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Abstract: The robustification parameter, which balances bias and robustness, plays

a critical role in the construction of subGaussian estimators for heavy-tailed and/or

skewed data. Although the parameter can be tuned using cross-validation, in large-

scale statistical problems such as high-dimensional covariance matrix estimation

and large-scale multiple testing, the number of robustification parameters increases

with the dimensionality causing cross-validation to become computationally pro-

hibitive. We propose a new data-driven principle for choosing the robustification

parameter for Huber-type subGaussian estimators in three fundamental problems:

mean estimation, linear regression, and sparse regression in high dimensions. Our

proposal is guided by a nonasymptotic deviation analysis, and is conceptually dif-

ferent from cross-validation, which relies on the mean squared error to assess the

fit. Extensive numerical experiments and a real-data analysis further illustrate the

efficacy of the proposed methods.

Key words and phrases: Data adaptive, heavy tails, Huber loss, M -estimator, tuning

parameters.

1. Introduction

Data subject to heavy-tailed and/or skewed distributions are frequently ob-

served in various disciplines (Cont (2001); Purdom and Holmes (2005)). A ran-

dom variable X is heavy-tailed if its tail probability P(|X| > t) decays to zero

polynomially in 1/t as t → ∞, or equivalently, if X has finite polynomial-order

moments. The connection between the moments and the tail probability is re-

vealed by the property that E(|X|k) = k
∫∞
0 tk−1P(|X| > t) dt, for any k ≥ 1.

Here the sampling distribution has only a small number of finite moments, with

a high chance that some observations deviate significantly from the population

mean. Such observations are known as outliers, and are caused by heavy-tailed

noise. In contrast, samples generated from a Gaussian or subGaussian distri-

bution (Vershynin (2012)) are strongly concentrated around the expected value,
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making the chance of having extreme observations much smaller.

Heavy-tailed data bring new challenges to conventional statistical methods.

For linear models, regression estimators based on the least squares loss are subop-

timal, both theoretically and empirically, in the presence of heavy-tailed errors.

See Catoni (2012) for a deviation analysis showing that the deviation of the

empirical mean can be much worse for nonGaussian samples than it is for Gaus-

sian ones. More broadly, this study exemplifies the pitfalls of asymptotic studies

in statistics, and inspires new notions of optimality commonly used to assess

the performance of estimators. In particular, the minimax optimality under the

mean squared error does not quite capture the influence of estimators’ extreme

behaviors. However, these rare events may have severe negative effects in prac-

tice, leading to wrong conclusions or false discoveries. Since the work of Catoni

(2012), nonasymptotic deviation analyses have drawn considerable attention, and

are becoming increasingly important in the construction of subGaussian estima-

tors (see Section S1.2 in the Supplementary Materials) for heavy-tailed data; see,

for example, Brownlees, Joly and Lugosi (2015), Minsker (2015, 2018), Hsu and

Sabato (2016), Devroye et al. (2016), Lugosi and Mendelson (2016), Fan, Li and

Wang (2017), Lugosi and Mendelson (2019), Lecué and Lerasle (2017), and Zhou

et al. (2018), among others.

For linear models, Fan, Li and Wang (2017) and Zhou et al. (2018) proposed

Huber-type estimators in both low- and high-dimensional settings’ and derived

nonasymptotic deviation bounds for the estimation error. To implement either

Catoni’s or a Huber-type method, a tuning parameter τ needs to be specified in

advance to balance the robustness and bias of the estimation. A deviation analysis

suggests that this tuning parameter, which we refer to as the robustification

parameter, should adapt to the sample size, dimension, variance of the noise, and

confidence level. Calibration schemes are typically based on cross-validation or

Lepski’s method, which can be computationally intensive, especially for large-

scale inference and high-dimensional estimation problems, where the number of

parameters may be exponential in the number of observations. For example,

Avella-Medina et al. (2018) proposed adaptive Huber estimators for estimating

high-dimensional covariance and precision matrices. For a d×d covariance matrix,

although every entry can be robustly estimated using a Huber-type estimator

with τ chosen via cross-validation, the overall procedure involves as many as

d2 tuning parameters. As a result, the cross-validation method soon becomes

computationally intractable as d grows. Efficient tuning is important, not only

for the problem, but also for applications in a broader context.

First, we develop data-driven Huber-type methods for mean estimation, lin-
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ear regression, and sparse regression in high dimensions. For each problem, we

first provide subGaussian concentration bounds for the Huber-type estimator

under a minimal moment condition on the errors. These nonasymptotic results

guide the choice of key tuning parameters. Some are of independent interest,

and improve existing results by weakening the sample size scaling. Second, we

propose a novel data-driven principle to calibrate the robustification parameter

τ > 0 in the Huber loss

`τ (x) =


x2

2
if |x| ≤ τ,

τ |x| − τ2

2
if |x| > τ.

(1.1)

Huber proposed using τ = 1.345σ to retain 95% of the asymptotic efficiency of

the estimator for normally distributed data, and to guarantee the estimator’s

performance for arbitrary contamination in a neighborhood of the true model

(Huber (1981); Huber and Ronchetti (2009)). This default setting is useful in

high-dimensional statistics, even though the asymptotic efficiency is no longer

well defined; see, for example, Lambert-Lacroix and Zwald (2011), Elsener and

van de Geer (2018), and Loh (2017). Guided by the nonasymptotic deviation

analysis, our proposed τ grows with the sample size for the bias–robustness trade-

off. For linear regressions under different regimes, the optimal τ depends on the

dimension d: τ ∼ σ
√

(n/d) in the low-dimensional setting with small d/n, and

τ ∼ σ
√
n/ log(d) in high dimensions. Lastly, we design simple and fast algorithms

to implement our method for calibrating τ .

We focus on the notion of tail robustness (Catoni (2012); Minsker (2018);

Zhou et al. (2018); Fan, Li and Wang (2017); Avella-Medina et al. (2018)), which

is characterized by tight nonasymptotic deviation guarantees for the estimators

under weak moment assumptions, and is evidenced by better finite-sample per-

formance in the presence of heavy-tailed and/or highly skewed noise. This is

inherently different from the traditional definition of robustness under Huber’s ε-

contamination model (Huber and Ronchetti (2009)). Following the introduction

of the finite-sample breakdown point by Donoho and Huber (1983), traditional

robust statistics have focused, in part, on the development of high breakdown

point estimators. Informally, the breakdown-point of an estimator is defined as

the largest proportion of contaminated samples in the data that an estimator can

tolerate before it produces arbitrarily large estimates (Hampel (1971); Hampel

et al. (1986); Maronna et al. (2018)). A high breakdown point does not necessar-

ily shed light on an estimator’s convergence properties, efficiency, and stability.
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Refer to Portnoy and He (2000) for a review of classical robust statistics. In con-

trast, a tail robust estimator is resilient to outliers caused by heavy-tailed noise.

Intuitively, the breakdown point describes the worst-case robustness, whereas our

focus corresponds to the average-case robustness.

The remainder of this paper is organized as follows. In Section 2, we revisit

Catoni’s method on robust mean estimation. Motivated by a careful analysis

of the truncated sample mean, we introduce a novel data-driven adaptive Hu-

ber estimator. We extend this data-driven tuning scheme to robust regression in

Section 3 under both low- and high-dimensional settings. Extensive numerical ex-

periments are reported in Section 4 to demonstrate the finite-sample performance

of the proposed procedures. Section 5 concludes the paper. All proofs, together

with technical details and real-data examples, are relegated to the Supplementary

Material.

2. Robust Data-Adaptive Mean Estimation

2.1. Motivation

To motivate our proposed data-driven scheme for Huber-type estimators, we

start by revisiting the mean estimation problem. Let X1, . . . , Xn (n ≥ 2) be

independent and identically distributed (i.i.d.) copies of X with mean µ and

finite variance σ2 > 0. The sample mean, denoted as X̄n, is the most natural

estimator for µ. However, it suffers severely from not being robust to heavy-tailed

sampling distributions (Catoni (2012)). In order to cancel, or at least dampen, the

erratic fluctuations in X̄n, which are more likely to occur if the distribution of X

is heavy-tailed, we consider the truncated sample mean mτ = n−1
∑n

i=1 ψτ (Xi),

for some τ > 0, where

ψτ (x) = sign(x) min(|x|, τ) (2.1)

is a truncation function on R. Here, the tuning parameter τ controls the bias

and tail robustness of mτ . To see this, note that the bias term Bias := E(mτ )−µ
satisfies |Bias| = |E{X − sign(X)τ}I(|X| > τ)| ≤ τ−1E(X2). For tail robustness,

the following result shows that mτ with a properly chosen τ is a subGaussian

estimator, as long as the second moment of X is finite.

Proposition 1. Assume that v2 :=
√
E(X2) is finite. For any z > 0,

(i) mτ with τ = v
√
n/z, for some v ≥ v2, satisfies P{|mτ − µ| ≥ 2v

√
z/n} ≤

2e−z;

(ii) mτ with τ = cv2
√
n/z, for some 0 < c ≤ 1, satisfies P{|mτ − µ| ≥

2(v2/c)
√
z/n} ≤ 2e−z/c

2

.
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Proposition 1 shows how mτ performs under various idealized scenarios, thus

providing guidance on the choice of τ . Here, z > 0 is a user-specified parameter

that controls the confidence level; see the discussion before Remark 2. Given

a properly tuned τ , the subGaussian performance is achieved; conversely, if the

resulting estimator performs well, the data are truncated at the right level and

can be further exploited. An ideal τ is such that the sample mean of the truncated

data ψτ (X1), . . . , ψτ (Xn) serves as a good estimator of µ. The influence of outliers

caused by heavy-tailed noise is weakened owing to the proper truncation. At

the same time, we may expect that the empirical second moment for the same

truncated data will provide a reasonable estimate of v22. Motivated by this, we

propose choosing τ > 0 by solving τ = {n−1
∑n

i=1 ψ
2
τ (Xi)}1/2

√
n/z, which is

equivalent to

1

n

n∑
i=1

ψ2
τ (Xi)

τ2
=
z

n
, τ > 0. (2.2)

We show that, under mild conditions, (2.2) has a unique solution τ̂z, which gives

rise to the following data-driven mean estimator:

mτ̂z =
1

n

n∑
i=1

min(|Xi|, τ̂z) sign(Xi). (2.3)

To understand the property of τ̂z, consider the population version of (2.2):

E{ψ2
τ (X)}
τ2

=
E{min(X2, τ2)}

τ2
=
z

n
, τ > 0. (2.4)

The following result establishes the existence and uniqueness of the solution to

(2.4).

Proposition 2. Assume that v2 =
√
E(X2) is finite.

(i) Provided 0 < z < nP(|X| > 0), (2.4) has a unique solution τz that satisfies

[E{min(X2, q2z/n)}]1/2
√
n/z ≤ τz ≤ v2

√
n/z, where qα := inf{t : P(|X| >

t) ≤ α} is the upper α-quantile of |X|.

(ii) Let z = zn > 0 satisfy zn → ∞ and z = o(n). Then, τz → ∞ and

τz ∼ v2
√
n/z, as n→∞.

As a direct consequence of Proposition 2, the following result ensures the

existence and uniqueness of the solution to (2.2), the empirical counterpart of

(2.4).
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Proposition 3. Provided 0 < z <
∑n

i=1 I(|Xi| > 0), (2.2) admits a unique

solution.

Throughout, denote τ̂z as the solution to (2.2), which is unique and positive

whenever z <
∑n

i=1 I(|Xi| > 0). For completeness, we set τ̂z = 0 on {z ≥∑n
i=1 I(|Xi| > 0)}. If P(X = 0) = 0 and 0 < z < n, then τ̂z > 0 with probability

one. With both τz and τ̂z well defined, we investigate the property of τ̂z below.

Theorem 1. Assume E(X2) < ∞ and P(X = 0) = 0. For any 1 ≤ z < n and

0 < r < 1, we have

P
(∣∣∣∣ τ̂zτz − 1

∣∣∣∣ ≥ r) ≤ e−a2
1r

2z2/(2z+2a1rz/3) + e−a
2
2r

2z/2 + 2e−(a1∧a2)2z/8, (2.5)

where

a1 = a1(z, r) =
P (τz)

2Q(τz)

2 + r

(1 + r)2
and a2 = a2(z, r) =

P (τz − τzr)
2Q(τz)

2− r
1− r

, (2.6)

with P (t) = E{X2I(|X| ≤ t)} and Q(t) = E{ψ2
t (X)}.

Remark 1. Here, we give some direct implications of Theorem 1.

(i) Let z = zn ≥ 1 satisfy z = o(n) and z → ∞ as n → ∞. By Proposition 2,

τz → ∞ and τz ∼ v2
√
n/z, which implies P (τz) → v22 and Q(τz) → v22 as

n→∞.

(ii) With r = 1/2 and z = logκ(n), for some κ ≥ 1, in (2.5), the constants a1 =

a1(z, 1/2) and a2 = a2(z, 1/2) satisfy a1 → 5/9 and a2 → 3/2, respectively,

as n → ∞. The resulting τ̂z satisfies that, with probability approaching

one, τz/2 ≤ τ̂z ≤ 3τz/2.

We conclude this section with a uniform deviation bound for mτ . The uni-

formity of the rate over a neighborhood of the optimal tuning scale requires an

additional log(n)-factor. As a result, we show that the data-driven estimator mτ̂z

is tightly concentrated around the mean with high probability.

Theorem 2. For z ≥ 1, let τ∗z = v2
√
n/z. Then, with probability at least

1− 2ne−z,

sup
τ∗
z /2≤τ≤3τ∗

z /2
|mτ − µ| ≤ 4v2

(
z

n

)1/2

+ v2n
−1/2. (2.7)

Letting z = 2 log(n) and τ̂z be the solution to (2.2), we obtain the following

concentration inequality for the mean estimator mτ̂z given in (2.3).
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Corollary 1. With probability at least 1− c1n−c2 for all sufficiently large n, we

have

|mτ̂z − µ| ≤ 4v2

√
2 log(n)

n
+ v2n

−1/2, (2.8)

where c1, c2 > 0 are absolute constants.

2.2. Adaptive Huber estimator

For the truncation method, even with the theoretically desirable tuning pa-

rameter τ = v2
√
n/z, the deviation of the resulting estimator scales only with v2,

rather than with the standard deviation σ. The optimal deviation, which is en-

joyed by the sample mean with subGaussian data, is of order σ
√
z/n. To achieve

such an optimal order, Fan, Li and Wang (2017) modified Huber’s method to con-

struct an estimator that exhibits fast (subGaussian type) concentration under a

finite-variance condition.

The Huber loss in (1.1) is continuously differentiable with `′τ (x) = ψτ (x),

where ψτ (·) is defined in (2.1). The Huber estimator is obtained as µ̂τ =

argminθ∈R
∑n

i=1 `τ (Xi − θ), or equivalently, µ̂τ is the unique solution to

0 =

n∑
i=1

ψτ (Xi − θ) =

n∑
i=1

min(|Xi − θ|, τ) sign(Xi − θ). (2.9)

Refer to Catoni (2012) for a general class of robust mean estimators. The follow-

ing result from Theorem 5 in Fan, Li and Wang (2017) shows the exponential-type

concentration of µ̂τ when τ is properly calibrated.

Proposition 4. Let z > 0 and v ≥ σ. Provided n ≥ 8z, µ̂τ with τ = v
√
n/z

satisfies the bound |µ̂τ − µ| ≤ 4v
√
z/n with probability at least 1− 2e−z.

Proposition 4 indicates that a theoretically desirable tuning parameter for

the Huber estimator is τ ∼ σ
√
n/z. Motivated by the data-driven approach

proposed in Section 2.1, we consider the following modification of (2.4):

E{ψ2
τ (X − µ)}
τ2

=
E[min{(X − µ)2, τ2}]

τ2
=
z

n
, τ > 0. (2.10)

According to Proposition 2, provided 0 < z < nP(X 6= µ), (2.10) admits a unique

solution τz,µ that satisfies
√
E
[
min{(X − µ)2, q̄z/n}

]√
n/z ≤ τz,µ ≤ σ

√
n/z,

where q̄α = inf{t : P(|X − µ| > t) ≤ α}. From a large-sample perspective, if

z = zn satisfies z → ∞ and z = o(n), then τz,µ → ∞ and τz,µ ∼ σ
√
n/z as

n→∞.

Based on (2.9) and (2.10), a clearly motivated data-driven estimate of µ can
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be obtained by solving the following system of equations:f1(θ, τ) :=
∑n

i=1 ψτ (Xi − θ) = 0,

f2(θ, τ) :=
n−1

∑n
i=1 min{(Xi − θ)2, τ2}

τ2
− n−1z = 0,

θ ∈ R, τ > 0. (2.11)

Observe that for any given τ > 0, f1(·, τ) = 0 always admits a unique solu-

tion, and for any given θ, f2(θ, ·) = 0 has a unique solution, provided that

z <
∑n

i=1 I(Xi 6= θ). With initial values θ(0) = X̄n and τ (0) = σ̂n
√
n/z, where

σ̂2n denotes the sample variance, we can solve (2.11) successively by comput-

ing a sequence of solutions {(θ(k), τ (k))}k≥1 that satisfy f2(θ
(k−1), τ (k)) = 0 and

f1(θ
(k), τ (k)) = 0, for k ≥ 1. For a predetermined tolerance ε, the algorithm

terminates within the `th iteration when max{|θ(`) − θ(`−1)|, |τ (`) − τ (`−1)|} ≤ ε,

and uses θ(`) as a robust estimator of µ.

In the case of z = 1, the algorithm stops in the first iteration and delivers the

solution X̄n. According to the results in Section 2.1, for fixed z ≥ 1, there is no

net improvement in terms of tail robustness; instead, we should let z = zn grow

slowly with the sample size to achieve tail robustness without introducing extra

bias. Specifically, we choose z = log(n) throughout our numerical experiments.

Remark 2. The proposed estimator is obtained by iteratively solving (2.11),

which mimics (1.6) in Bickel (1975), and can be viewed as a variant of (6.28) and

(6.29) in Huber and Ronchetti (2009) for joint location and scale estimation. The

estimator in Bickel (1975) solves the equation
∑n

i=1 ψσ̂(Xi − θ) = 0, where σ̂ is

chosen independently as the normalized interquartile range σ̂(1) = {X(n−[n/4]+1)−
X([n/4])}/2Φ−1(3/4) or the symmetrized interquartile range σ̂(2) = median{|Xi−
m|}/Φ−1(3/4), where X(1) < · · · < X(n) are the order statistics and m is the

sample median. The consistency of σ̂(1) or σ̂(2) is established under the symmetry

assumption of X, but remains unclear for general distributions. On the other

hand, similarly to Bickel (1975), our proposed estimators of θ and τ are also

location and scale equivariant (see Sections S1.7 and S1.8 in the Supplementary

Materials).

Unlike this classical approach, we waive the symmetry requirement by allow-

ing the robustification parameter to diverge in order to reduce the bias induced

by the Huber loss when the distribution is asymmetric. Another difference is

that Bickel’s proposal is a two-step method that estimates the scale and loca-

tion separately, whereas our procedure estimates µ and calibrates τ simultane-

ously by solving a system of equations. In fact, as a direct extension of the

idea in Section 2.1, we can also tune τ independently from the estimation by
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solving
(
n
2

)−1∑
1≤i<j≤n τ

−2 min{(Xi − Xj)
2/2, τ2} = zn−1, for z > 0. Let X ′

be an independent copy of X. Then, the population version of this equation is

E
[
min{(X −X ′)2/2, τ2}

]
τ−2 = z/n, the solution of which is unique under mild

conditions and scales as σ
√
n/z.

Remark 3. We assume a finite variance of errors. For more subtle scenarios

with a finite (1 + δ)th moment and 0 < δ < 1, the phase transition phenomenon

discovered by Devroye et al. (2016) and Sun, Zhou and Fan (2020) suggests

that Huber’s M -estimator no longer admits subGaussian-type deviation bounds.

Developing the corresponding data-driven principle to tune Huber’s method when

δ < 1 is nontrivial, and thus is left as a topic for future investigation.

3. Robust Data-Adaptive Linear Regression

In this section, we extend the proposed data-driven method for robust mean

estimation to regression problems. Consider the linear regression model

Yi = β∗0 +Xᵀ
i β
∗ + εi, i = 1, . . . , n, (3.1)

where Yi is a response variable, Xi is a d-dimensional vector of covariates, β∗0
and β∗ ∈ Rd denote the intercept and vector, respectively, of the regression

coefficients, and ε1, . . . , εn are independent regression errors with zero mean and

finite variance. For ease of presentation, we write Zi = (1,Xᵀ
i )ᵀ and θ∗ =

(β∗0 ,β
∗ᵀ)ᵀ. The goal is to estimate θ∗ from the observed data {(Yi,Xi)}ni=1.

3.1. Adaptive Huber regression in low dimensions

We start with the low-dimensional regime, where d� n. In the presence of

heavy-tailed errors, the finite-sample properties of the least squares method are

suboptimal, both theoretically and empirically. Under such heavy-tailed mod-

els, refer to Audibert and Catoni (2011) and Sun, Zhou and Fan (2020) for a

nonasymptotic analysis of Huber-type robust regressions; the former focuses on

the excess risk bounds, and the latter provides deviation bounds for the estimator,

along with nonasymptotic Bahadur representations.

Given τ > 0, Huber’s M -estimator is defined as

θ̂τ = (β̂0,τ , β̂
ᵀ
τ )ᵀ ∈ argmin

θ∈Rd+1

n∑
i=1

`τ (Yi −Zᵀ
i θ), (3.2)

where `τ (·) is given in (1.1). By the convexity of the Huber loss, the solu-

tion to (3.2) is determined uniquely using the first-order condition
∑n

i=1 ψτ (Yi−
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Zᵀ
i θ̂τ )Zi = 0. Most desirable features of Huber’s method are established under

the assumption that the error distribution is symmetric around zero. In the ab-

sence of symmetry, the bias induced by the Huber loss becomes non-negligible. To

make this statement precise, note that θ̂τ = (β̂0,τ , β̂
ᵀ
τ )ᵀ is a natural M -estimator

of

θ∗τ = (β∗0,τ ,β
∗ᵀ
τ )ᵀ = argmin

(β0,βᵀ)ᵀ∈Rd+1

n∑
i=1

E{`τ (Yi − β0 −Xᵀ
i β)}, (3.3)

whereas the true parameters β∗0 and β∗ are identified as argminβ0,β

∑n
i=1 E{(Yi−

β0 −Xᵀ
i β)2}. For any fixed τ > 0, although β̂0,τ and β̂τ are robust estimates of

β∗0,τ and β∗τ , respectively, (β∗0,τ ,β
∗
τ ) differs from (β∗0 ,β

∗), in general. The following

proposition provides an explicit bound on the bias, complementing the results in

Section 4.9.2 of Maronna et al. (2018).

Proposition 5. Assume that ε and X are independent, and that the function

α 7→ E{`τ (ε− α)} has a unique minimizer ατ = argminα∈R E{`τ (ε− α)}, which

satisfies

P(|ε− ατ | ≤ τ) > 0. (3.4)

Assume further that E(ZZᵀ) is positive definite. Then, we have β∗0,τ = β∗0 + ατ
and β∗τ = β∗. Moreover, ατ with τ > σ satisfies the bound

|ατ | ≤
σ2 − E{ψ2

τ (ε)}
1− τ−2σ2

1

τ
. (3.5)

Note too that the Huber loss minimization is equivalent to the penalized least

squares problem (She and Owen (2011)), (µ̂τ , θ̂τ ) = argminµ∈Rn,θ∈Rd+1{12
∑n

i=1(Yi−
µi − Zᵀ

i θ)2 + τ
∑n

i=1 |µi|}, where µ = (µ1, . . . , µn)ᵀ and θ̂τ coincide with those

in (3.2). This loss function can be written as
∑n

i=1(Yi − µi − β0 −X
ᵀ
i β)2/2 +

τ
∑n

i=1 |µi|, which explains from a different perspective that the bias arises only

at the intercept. The larger τ is, the sparser µ̂τ is and, therefore, the smaller the

estimation bias is.

Proposition 5 draws attention to intercept estimation, a problem of indepen-

dent interest that needs to be treated with greater caution. If the distribution

of ε is asymmetric, ατ is typically nonzero, for any τ > 0; here, a smaller τ

results in a larger bias and, thus, a larger prediction error. To balance the bias

and the tail robustness, we propose two modifications to Huber’s method (a one-

step method, and a two-step method) that are robust against heavy-tailed and

asymmetric errors, while maintaining high efficiency for normal data.



DATA-ADAPTIVE HUBER REGRESSION 2163

3.1.1. One-step method

As noted in Zhou et al. (2018), there is an inherent bias–robustness trade-off

in the choice of τ , which should adapt to the sample size, dimension, and the

variance of the noise; see Theorem 3. To begin with, we impose the following

moment conditions.

Condition 3.1. The covariates X1, . . . ,Xn are i.i.d. random vectors from X.

There exists A0 > 0, such that for any u ∈ Rd+1 and t ∈ R, P(|〈u, z〉| ≥
A0‖u‖2 · t) ≤ e−t, where z = S−1/2Z and S = E(ZZᵀ) is positive definite. The

regression errors εi are independent and satisfy E(εi|Xi) = 0 and E(ε2i |Xi) ≤ σ2

almost surely.

Theorem 3. Assume Condition 3.1 holds. For any z > 0 and v ≥ σ, the

estimator θ̂τ in (3.2), with τ = v
√
n/(d+ z), satisfies the bound ‖S1/2(θ̂τ −

θ∗)‖2 ≤ c1v
√

(d+ z)/n with probability at least 1− 2e−z, provided n ≥ c2(d+ z),

where c1, c2 > 0 are constants depending only on A0.

This theorem establishes a subGaussian concentration bound for θ̂τ under

the optimal sampling size scaling. Compared with Theorem 2.1 in Zhou et al.

(2018), there are two technical improvements: first, the moment condition on the

random predictor is relaxed from subGaussian to sub-exponential; and second,

the sample size requirement is improved to n & d, which is in line with the classi-

cal asymptotic consistency result that requires d = o(n). To achieve subGaussian

performance under the finite-variance condition, the key observation is that the

robustification parameter τ should adapt to the sample size, dimension, variance

of the noise, and confidence level for an optimal trade-off between bias and ro-

bustness. Extending our proposal for mean estimation, for θ ∈ Rd+1 and τ > 0,

we estimate θ∗ and calibrate τ simultaneously by solving the system of equations{
g1(θ, τ) :=

∑n
i=1 ψτ (Yi −Zᵀ

i θ)Zi = 0,

g2(θ, τ) := (τ2n)−1
∑n

i=1 min{(Yi −Zᵀ
i θ)2, τ2} − n−1(d+ z) = 0.

(3.6)

With initial values θ(0) := θ̂ols = (
∑n

i=1ZiZ
ᵀ
i )−1

∑n
i=1 YiZi and τ (0) = σ̂n√

n/(d+ z), where σ̂2n = (1/n)
∑n

i=1(Yi−Z
ᵀ
i θ̂ols)

2, for k ≥ 1, solve g2(θ
(k−1), τ (k))

= 0 to obtain τ (k), and then compute θ(k) as the solution to g1(θ
(k), τ (k)) = 0.

Iterate until convergence, and set θ̂ I := θ̂τ̂ as the one-step estimator, where (θ̂, τ̂)

is the final output.

The main advantage of the proposed adaptive Huber regression over the

traditional one with τ = 1.345σ is that the estimation bias with respect to the

intercept is alleviated. Examining the proof of Proposition 5, we find that the bias
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is of order 1/τ when the second moment is finite, and is quadratic in 1/τ if the

third moment is finite. The statistical error, on the other hand, is determined by

the `2-norm of the score function evaluated at θ∗, which is of order σ
√
d/n+τd/n;

see Theorem 4. The overall error is then optimized at τ � σ
√
n/d. For the

normal model, because max1≤i≤n |εi| ∼ σ
√

2 log(2n) . σ
√
n/d, the adaptive

Huber estimator is almost identical to the least squares estimator. The numerical

results in Section 4 provide strong support for the tail-adaptivity of our proposed

data-driven Huber regression.

When τ scales as a constant, such as cσ, the corresponding Huber loss is

Lipschitz with a bounded score function, and because β∗τ = β∗ for any τ > 0,

there is no sacrifice in bias when estimating the slope β∗. Again, a constant c

is typically tuned to ensure a given level of asymptotic efficiency. The asymp-

totic properties of general robust M -estimators have been well studied in the

literature; see Avella-Medina and Ronchetti (2015) for a selective overview. The

next result further complements Theorem 3 by establishing the deviations of the

Huber estimator with fixed τ from a nonasymptotic viewpoint.

Theorem 4. Suppose Condition 3.1 and the assumptions in Proposition 5 hold.

Assume further that ρτ := P(|ε − ατ | ≤ τ/2) > 0. Then, the estimator θ̂τ in

(3.2) satisfies ‖S1/2(θ̂τ − θ∗τ )‖2 . ρ−1τ A0{σ
√

(d+ z)/n + τ(d + z)/n}, for any

z > 0, with probability at least 1− 2e−z, provided n ≥ c3(d+ z), where c3 > 0 is

a constant depending only on (A0, ρτ ).

3.1.2. Two-step method

Motivated by our bias-robustness analysis and the results of the finite-sample

investigation, we introduce a two-step procedure that estimates the regression

coefficients and the intercept successively.

In the first step, we compute the Huber estimator θ̂τ = (β̂0,τ , β̂
∗ᵀ
τ )ᵀ by solving

(3.2) with τ = cσ. We take c = 1.345 to retain the 95% efficiency for the normal

model. Here, σ can be estimated simultaneously with θ∗ by solving a system

of equations, as in Huber’s “Proposal 2” (Huber (1964); Huber and Ronchetti

(2009)), or we can fix σ at an initial robust estimate, and then optimize over

θ (Hampel et al. (1986)). We follow the former route and consider an iterative

procedure. Start with an initial estimate θ(0). At iteration k = 0, 1, 2, . . ., we

employ a simple procedure to obtain σ̂(k), based on which we update θ(k+1). This

step involves two procedures.

Procedure 1: Scale estimation. Using the current estimate θ(k), we compute the

vector of residuals r(k) = (r
(k)
1 , . . . , r

(k)
n )ᵀ and the robustification parameter τ (k) =
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1.345σ̂(k), where σ̂(k) denotes the median absolute deviation (MAD) estimator

median{|r(k)i −median(r
(k)
i )|}/Φ−1(3/4).

Procedure 2: Weighted least squares. Compute the n×n diagonal matrix W(k) =

diag((1 + w
(k)
1 )−1, . . . , (1 + w

(k)
n )−1), where w

(k)
i = |r(k)i |/τ (k) − 1 if |r(k)i | > τ (k),

and w
(k)
i = 0 if |r(k)i | ≤ τ (k). Then, we update θ(k) to produce θ(k+1) using the

weighted least squares; that is,

θ(k+1) = argmin
θ∈Rd+1

n∑
i=1

(Yi −Zᵀ
i θ)2

1 + w
(k)
i

= (ZᵀW(k)Z)−1ZᵀW(k)Y ,

where Z = (Z1, . . . ,Zn)ᵀ ∈ Rn×(d+1) and Y = (Y1, . . . , Yn)ᵀ.

Starting with θ(0) = θ̂ols, we repeat the above two procedures until conver-

gence. Denote β̂ II ∈ Rd as the vector of coefficient estimates extracted from the

final solution.

In the second step, observe that β∗0 = E(δi), where δi = Yi−Xᵀ
i β
∗ = β∗0 + εi

are the residuals. To estimate β∗0 , define the fitted residuals δ̂i = Yi −Xᵀ
i β̂

II,

and solve the system of equations{
f1(β0, τ) := (τ2n)−1

∑n
i=1 min{(δ̂i − β0)2, τ2} − n−1log(n) = 0,

f2(β0, τ) :=
∑n

i=1 ψτ (δ̂i − β0) = 0
(3.7)

in the same way as (2.11) to obtain β̂ II
0 . Then, θ̂ II = (β̂ II

0 , β̂
II) is the two-step

estimator of θ∗.

The two-step procedure leverages the fact that for the asymmetric regression

errors with potentially heavy tails, the Huber loss with a fixed τ introduces bias

to the intercept estimation, but not to the estimation of the slope coefficients.

To alleviate the influence of skewness in the error, in the second step, we use

the adaptive Huber method with a divergent τ to re-estimate the intercept. The

two-step estimator therefore achieves both a high degree of tail robustness and

unbiasedness.

3.2. Adaptive Huber regression in high dimensions

We now move to the high-dimensional setting, where d � n and β∗ =

(β∗1 , . . . , β
∗
d)ᵀ ∈ Rd is sparse, with ‖β∗‖0 :=

∑d
j=1 I(β∗j 6= 0) = s � n. Since

the invention of the Lasso (Tibshirani (1996)), a variety of variable selection

methods have been developed for finding a small group of response-associated

covariates from a large pool; refer to Bühlmann and van de Geer (2011) and

Hastie, Tibshirani and Wainwright (2015) for a comprehensive review along this
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line.

The Lasso estimator is β̂lasso(λ) ∈ argminβ0∈R,β∈Rd{(2n)−1
∑n

i=1(Yi − β0 −
Xᵀ
i β)2 + λ‖β‖1}, where λ > 0 is a regularization parameter. Viewing the noise

variable as Gaussian, this can be interpreted as a penalized maximum likelihood

estimate, where the `1-penalty encourages sparsity in the estimation. However,

least squares fitting is sensitive to the tails of the error distributions, particularly

for ultrahigh-dimensional covariates, because their spurious correlations with the

noise can be large. Therefore, this method is not ideal in the presence of heavy-

tailed noise.

Recently, Fan, Li and Wang (2017) modified Huber’s procedure to obtain an

`1-regularized robust estimator that admits the desirable concentration bound un-

der a finite-variance condition on the regression errors. According to Section 3.1,

the intercept, albeit often ignored in the literature, plays an important role in

studies of robust methods. To take into account the effect of the intercept, we

consider the regularized Huber estimator of the form

θ̂H(τ, λ) ∈ argmin
θ=(β0,βᵀ)ᵀ∈Rd+1

{
Lτ (θ) + λ‖β‖1

}
, (3.8)

where Lτ (θ) := (1/n)
∑n

i=1 `τ (Yi − Zᵀ
i θ) = (1/n)

∑n
i=1 `τ (Yi − β0 −Xᵀ

i β), and

τ and λ are the robustification and regularization parameters, respectively.

Given εi with finite variance, Theorem 5 reveals that the `1-regularized Huber

regression with properly tuned (τ, λ) gives rise to consistent estimators, with `1-

and `2-errors scaling as s
√

log(d)/n and
√
s log(d)/n, respectively, under the

sample size scaling n & s log(d). These rates are exactly the minimax rates

enjoyed by the Lasso with subGaussian errors.

Theorem 5. Assume Condition 3.1 holds, and denote by λS the minimal eigen-

value of S. Assume further that the unknown β∗ is sparse with s = ‖β∗‖0. Let

σjj = E(X2
j ), for j = 1, . . . , d. Then, the estimator θ̂H(τ, λ) given in (3.8), with

τ = σ
√
n/ log(d) and λ scaling with A0 max1≤j≤d σ

1/2
jj σ

√
log(d)/n, satisfies

‖θ̂H(τ, λ)− θ∗‖2 .
s1/2λ

λS
and ‖θ̂H(τ, λ)− θ∗‖1 .

sλ

λS
(3.9)

with probability at least 1 − 3d−1, as long as n ≥ c1s log(d), where c1 > 0 is a

constant depending only on (A0,max1≤j≤d σjj , λS).

Theorem 5 complements Theorem 3 in Fan, Li and Wang (2017). The latter

provides convergence rates for an `1-penalized Huber M -estimator under the

weakly sparse setting that ‖β∗‖q ≤ Rq, for some 0 < q ≤ 1. Their results,
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however, do not directly apply to the sparse regime where q = 0. Moreover, the

subGaussian condition imposed in Fan, Li and Wang (2017) is now relaxed to

the sub-exponential condition.

Remark 4. The main purpose of using the Huber loss for data fitting is to gain

robustness against outliers from the contamination models (Huber (1973)) or the

heavy-tailed models considered here. For other purposes, different loss functions

have been proposed to replace the squared loss, such as the nonconvex Tukey and

Cauchy losses, quantile loss, and asymmetric quadratic loss, among others. Refer

to Owen (2007), Loh and Wainwright (2015), Loh (2017), Zhou et al. (2018),

Mei, Bai and Montanari (2018), Alquier, Cottet and Lecué (2019), and Pan, Sun

and Zhou (2019) for discussions on the regularized M -estimator with different

loss functions.

In practice, it is computationally demanding to choose the optimal values of

τ and λ using a two-dimensional grid search and cross-validation. We consider

the following procedure that estimates θ∗ and tunes τ simultaneously. Given a

random sample of size n, we use a cross-validated Lasso as an initialization θ̂(0).

At iteration k = 1, 2, . . ., using the previous estimate θ̂(k−1), we compute τ (k) as

the solution to

1

{n− ŝ(k−1)}

n∑
i=1

min{(Yi −Zᵀ
i θ̂

(k−1))2, τ2}
τ2

=
log(nd)

n
, (3.10)

where ŝ(k−1) = ‖β̂(k−1)‖0. Next, take τ = τ (k), and compute θ̂(k) by solving

min
θ

{
1

n

n∑
i=1

`τ (Yi −Zᵀ
i θ) + λ‖β‖1

}
, (3.11)

where λ is chosen using cross-validation. Repeat the above two steps until con-

vergence, or until the maximum number of iterations is reached.

To implement the data-driven Huber regression in high dimensions, starting

with some initial guess, we iteratively solve (3.10) and (3.11). For the convex op-

timization problems in (3.11), the minimizer satisfies the Karush–Kuhn–Tucker

conditions, and therefore can be found by solving the following system of nons-

mooth equations:
−n−1

∑
i ψτ (Yi −Zᵀ

i θ̂) = 0,

−n−1
∑

i ψτ (Yi −Zᵀ
i θ̂)Xij + λη̂j = 0, j = 1, . . . , d

β̂j − S(β̂j + η̂j) = 0, j = 1, . . . , d,

(3.12)
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where θ̂ = (β̂0, β̂
ᵀ)ᵀ ∈ Rd+1 with β̂ = (β̂1, . . . , β̂d)

ᵀ, η̂j ∈ ∂|β̂j |, and S(z) =

sign(z)(|z| − 1)+ is the soft-thresholding operator. Instead of directly applying

the semismooth Newton algorithm (SNA) to the entire system of equations, we

adapt the semismooth Newton coordinate descent (SNCD) algorithm proposed

by Yi and Huang (2017), which combines the SNA with a cyclic coordinate de-

scent to solve (3.12). More specifically, in the SNCD, we divide (3.12) into two

parts in order to avoid the cumbersome matrix operations involved in solving the

entire system. In a cyclic fashion, we update the intercept using only the first

equation, and update the coefficients with its subgradients using the last two

equations. Therefore, we reduce the computational cost from O(nd2) to O(nd)

at each iteration. The gain in computational scalability and efficiency is sub-

stantial for large d. After obtaining a solution path of (3.11), we employ the

cross-validation method to select λ and then the associated θ̂(k).

Remark 5. The above regularized data-adaptive Huber (DA-Huber) regression

method is a direct extension of the one-step method proposed in Section 3.1 to

high dimensions. Furthermore, note that Proposition 5 holds in high dimensions,

as long as the population Gram matrix S is positive definite. Therefore, to

further reduce the estimation bias of the intercept, we suggest using the two-step

procedure that estimates the regression coefficients using the standard regularized

Huber regression, and then estimates the intercept by applying the adaptive-

Huber method to the fitted residuals, as in (3.7). Section 4.3 provides numerical

studies of both the one- and the two-step regularized adaptive Huber estimators.

4. Empirical Analysis

In this section, we examine numerically the finite-sample performance of

the proposed DA-Huber methods for mean estimation and linear regressions.

In the Supplementary Material, using three real data sets, we also demonstrate

the desirable performance of the proposed DA-Huber methods in terms of their

prediction accuracy.

We consider the following four distribution settings to investigate the robust-

ness and efficiency of the proposed method:

(1) Normal distribution N (0, σ2) with mean zero and variance σ2 > 0;

(2) Skewed generalized t distribution (Theodossiou (1998)) sgt(µ, σ2, λ, p, q),

where mean µ = 0, variance σ2 = q/(q−2) with q > 2, shape p = 2, and skewness

λ = 0.75;

(3) Lognormal distribution LN(µ, σ) with µ = 0 and σ > 0; and

(4) Pareto distribution Par(xm, α) with scale xm = 1 and shape α > 0.
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Figure 1. Estimation error versus confidence level for the sample mean, CV-Huber, and
DA-Huber estimators based on 2,000 simulations.

All of the above settings except (1) are skewed and might be very heavy-tailed

for some choice of the distribution parameters, such as α < 2 for the Pareto

distribution.

4.1. Mean estimation

For each setting, we generate an independent sample of size n = 100 and

compute three mean estimators: the sample mean, the Huber estimator with τ

chosen using five-fold cross-validation (CV-Huber), and the proposed DA-Huber

mean estimator. Figure 1 displays the α-quantile of the estimation error, with α

ranging from 0.5 to 1 based on 2,000 simulations. Figure S1 in the Supplementary

Material shows box plots of the estimation error. The DA-Huber estimator and

sample mean perform almost identically for the normal data. For the heavy-tailed

skewed distributions, the deviation of the sample mean from the population mean

grows rapidly with the confidence level, in striking contrast to the CV- and DA-

Huber estimators.

In Figure 2, we examine the 99%-quantile of the estimation error versus

a distribution parameter measuring the tail behavior and the skewness. That

is, for normal data we let σ vary between 1 and 4; for skewed generalized t
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Figure 2. Empirical 99%-quantile of the estimation error versus a parameter measuring
the tails and skewness for the sample mean, CV-Huber, and DA-Huber estimators.

distributions, we increase the shape parameter q from 2.5 to 4; for the lognormal

and Pareto distributions, the shape parameters σ and α vary from 0.25 to 2 and

1.5 to 3, respectively. The Huber-type estimators show substantial improvement

in the deviations from the population mean because the distribution tends to

have heavier tails and becomes more skewed. In summary, the most attractive

feature of our method is its adaptivity: (i) it is as efficient as the sample mean

for the normal model and is more robust for asymmetric and/or heavy-tailed

data; (ii) it performs as well as the cross-validation method but with a much

lower computational cost. The latter is particularly important for large-scale

inferences, in which a myriad of parameters need to be estimated simultaneously.

4.2. Linear regression

We generate data {(Yi,Xi)}ni=1 from the linear model in (3.1), with n = 500

and d = 5. The intercept and the vector of regression coefficients are taken as

β0 = 5 and β∗ = (1,−1, 1,−1, 1)ᵀ, respectively. The covariates Xi are i.i.d. ran-

dom vectors that consist of independent coordinates from a uniform distribution

Unif(−1.5, 1.5).

We compare the DA-Huber regression estimator with the ordinary least

squares (OLS) estimator, and with classical robust M -estimators with a Huber
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Figure 3. Estimation errors of intercept under different settings.

loss `τ (·), as in (1.1), and Tukey’s biweight loss `Tτ (x) = {1− (1−x2/τ2)3}I(|x| ≤
τ) + I(|x| > τ). The tuning parameter τ in `Tτ (·) and `τ (·) is taken as 4.685

and 1.345, respectively, according to the 95% efficiency rule. We carry out 1,000

Monte Carlo simulations to (1) evaluate the overall performance of the DA-Huber

methods by comparing it with that of the three competitors, OLS, Tukey, and

Huber (see Figures 3 and 4), and (2) explore the robustness of different methods

with varying degrees of heavy-tailedness and skewness (see Figures 5 and 6).

Figures 3 and 4 display box plots of the estimation error of the intercept

|β̂0 − β∗0 | and the total `2-error ‖θ̂ − θ∗‖22, respectively, for a fixed distribution

parameter, as in Section 4.1. The one-step and two-step DA-Huber estimators

both outperform the other methods across all examples. When estimating the

intercept, DA-Huber rectifies the non-negligible bias in the traditional robust

M -estimator, as predicted by the theory. In the normal case, the DA-Huber esti-

mator performs almost identically to the OLS estimator, and is therefore highly

efficient. The `2-error of the OLS tends to spread out (due to outliers), and thus

is not reported. Figures 5 and 6 show the average estimation error of the in-

tercept and the total `2-error versus the distribution parameters controlling the

shape of the tails, respectively. In the normal case, the one-step DA-Huber and

OLS slightly outperform the others. With heavy-tailed and skewed errors, the

DA-Huber methods enjoy a notable advantage. However, the two-step approach
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Figure 4. Total `2-errors under different settings.
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Figure 5. Average estimation error of the intercept versus the distribution parameters
controlling the tails for the OLS estimator, standard Tukey and Huber estimators, and
data-adaptive Huber estimators (one-step and two-step).
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Figure 6. Average `2-errors versus the distribution parameters controlling the tails for
the OLS estimator, standard Tukey and Huber estimators, and data-adaptive Huber
estimators (one-step and two-step).

is the most desirable because it strikes a good balance between bias and tail ro-

bustness. Overall, the numerical results confirm that the proposed methods have

substantial advantages in the presence of asymmetric and heavy-tailed errors,

while maintaining high efficiency for the normal model.

4.3. Sparse linear regression

Now, we consider the sparse linear regression, Yi = β∗0 + Xᵀ
i β
∗ + εi, with

i = 1, . . . , n, where β∗ ∈ Rd is sparse, with s = ‖β∗‖0 � n and d � n. In our

simulations, we take n = 250, d = 1,000, and s = 20. We set β∗0 = 3 and β∗ =

(3, . . . , 3, 0, . . . , 0)ᵀ, where the first s = 20 nonzero entries of β∗ are all equal to

three. As before, the covariates Xi are i.i.d. random vectors whose independent

coordinates are from Unif(−1.5, 1.5), and εi follows one of four distributions:

normal, skewed generalized t, lognormal, and Pareto.

To implement the iterative procedure proposed in Section 3.2, at the kth iter-

ation, we use five-fold cross-validation to choose λ
(k)
1 and λ

(k)
2 in the optimization

programs in (3.11), producing θ̂
(k)
1 and θ̂

(k)
2 , respectively. We evaluate the pro-

posed regularized DA-Huber estimators using the following measurements: RG,

the relative gain of the DA-Huber estimator with respect to the Lasso in terms
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Table 1. RG, FP, and FN and their standard errors (in parenthese) of the Lasso and
DA-Huber estimators under different models. The results are based on 200 simulations.

Lasso
DA-Huber DA-Huber

Lasso
DA-Huber DA-Huber

(one-step) (two-step) (one-step) (two-step)

Normal, N (0, 1) sgt(0, 5, 0.75, 2, 2.5)

RG1 × 100 100 93.4 (0.6) 91.4 (0.9) 100 87.5 (1.0) 86.2 (0.9)

RG2 × 100 100 100.3 (0.2) 102.7 (0.3) 100 98.3 (0.5) 98.1 (0.5)

FP 87.9 (1.7) 77.6 (1.4) 73.5 (2.0) 86.1 (1.8) 63.1 (1.8) 60.7 (1.5)

FN 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Lognormal, LN(0, 1.5) Pareto, Par(1, 2)

RG1 × 100 100 34.7 (0.7) 22.7 (0.5) 100 65.3 (1.1) 41.7 (0.8)

RG2 × 100 100 49.5 (1.0) 30.5 (0.7) 100 84.5 (0.9) 51.2 (0.9)

FP 80.8 (2.0) 21.9 (0.6) 26.6 (0.7) 85.1 (1.9) 34.5 (1.6) 44.2 (0.9)

FN 0.26 (0.1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

of the `1- and `2-errors; RGq = ‖θ̂H − θ‖q/‖θ̂lasso − θ‖q, with q = 1, 2; FP, the

number of false positives (selected noise covariates); and FN, the number of false

negatives (missed signal covariates).

Table 1 summarizes the relative gains of the DA-Huber estimators under the

`1- and `2-errors and the numbers of false positive and false negative discover-

ies. Across all four models, both DA-Huber estimators outperform the Lasso,

with smaller `1-errors and fewer false positive discoveries. Therefore, they are

less greedy in terms of model selection. For the normal model, the proposed

robust methods and the Lasso perform equally well. In the presence of heavy-

tailed skewed errors, the DA-Huber methods lead to remarkably better outputs

in regard of both estimation and model selection. Similar results are observed in

Figure S2 in the Supplementary Material, which displays the empirical distribu-

tions of the `2-errors for all estimators.

5. Conclusion

We have proposed a new principle for choosing a robustification parameter

adaptively from data for a variety of fundamental statistical problems, including

mean estimations, a linear regression, and a sparse regression in high dimensions.

Inspired by the censored moment equation approach, the proposed principle is

tuning-free and data-adaptive. It is conceptually different from the traditional

practice of selecting the robustification parameter using cross-validation, which

is not only computationally demanding, but also lacks the underpinning math-

ematical guarantees. The proposed principle is guided by nonasymptotic devia-
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tion analysis, providing a unified method for choosing a robustification parameter

for tail-robust estimation and inference. In particular, the analysis guiding our

method can be extended easily to a broader class of robust convex loss func-

tions, including the pseudo-Huber loss functions. The key is the global Lips-

chitz and local quadratic geometry of the loss function `τ (x) = τ2`(x/τ). In

light of the numerical evidence from both synthetic and real data, our proposal

outperforms those widely known procedures in terms of estimation, variable se-

lection, and prediction in the presence of heavy-tailed and skewed errors. Fi-

nally, an R package that implements the DA-Huber method can be found at

https://github.com/XiaoouPan/tfHuber.

Supplementary Material

The online Supplementary Material contains proofs of all theoretical results

in the main text, as well as additional empirical studies.
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