLS in terms of estima-

tion accuracy. For the real data, we focus on the prediction accuracy by investigating
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Figure S3: Comparison of the quantiles of mean absolute prediction errors for the

OLS (black diamonds), one-step DA-Huber (blue circles), and two-step DA-Huber (red

triangles). The results are based on 100 random splittings.
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the mean absolute prediction errors. Specifically, upon splitting the data into K = 7

groups randomly, we predict the responses of one group using the regression coefficients

estimated from the other K−1 groups. Various quantile levels of the K mean absolute

prediction errors were computed for different estimators. We repeat the random split-

ting 100 times. Figure S3 displays the empirical medians of α-quantiles of the mean

absolute prediction errors for the three data sets, where α ranges from 0.1 to 0.9. The

two data-adaptive Huber estimators substantially outperform the OLS with smaller

prediction errors. When heavy-tailedness prevails and the intercept is nonnegligible,

such as the GCP in G-Econ data, the two-step estimator displays the best performance.

In general, the one- and two-step methods perform comparably well. For the endoge-

nous creatinine data, the 0.9-quantiles of the mean absolute prediction errors of the

three methods are comparable, which is possibly due to the small sample size (n = 28).

To sum up, the data-adaptive Huber methods provide notably better predictions than

the least squares for these three real-data examples.

S6 Other Loss Functions

The analysis in the paper can be extended to a broader class of robust convex loss

functions that include the Huber loss as a prototype. The key to achieve the tail-

robustness is the global Lipschitz and local quadratic geometry of the loss function

`τ (x) = τ 2`(x/τ). The “mother” function ` : R→ [0,∞) satisfies the following condi-
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tions with some constants c1-c4:

1. `′(0) = 0 and |`′(x)| ≤ c1 for all x ∈ R;

2. `′′(0) = 1 and |`′′(x)| ≥ c2 for all |x| ≤ c3;

3. |`′(x)− x| ≤ c4x
2 for all x ∈ R.

Below we list a few examples of ` that satisfy conditions (1)-(3).

1. Huber Loss: `(x) = x2/2 ·I(|x| ≤ 1)+(|x|−1/2) ·I(|x| > 1) with `′(x) = xI(|x| ≤

1) + sign(x)I(|x| > 1) and `′′(x) = I(|x| ≤ 1). Moreover,

|`′(x)− x| = |x− sign(x)|I(|x| > 1) ≤ x2.

2. Pseudo-Huber loss I : `(x) =
√

1 + x2 − 1, whose first and second derivatives are

`′(x) =
x√

1 + x2
and `′′(x) =

1

(1 + x2)3/2

respectively.

3. Pseudo-Huber loss II: `(x) = log {(ex + e−x) /2}, whose first and second deriva-

tives are, respectively,

`′(x) =
ex − e−x

ex + e−x
and `′′(x) =

4

(ex + e−x)2 .

4. Smoothed Huber loss I: The Huber loss is twice differentiable in R, except at

±1. Modifying the Huber loss gives rise to the following function that is twice
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differentiable everywhere:

`(x) =


x2/2− |x|3/6 if |x| ≤ 1

|x|/2− 1/6 if |x| > 1,

whose first and second derivatives are

`′(x) =


x− sign(x) · x2/2 if |x| ≤ 1

sign(x)/2 if |x| > 1,

`′′(x) =
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1− |x| if |x| ≤ 1

0 if |x| > 1.

5. Smoothed Huber loss II: Another smoothed version of the Huber loss function is

`(x) =


x2/2− x4/24 if |x| ≤

√
2

(2
√

2/3)|x| − 1/2 if |x| >
√
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